J. Austral. Math. Soc. (Series A) 64 (1998), 1-19

POSETS AND DIFFERENTIAL GRADED ALGEBRAS

JACQUI RAMAGGE and WAYNE W. WHEELER

(Received 1 June 1996)

Communicated by L. Kovács

Abstract

If P is a partially ordered set and R is a commutative ring, then a certain differential graded R-algebra $A_{\bullet}(P)$ is defined from the order relation on P. The algebra $A_{\bullet}(\emptyset)$ corresponding to the empty poset is always contained in $A_{\bullet}(P)$ so that $A_{\bullet}(P)$ can be regarded as an $A_{\bullet}(\emptyset)$ -algebra. The main result of this paper shows that if R is an integral domain and P and P' are finite posets such that $A_{\bullet}(P) \cong A_{\bullet}(P')$ as differential graded $A_{\bullet}(\emptyset)$ -algebras, then P and P' are isomorphic.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 06A06.

1. Introduction

A common way to study partially ordered sets involves associating certain algebraic objects with a poset and then trying to gain new insights by considering these associated objects. For example, the concept of a Cohen-Macaulay poset arises naturally from the study of Stanley-Reisner rings [1, 3]. On the other hand, algebraic constructions associated with partially ordered sets have also proven to have widespread applicability within algebra itself, particularly in the area of representation theory [2].

The current work, which grew out of an interest in posets that arise in group representation theory, is based upon this interplay between partially ordered sets and algebra. If P is a partially ordered set and R is an integral domain, then we define a graded R-algebra $A_{\bullet}(P)$. The definition involves forming a new poset P_0 by adjoining a minimum element 0 to the poset P. For any $n \ge 0$ the component $A_n(P)$ of degree n is the free R-module on the symbols $[x_1 < \cdots < x_n]$ whenever $x_1 < \cdots < x_n$ is a chain in P_0 . Using the order relation on P_0 , one can define a multiplication on $A_{\bullet}(P)$,

⁽c) 1998 Australian Mathematical Society 0263-6115/98 \$A2.00 + 0.00

Second author partially supported by an IAS/Australian Universities Collaborative Research Grant from the Australian National University and by an NSF postdoctoral research fellowship

and it also has an *R*-endomorphism of degree -1 that makes $A_{\bullet}(P)$ into a differential graded *R*-algebra. The algebra $A_{\bullet}(\emptyset)$ corresponding to the empty poset is necessarily contained in $A_{\bullet}(P)$ so that $A_{\bullet}(P)$ is in fact an $A_{\bullet}(\emptyset)$ -algebra.

Now suppose that P and P' are finite posets and $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ is an isomorphism of differential graded $A_{\bullet}(\emptyset)$ -algebras. If f_{\bullet} maps the distinguished basis of $A_{\bullet}(P)$ to that of $A_{\bullet}(P')$, then the definition of the multiplication in $A_{\bullet}(P)$ makes it easy to see that P and P' are isomorphic. The main result of this paper shows that this conclusion is valid even if f_{\bullet} does not preserve the distinguished basis. Thus one can recover the poset P from the algebra $A_{\bullet}(P)$ with no additional information.

Section 2 of the paper contains the definition of $A_{\bullet}(P)$ and a proof that it is a differential graded $A_{\bullet}(\emptyset)$ -algebra. The proof that the algebra $A_{\bullet}(P)$ determines the poset P is given in Section 3. Finally, Section 4 gives a description of the graded center in terms of certain annihilators in $A_{\bullet}(P)$. Although we have chosen to assume throughout the paper that the coefficient ring R is an integral domain, it should be noted that this assumption is often not necessary. In particular, all of the results of Section 2 hold over an arbitrary commutative ring.

2. The definition and basic properties of the algebra

If *P* is a partially ordered set and *R* is an integral domain, then we will define a differential graded *R*-algebra $A_{\bullet}(P)$ from the poset *P*. The first step is to define a new poset P_0 in which the points consist of the points in *P*, together with one additional point called 0. The order < on P_0 is given by taking x < y in P_0 if either x = 0 and $y \in P$ or $x, y \in P$ and x < y in *P*.

For each $n \ge 0$ the component $A_n(P)$ is defined to be the free *R*-module on the symbols $[x_1 < x_2 < \cdots < x_n]$ whenever $x_1 < x_2 < \cdots < x_n$ is a strictly increasing chain in P_0 . For convenience we will also use the symbol $[x_1 < x_2 < \cdots < x_n]$ even when x_1, x_2, \ldots, x_n do not form a strictly increasing chain in P_0 , but in this case we set $[x_1 < x_2 < \cdots < x_n]$ equal to 0 in $A_n(P)$. Note that $A_0(P)$ is a free *R*-module of rank one, generated by the symbol [].

Define a multiplication on the (non-zero) basis elements of $A_{\bullet}(P)$ by setting

$$[x_{1} < \dots < x_{m}][y_{1} < \dots < y_{n}]$$

$$= \begin{cases} [x_{1} < \dots < x_{m} < y_{1} < \dots < y_{n}] & \text{if } x_{m} < y_{1} \\ (-1)^{m-1}[0 < x_{1} < \dots < x_{m-1} < y_{1} < \dots < y_{n}] \\ + (-1)^{m}[0 < x_{1} < \dots < x_{m} < y_{2} < \dots < y_{n}] & \text{if } x_{m} \not< y_{1}, \end{cases}$$

and extend this multiplication to all of $A_{\bullet}(P)$ by linearity. In the proofs of the following propositions it is important to bear in mind that the equation defining this multiplication applies only to products of non-zero generators of $A_{\bullet}(P)$.

PROPOSITION 2.1. Let P be a partially ordered set. Then $A_{\bullet}(P)$ is a graded associative algebra with 1.

PROOF. The identity element of $A_{\bullet}(P)$ is given by [], and it is clear from the definition of the product that $A_m(P)A_n(P) = A_{m+n}(P)$. Thus it is only necessary to show that $A_{\bullet}(P)$ is associative.

Let $a, b, c \in A_{\bullet}(P)$ be homogeneous elements. We will prove that (ab)c = a(bc)by induction on deg b. The equality clearly holds if deg a = 0, deg b = 0, or deg c = 0, so assume that deg b = 1, deg $a \ge 1$, and deg $c \ge 1$. To prove that (ab)c = a(bc), it suffices to consider the case in which a, b, and c are non-zero homogeneous generators. Suppose, then, that $a = [x_1 < \cdots < x_m]$, $b = [y_1]$, and $c = [z_1 < \cdots < z_p]$. If $x_m < y_1 < z_1$, then it is easy to see that (ab)c = a(bc), so suppose that $x_m \not< y_1$ but $y_1 < z_1$. Then

$$(ab)c = ([x_1 < \dots < x_m][y_1])[z_1 < \dots < z_p]$$

= $(-1)^{m-1}[0 < x_1 < \dots < x_{m-1} < y_1][z_1 < \dots < z_p]$
+ $(-1)^m[0 < x_1 < \dots < x_m][z_1 < \dots < z_p]$
= $(-1)^{m-1}[0 < x_1 < \dots < x_{m-1} < y_1 < z_1 < \dots < z_p]$
+ $(-1)^m[0 < x_1 < \dots < x_m < z_1 < \dots < z_p]$
= $[x_1 < \dots < x_m][y_1 < z_1 < \dots < z_p]$
= $[x_1 < \dots < x_m]([y_1][z_1 < \dots < z_p])$
= $a(bc).$

Similar computations show that (ab)c = a(bc) when $x_m < y_1$ and $y_1 \not\leq z_1$, and also when $x_m \not\leq y_1$ and $y_1 \not\leq z_1$.

It follows that if a, b, and c are any homogeneous elements of $A_{\bullet}(P)$ with deg b = 1, then (ab)c = a(bc). Assume by induction that $n \ge 1$ and that if a, b, and c are homogeneous with deg $b \le n$, then (ab)c = a(bc). Then

$$(a[y_1 < \dots < y_{n+1}])c = (a([y_1 < \dots < y_n][y_{n+1}]))c$$

= $((a[y_1 < \dots < y_n])[y_{n+1}])c$
= $(a[y_1 < \dots < y_n])([y_{n+1}]c)$
= $a([y_1 < \dots < y_n]([y_{n+1}]c))$
= $a(([y_1 < \dots < y_n][y_{n+1}])c)$
= $a([y_1 < \dots < y_{n+1}]c).$

Hence (ab)c = a(bc) whenever a, b, and c are homogeneous with deg $b \le n + 1$, and it follows that $A_{\bullet}(P)$ is associative. This completes the proof.

If $1 \le i \le n$, then we write $[x_1 < \cdots < \hat{x}_i < \cdots < x_n]$ for $[x_1 < \cdots < x_{i-1} < x_{i+1} < \cdots < x_n]$. Define a sequence of *R*-linear maps $d : A_n(P) \to A_{n-1}(P)$ by setting

$$d[x_1 < \cdots < x_n] = \sum_{i=1}^n (-1)^{i-1} [x_1 < \cdots < \hat{x}_i < \cdots < x_n]$$

on all non-zero homogeneous generators $[x_1 < \cdots < x_n]$. It is easy to verify that $d^2 = 0$.

PROPOSITION 2.2. Let P be a partially ordered set, and suppose that $a \in A_m(P)$ and $b \in A_n(P)$. Then

$$d(ab) = (da)b + (-1)^m a(db),$$

and $(A_{\bullet}(P), d)$ is a differential graded *R*-algebra.

PROOF. We will prove that $d(ab) = (da)b + (-1)^m a(db)$ by induction on m. It is clear that the equation holds if m = 0 or n = 0, so assume that m = 1 and $n \ge 1$. To prove that the equation holds in this case, it suffices to consider the situation in which a and b are non-zero homogeneous generators. Suppose, then, that $a = [x_1]$ and $b = [y_1 < \cdots < y_n]$. If $x_1 < y_1$, then

$$(da)b + (-1)^{m}a(db)$$

= $[y_{1} < \dots < y_{n}] - \sum_{i=1}^{n} (-1)^{i-1} [x_{1} < y_{1} < \dots < \hat{y}_{i} < \dots < y_{n}]$
= $d[x_{1} < y_{1} < \dots < y_{n}] = d(ab).$

Now suppose that $x_1 \neq y_1$. Then one can check that

$$(da)b + (-1)^{m}a(db)$$

$$= [y_{1} < \dots < y_{n}] - \sum_{i=1}^{n} (-1)^{i-1} [x_{1}][y_{1} < \dots < \hat{y}_{i} < \dots < y_{n}]$$

$$= [y_{1} < \dots < y_{n}] - [x_{1}][y_{2} < \dots < y_{n}]$$

$$- \sum_{i=2}^{n} ((-1)^{i-1} [0 < y_{1} < \dots < \hat{y}_{i} < \dots < y_{n}]$$

$$+ (-1)^{i} [0 < x_{1} < y_{2} < \dots < \hat{y}_{i} < \dots < y_{n}])$$

$$= [y_1 < \dots < y_n] + \sum_{i=1}^n (-1)^i [0 < y_1 < \dots < \hat{y}_i < \dots < y_n]$$

- $[x_1][y_2 < \dots < y_n] + [0 < y_2 < \dots < y_n]$
- $\sum_{i=2}^n (-1)^i [0 < x_1 < y_2 < \dots < \hat{y}_i < \dots < y_n]$
= $d[0 < y_1 < \dots < y_n] - d[0 < x_1 < y_2 < \dots < y_n]$
= $d([x_1][y_1 < \dots < y_n]) = d(ab).$

It now follows that if a and b are any homogeneous elements of $A_{\bullet}(P)$ with deg a = 1, then d(ab) = (da)b - a(db). Assume by induction that $m \ge 1$ and that if a and b are homogeneous with deg $a \le m$, then $d(ab) = (da)b + (-1)^{\deg a}a(db)$. Then

$$\begin{aligned} \left(d[x_1 < \cdots < x_{m+1}]\right)b + (-1)^{m+1}[x_1 < \cdots < x_{m+1}]db \\ &= d\left([x_1][x_2 < \cdots < x_{m+1}]\right)b + (-1)^{m+1}[x_1 < \cdots < x_{m+1}]db \\ &= [x_2 < \cdots < x_{m+1}]b - [x_1]\left(d[x_2 < \cdots < x_{m+1}]\right)b \\ &+ (-1)^{m+1}[x_1 < \cdots < x_{m+1}]db \\ &= [x_2 < \cdots < x_{m+1}]b \\ &- [x_1]\left((d[x_2 < \cdots < x_{m+1}]b + (-1)^m[x_2 < \cdots < x_{m+1}]db\right) \\ &= (d[x_1])[x_2 < \cdots < x_{m+1}]b - [x_1]d([x_2 < \cdots < x_{m+1}]b) \\ &= d\left([x_1 < x_2 < \cdots < x_{m+1}]b\right).\end{aligned}$$

Hence $d(ab) = (da)b + (-1)^{\deg a}a(db)$ whenever a and b are homogeneous with deg $a \le m + 1$, and it follows that $A_{\bullet}(P)$ is a differential graded R-algebra.

If P is any poset, then the algebra $A_{\bullet}(\emptyset)$ corresponding to the empty poset is just the subalgebra of $A_{\bullet}(P)$ spanned by [] and [0]. Thus $A_{\bullet}(P)$ is actually a differential graded $A_{\bullet}(\emptyset)$ -algebra. Unless otherwise specified, therefore, any homomorphism $g_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}(P')$ that we consider will be assumed to be a homomorphism of differential graded $A_{\bullet}(\emptyset)$ -algebras so that $g_{\bullet}([0]) = [0]$. For simplicity of notation we generally write $g_{\bullet}[x_1 < \cdots < x_n]$ instead of $g_{\bullet}([x_1 < \cdots < x_n])$.

Let P and P' be partially ordered sets, and let $f_1 : A_1(P) \to A_1(P')$ be an R-linear map given by

$$f_1[x] = \sum_{x' \in P'_0} c_{x'x}[x']$$

for some elements $c_{x'x} \in R$. We want to explore the conditions under which f_1 extends to a homomorphism $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ of differential graded $A_{\bullet}(\emptyset)$ -algebras. The matrix $C = (c_{x'x})$ will be referred to as the *matrix of* f_1 .

Let $f_0: A_0(P) \to A_0(P')$ be the unique *R*-linear map satisfying $f_0[] = []$, and for $n \ge 2$ let $f_n: A_n(P) \to A_n(P')$ be the unique *R*-linear map defined on basis elements of $A_n(P)$ by

$$f_n[y_1 < \cdots < y_n] = f_1[y_1] \cdots f_1[y_n].$$

In this way we associate an *R*-linear map $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ to each *R*-linear map $f_1 : A_1(P) \to A_1(P')$.

LEMMA 2.3. Let P and P' be posets, and let $f_1 : A_1(P) \to A_1(P')$ be an R-linear map with matrix $C = (c_{x'x})$. Then the R-linear map $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ satisfies $df_1 = f_0 d$ if and only if $\sum_{x' \in P'_0} c_{x'x} = 1$ for all $x \in P_0$.

PROOF. Let $x \in P_0$. Then $df_1[x] = d \sum_{x' \in P'_0} c_{x'x}[x'] = \sum_{x' \in P'_0} c_{x'x}[$, and $f_0d[x] = f_0[$] = []. Hence $df_1[x] = f_0d[x]$ if and only if $\sum_{x' \in P'_0} c_{x'x} = 1$, as desired.

LEMMA 2.4. Let P and P' be posets, and let $f_1 : A_1(P) \rightarrow A_1(P')$ be an R-linear map with matrix $C = (c_{x'x})$. Suppose that $f_1[0] = [0]$ and that $df_1 = f_0d$. Then the following conditions are equivalent:

- (1) If $x, y \in P_0$ and $x \neq y$, then $[0]f_1[x]f_1[y] = 0$.
- (2) If $a, b \in A_{\bullet}(P)$, then $f_{\bullet}(ab) = f_{\bullet}(a)f_{\bullet}(b)$.
- (3) If $x \neq y$ in P_0 and $0 \neq x' < y'$ in P'_0 , then $c_{x'x}c_{y'y} = 0$.

PROOF. Let $x, y \in P_0$ with $x \neq y$. Then

$$[0]f_1[x]f_1[y] = [0]\sum_{x' \in P'_0} c_{x'x}[x']\sum_{y' \in P'_0} c_{y'y}[y'] = \sum_{0 \neq x' < y'} c_{x'x} c_{y'y}[0 < x' < y'],$$

and it follows that (1) and (3) are equivalent.

Now suppose that (2) holds. If $x, y \in P_0$ and $x \neq y$, then

$$[0]f_1[x]f_1[y] = f_3([0][x][y]) = f_3([0][0 < y] - [0][0 < x]) = 0.$$

Thus we see that (2) implies (1).

Finally, we show that (3) implies (2). To prove that $f_{\bullet}(ab) = f_{\bullet}(a)f_{\bullet}(b)$ for all $a, b \in A_{\bullet}(P)$, it suffices to consider the case in which a and b are homogeneous basis elements. In fact, it is enough to prove that

$$f_{n+1}([x][y_1 < \cdots < y_n]) = f_1[x]f_n[y_1 < \cdots < y_n]$$

whenever $x \in P_0$ and $y_1 < \cdots < y_n$ in P_0 . The result is immediate if n = 0, so assume that $n \ge 1$. If $x < y_1$, then

$$f_{n+1}([x][y_1 < \dots < y_n]) = f_{n+1}[x < y_1 < \dots < y_n]$$

= $f_1[x]f_1[y_1] \cdots f_1[y_n]$
= $f_1[x]f_n[y_1 < \dots < y_n],$

as desired. Thus we may assume that $x \neq y_1$.

We now prove that if $n \ge 1$ and $x \ne y_1$, then $f_{n+1}([x][y_1 < \cdots < y_n]) = f_1[x]f_n[y_1 < \cdots < y_n]$. First suppose that n = 1. Then (3) implies that

$$\begin{split} f_{1}[x]f_{1}[y_{1}] &= \sum_{x',y' \in P'_{0}} c_{x'x}c_{y'y_{1}}[x'][y'] \\ &= \sum_{y' \in P'} \sum_{0 \neq x' < y'} c_{x'x}c_{y'y_{1}}[x' < y'] + \sum_{y' \in P'} c_{0x}c_{y'y_{1}}[0 < y'] \\ &- \sum_{x' \in P'} c_{x'x}c_{0y_{1}}[0 < x'] + \sum_{y' \in P'} \sum_{0 \neq x' \neq y'} c_{x'x}c_{y'y_{1}} ([0 < y'] - [0 < x']) \\ &= \sum_{y' \in P'} \left(c_{0x}c_{y'y_{1}} - c_{y'x}c_{0y_{1}} + \sum_{0 \neq x' \neq y'} c_{x'x}c_{y'y_{1}} - \sum_{0 \neq x' \neq y'} c_{y'x}c_{x'y_{1}} \right) [0 < y'] \\ &= \sum_{y' \in P'} \left(\sum_{x' \in P'_{0}} c_{x'x}c_{y'y_{1}} - \sum_{x' \in P'_{0}} c_{y'x}c_{x'y_{1}} \right) [0 < y']. \end{split}$$

Since $df_1 = f_0 d$, Lemma 2.3 implies that

(2.5)

$$f_{1}[x]f_{1}[y_{1}] = \sum_{y' \in P'} (c_{y'y_{1}} - c_{y'x})[0 < y']$$

$$= \sum_{y' \in P'_{0}} c_{y'y_{1}}[0][y'] - \sum_{y' \in P'_{0}} c_{y'x}[0][y']$$

$$= [0]f_{1}[y_{1}] - [0]f_{1}[x]$$

$$= f_{2}[0 < y_{1}] - f_{2}[0 < x]$$

$$= f_{2}([x][y_{1}]).$$

Now suppose that $n \ge 2$. Using (2.5) and (1), we see that

$$f_{1}[x]f_{n}[y_{1} < \dots < y_{n}] = f_{1}[x]f_{1}[y_{1}]\cdots f_{1}[y_{n}]$$

= [0]f_{1}[y_{1}]\cdots f_{1}[y_{n}] - [0]f_{1}[x]f_{1}[y_{2}]\cdots f_{1}[y_{n}]
= f_{n+1}[0 < y_{1} < \dots < y_{n}] - f_{n+1}[0 < x < y_{2} < \dots < y_{n}]
= f_{n+1}([x][y_{1} < \dots < y_{n}]).

Thus (2) follows, and this completes the proof.

PROPOSITION 2.6. Let P and P' be partially ordered sets, and let $f_1 : A_1(P) \rightarrow A_1(P')$ be an R-linear map with matrix $C = (c_{x'x})$. Then f_1 extends to a homomorphism $f_{\bullet} : A_{\bullet}(P) \rightarrow A_{\bullet}(P')$ of differential graded $A_{\bullet}(\emptyset)$ -algebras if and only if the following conditions are satisfied.

- (1) $c_{00} = 1$ and $c_{x'0} = 0$ for all $x' \in P'$.
- (2) $\sum_{x' \in P'_0} c_{x'x} = 1$ for all $x \in P_0$.
- (3) If $x \neq y$ in P_0 and $0 \neq x' < y'$ in P'_0 , then $c_{x'x}c_{y'y} = 0$.

PROOF. Note that f_1 extends to a homomorphism f_{\bullet} of differential graded $A_{\bullet}(\emptyset)$ -algebras if and only if the following conditions are satisfied:

- (1') $f_0[] = []$ and $f_1[0] = [0]$.
- (2') $df_{n+1} = f_n d$ for all $n \ge 0$.
- (3') $f_{\bullet}(ab) = f_{\bullet}(a) f_{\bullet}(b)$ for all $a, b \in A_{\bullet}(P)$.

Thus it suffices to show that conditions (1), (2), and (3) are equivalent to conditions (1'), (2'), and (3'). We have defined f_0 so that $f_0[\] = [\]$, and $f_1[0] = [0]$ precisely when $c_{00} = 1$ and $c_{x'0} = 0$ for all $x' \in P'$. Thus (1) is equivalent to (1').

Suppose that (1'), (2'), and (3') hold. Then Lemma 2.3 implies that (2) holds, and Lemma 2.4 implies that (3) holds.

Conversely, suppose that f_1 satisfies (1), (2), and (3). Then f_{\bullet} also satisfies (1'), and Lemma 2.3 implies that $df_1 = f_0 d$. By Lemma 2.4 it follows that f_{\bullet} satisfies (3'), so it only remains to show that $df_{n+1} = f_n d$ for $n \ge 1$. If $[y_1 < \cdots < y_{n+1}]$ is any basis element of $A_{n+1}(P)$, then by induction it follows that

$$\begin{aligned} df_{n+1}[y_1 < \cdots < y_{n+1}] \\ &= d(f_n[y_1 < \cdots < y_n]f_1[y_{n+1}]) \\ &= (df_n[y_1 < \cdots < y_n])f_1[y_{n+1}] + (-1)^n f_n[y_1 < \cdots < y_n]df_1[y_{n+1}] \\ &= (f_{n-1}d[y_1 < \cdots < y_n])f_1[y_{n+1}] + (-1)^n f_n[y_1 < \cdots < y_n]f_0d[y_{n+1}] \\ &= f_n((d[y_1 < \cdots < y_n])[y_{n+1}] + (-1)^n[y_1 < \cdots < y_n]d[y_{n+1}]) \\ &= f_nd[y_1 < \cdots < y_{n+1}]. \end{aligned}$$

This completes the proof.

COROLLARY 2.7. Let $f : P \to P'$ be a map of posets. Then the following conditions are equivalent.

(1) There is a homomorphism $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ of differential graded $A_{\bullet}(\emptyset)$ algebras satisfying $f_1[x] = [f(x)]$ for all $x \in P$.

(2) There is a homomorphism $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ of differential graded $A_{\bullet}(\emptyset)$ -algebras such that f_n satisfies

$$f_n[x_1 < \cdots < x_n] = \left[f(x_1) < \cdots < f(x_n)\right] \text{ for all } n \ge 1.$$

(3) If f(x) < f(y), then x < y for all $x, y \in P$.

PROOF. First suppose that (1) holds. We will prove by induction on n that f_n is given by

$$f_n[x_1 < \cdots < x_n] = \left[f(x_1) < \cdots < f(x_n)\right]$$

for all $n \ge 1$. This equation is true for n = 1 by assumption. Let $[x_1 < \cdots < x_{n+1}]$ be a non-zero homogeneous generator. Because $x_n < x_{n+1}$ and f is a map of posets, it follows that $f(x_n) \le f(x_{n+1})$. Thus

$$[f(x_1) < \cdots < f(x_n)][f(x_{n+1})] = [f(x_1) < \cdots < f(x_{n+1})]$$

even if $f(x_n) = f(x_{n+1})$. Hence

$$f_{n+1}[x_1 < \dots < x_{n+1}] = f_{n+1} ([x_1 < \dots < x_n][x_{n+1}])$$

= $f_n[x_1 < \dots < x_n]f_1[x_{n+1}]$
= $[f(x_1) < \dots < f(x_n)][f(x_{n+1})]$
= $[f(x_1) < \dots < f(x_{n+1})],$

and (2) follows.

It is trivial that (2) implies (1), so assume that (1) holds. If $x \in P$, then the matrix $C = (c_{x'x})$ of f_1 satisfies $c_{x'x} = 1$ if x' = f(x) and $c_{x'x} = 0$ if $x' \neq f(x)$. Proposition 2.6 shows that if $x \neq y$ in P_0 and $0 \neq x' < y'$ in P'_0 , then $c_{x'x}c_{y'y} = 0$. But if $x, y \in P$ are elements such that f(x) < f(y), then $c_{f(x),x}c_{f(y),y} = 1$, so it follows that x < y. Hence (1) implies (3).

Finally, suppose that (3) holds. Extend f to a map $f : P_0 \to P'_0$ by defining f(0) = 0, and let $f_1 : A_1(P) \to A_1(P')$ be the *R*-linear map satisfying $f_1[x] = [f(x)]$ for all $x \in P_0$. Then all of the conditions of Proposition 2.6 are satisfied, and it follows that f_1 extends to a homomorphism $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ of differential graded $A_{\bullet}(\emptyset)$ -algebras, as desired.

Finally, we end this section with the following simple but useful observation.

PROPOSITION 2.8. If P is a poset, then $A_{\bullet}(P)$ is contractible. In fact, if s_{\bullet} : $A_{\bullet}(P) \rightarrow A_{\bullet}(P)$ is the map of degree one satisfying $s_{\bullet}(x) = [0]x$ for every homogeneous element $x \in A_{\bullet}(P)$, then s_{\bullet} is a contracting homotopy.

PROOF. Let $x \in A_{\bullet}(P)$ be homogeneous. Because d is a derivation, it follows that $ds_{\bullet}(x) + s_{\bullet}d(x) = d([0]x) + [0](dx) = x$, as desired.

[9]

3. Isomorphic algebras

In this section our goal is to show that if P and P' are finite posets such that $A_{\bullet}(P) \cong A_{\bullet}(P')$ as differential graded $A_{\bullet}(\emptyset)$ -algebras, then $P \cong P'$. While this fact is obvious if there is an isomorphism from $A_{\bullet}(P)$ to $A_{\bullet}(P')$ that maps each basis element $[x_1 < \cdots < x_n]$ of $A_{\bullet}(P)$ to a basis element of $A_{\bullet}(P')$, not all isomorphisms arise in this way. Nevertheless, it is easy to see that certain invariants associated with the posets are the same. For example, the rank of $A_1(P)$ is just the cardinality $|P_0| = |P| + 1$, so it follows that |P| = |P'|.

Another invariant that can easily be recovered from the algebra $A_{\bullet}(P)$ is the height of the poset. Recall that an element $x \in P$ is said to have height $h_P(x) = n$ if n is the largest number such that there is a chain $x_1 < \cdots < x_n = x$ in P. The height h(P)of the poset P is defined to be the supremum of the heights of its elements. If P is finite with h(P) = n, then $h(P_0) = n + 1$ so that $A_{n+1}(P) \neq 0$ but $A_m(P) = 0$ for all m > n+1. Thus h(P) = h(P') if P and P' are finite posets such that $A_{\bullet}(P) \cong A_{\bullet}(P')$. A connection between $A_{\bullet}(P)$ and the heights of individual elements in P is given by the following lemma.

LEMMA 3.1. Let P be a poset, and let $x \in P$. If there is an element $a \in A_{n-1}(P)$ such that $[0]a[x] \neq 0$, then $h_P(x) \ge n$.

PROOF. It suffices to consider the case in which $n \ge 2$. Suppose that $a \in A_{n-1}(P)$ is an element such that $[0]a[x] \ne 0$. Then there is a basis element $[y_1 < \cdots < y_{n-1}] \in A_{n-1}(P)$ such that $[0][y_1 < \cdots < y_{n-1}][x] \ne 0$, so the product $[y_1 < \cdots < y_{n-1}][x]$ does not lie in the ideal $[0]A_{\bullet}(P)$ generated by [0]. Hence $y_1 \ne 0$ and $y_{n-1} < x$ so that $y_1 < \cdots < y_{n-1} < x$ is a chain in P. Thus $h_P(x) \ge n$, as desired.

PROPOSITION 3.2. Suppose that P and P' are finite posets and $f_{\bullet} : A_{\bullet}(P) \rightarrow A_{\bullet}(P')$ is an isomorphism such that $C = (c_{x'x})$ is the matrix of f_1 . Let $H \subseteq P$ and $H' \subseteq P'$ be the subposets consisting of all elements that are not of maximum height, and let $x' \in P'$. Then $x' \in H'$ if and only if $c_{x'x} \neq 0$ for some $x \in H$.

PROOF. Suppose that $x' \in P'$ is an element such that $c_{x'x} = 0$ for all $x \in H$. Because f_{\bullet} is an isomorphism, there are distinct elements $m_1, \ldots, m_s \in P - H$ and $b_1, \ldots, b_s \in R - \{0\}$ such that $[x'] = b_1 f_1[m_1] + \cdots + b_s f_1[m_s]$. Let $0 < x_1 < \cdots < x_{n-1} < m_1$ be a chain of maximum length in P_0 , and set $a = b_1[m_1] + \cdots + b_s[m_s] \in A_1(P)$. Then $[0 < x_1 < \cdots < x_{n-1}]a \neq 0$, so

$$0 \neq f_{n+1}([0 < x_1 < \cdots < x_{n-1}]a) = [0]f_{n-1}[x_1 < \cdots < x_{n-1}][x'].$$

It follows by Lemma 3.1 that

$$h_{P'}(x') \ge n = h_P(m_1) = h(P) = h(P').$$

Hence $x' \notin H'$, as desired.

Conversely, suppose that $x' \in P' - H'$ and $x \in P$ are elements such that $c_{x'x} \neq 0$. Let $0 < x'_1 < \cdots < x'_{n-1} < x'$ be a chain of maximum length in P'_0 , and let $b \in A_{n-1}(P)$ be the element with $f_{n-1}(b) = [x'_1 < \cdots < x'_{n-1}]$. Then

$$f_{n+1}([0]b[x]) = [0 < x'_1 < \dots < x'_{n-1}] \sum_{y' \in P'_0} c_{y'x}[y']$$

is non-zero because $c_{x'x}[0 < x'_1 < \cdots < x'_{n-1} < x'] \neq 0$. Hence $[0]b[x] \neq 0$, and Lemma 3.1 implies that

$$h_{P}(x) \ge n = h_{P'}(x') = h(P') = h(P).$$

Thus $x \notin H$, and this completes the proof.

COROLLARY 3.3. Suppose that P and P' are finite posets and $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ is an isomorphism. Let $H \subseteq P$ and $H' \subseteq P'$ be the subposets consisting of all elements that are not of maximum height. Then f_{\bullet} restricts to an isomorphism $h_{\bullet} : A_{\bullet}(H) \to A_{\bullet}(H')$.

PROPOSITION 3.4. Let P and P' be finite posets, and let $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ be an isomorphism such that $C = (c_{x'x})$ is the matrix of f_1 . If $x \in P$ and $x' \in P'$ are elements with $c_{x'x} \neq 0$, then $h_{P'}(x') \leq h_P(x)$.

PROOF. The proof proceeds by induction on h(P). The result is obvious if h(P) = 1, so assume that h(P) > 1. Let $H \subseteq P$ and $H' \subseteq P'$ be the subposets consisting of all elements that are not of maximum height. Corollary 3.3 implies that if $x \in H$ and $x' \in P'$ are elements such that $c_{x'x} \neq 0$, then $x' \in H'$. Then $h_{H'}(x') \leq h_H(x)$ by induction, and the result follows in this case. On the other hand, if $x \in P - H$, then

$$h_P(x) = h(P) = h(P') \ge h_{P'}(x')$$

for all $x' \in P'$, as desired.

DEFINITION 3.5. Let P be a finite poset, and let $a \in A_1(P)$. Write $a = \sum_{x \in P_0} a_x[x]$. The set supp $a = \{x \in P \mid a_x \neq 0\}$ will be called the *support* of a in P.

Let P' be another poset, and let $f_{\bullet}: A_{\bullet}(P) \to A_{\bullet}(P')$ be an $A_{\bullet}(\emptyset)$ -isomorphism. Two elements $x \in P$ and $x' \in P'$ will be called *mutually* f_{\bullet} -supportive (or simply *mutually supportive* when f_{\bullet} is understood) provided that $x' \in \text{supp } f_1[x]$ and $x \in \text{supp } f_1^{-1}[x']$. Note that the support of an element $a \in A_1(P)$ is defined to be a subset of P, not of P_0 ; we do not consider 0 to lie in the support of a even if $a_0 \neq 0$.

It will be important to observe that if $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ is an isomorphism and $x \in P$, then there is always an element $x' \in P'$ such that x and x' are mutually supportive. Indeed, suppose that C is the matrix of f_1 and D is the matrix of f_1^{-1} . Then $1 = \sum_{x' \in P'_0} d_{xx'}c_{x'x}$, and there is an element $x' \in P'_0$ such that $d_{xx'}c_{x'x} \neq 0$. Because f_1 is an isomorphism with $f_1[0] = [0]$, it is easy to see that $x' \neq 0$. Then $x \in P$ and $x' \in P'$ are mutually supportive. Moreover, any two mutually supportive elements must have the same height by Proposition 3.4.

If *P* is a finite partially ordered set, then it will sometimes be useful to consider total orders on P_0 in addition to the original partial order. For convenience we will generally specify a total ordering on P_0 simply by listing all of the elements x_0, \ldots, x_n of P_0 in increasing order. The symbol < will still be reserved for the partial order on P_0 .

DEFINITION 3.6. Let P be a partially ordered set with |P| = n, and write $P_0 = \{x_0, x_1, \ldots, x_n\}$. We will say that x_0, x_1, \ldots, x_n is a *tall order* on P_0 if i < j whenever $h_{P_0}(x_i) < h_{P_0}(x_j)$.

Suppose that $x_0, x_1, ..., x_n$ is a tall order on P_0 , and suppose that $x_i < x_j$ for some *i* and *j*. Then $h_{P_0}(x_i) < h_{P_0}(x_j)$, so i < j. Thus the total ordering on P_0 specified by $x_0, x_1, ..., x_n$ is compatible with the original partial ordering. In particular, $x_0 = 0$.

Now suppose that P and P' are finite partially ordered sets, and let $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ be an $A_{\bullet}(\emptyset)$ -isomorphism. Suppose that x_0, \ldots, x_n is a tall order on P_0 and x'_0, \ldots, x'_n is a tall order on P'_0 . If C is the matrix of f_1 , then for simplicity write c_{ij} for $c_{x'_i x_j}$. For any integer m with $1 \le m \le n$ let P(m) be the subposet of P given by $P(m) = \{x_1, \ldots, x_m\}$, and let P'(m) be the subposet of P' given by $P'(m) = \{x'_1, \ldots, x'_m\}$. Let $f_1^{(m)} : A_1(P(m)) \to A_1(P'(m))$ be the R-linear map satisfying

$$f_1^{(m)}[x_i] = \left(1 - \sum_{j=1}^m c_{ji}\right)[0] + \sum_{j=1}^m c_{ji}[x'_j]$$

for $0 \le i \le m$. Then Proposition 2.6 shows that $f_1^{(m)}$ extends to a homomorphism $f_{\bullet}^{(m)} : A_{\bullet}(P(m)) \to A_{\bullet}(P'(m))$ of differential graded $A_{\bullet}(\emptyset)$ -algebras. We will say that the orderings x_0, \ldots, x_n of P_0 and x'_0, \ldots, x'_n of P'_0 are f_{\bullet} -compatible if $f_{\bullet}^{(m)}$ is an isomorphism such that x_m and x'_m are mutually $f_{\bullet}^{(m)}$ -supportive for $1 \le m \le n$. Note that this condition implies that $x'_m \in \text{supp } f_1[x_m]$ for all m.

PROPOSITION 3.7. Assume that R is a field. Let P and P' be finite posets of height one, and let $f_{\bullet}: A_{\bullet}(P) \to A_{\bullet}(P')$ be an $A_{\bullet}(\emptyset)$ -isomorphism. Let $0 = x_0, x_1, \dots, x_n$ be any ordering of P_0 . Then there exists an f_{\bullet} -compatible ordering x'_0, \dots, x'_n of P'_0 . PROOF. The proof proceeds by induction on n = |P|. If n = 1, then $P = \{x_1\}$. Let $x'_0 = 0$, and let x'_1 be the unique element of P'. Because x_1 and x'_1 must be mutually f_{\bullet} -supportive, the orderings x_0, x_1 and x'_0, x'_1 are f_{\bullet} -compatible.

Now suppose that n > 1. Let $x = x_n \in P$, and let $x' \in P'$ be an element such that x and x' are mutually f_{\bullet} -supportive. Let C be the matrix of f_1 , and let D be the matrix of f_1^{-1} so that $c_{x'x} \neq 0$ and $d_{xx'} \neq 0$. Set $Q = P - \{x\}$ and $Q' = P' - \{x'\}$, and let $g_1 : A_1(Q) \rightarrow A_1(Q')$ be the R-linear map satisfying

$$g_1[y] = (c_{0y} + c_{x'y})[0] + \sum_{y' \in Q'} c_{y'y}[y']$$

for all $y \in Q_0$. By Proposition 2.6 the map g_1 extends to an $A_{\bullet}(\emptyset)$ -homomorphism $g_{\bullet} : A_{\bullet}(Q) \to A_{\bullet}(Q')$, and we will show that g_{\bullet} is an isomorphism.

Let *B* be the matrix of g_1 , and let B_0 be the submatrix obtained by deleting the row and column corresponding to the basis element [0]. Because $g_1[0] = [0]$, expanding by minors along the column corresponding to [0] shows that det $B = \det B_0$. But B_0 is also the submatrix of *C* obtained by deleting the rows corresponding to [0] and [x']and the columns corresponding to [0] and [x]. Because $D = C^{-1}$ and $f_1[0] = [0]$, it follows that $d_{xx'} = \det B_0 / \det C$. But $d_{xx'} \neq 0$, so det $B = \det B_0 \neq 0$. Hence g_{\bullet} is an isomorphism.

It now follows by induction that there exists an ordering x'_0, \ldots, x'_{n-1} of Q'_0 that is g_{\bullet} -compatible with the ordering x_0, \ldots, x_{n-1} of Q_0 . Set $x'_n = x'$. Because $g_{\bullet} = f_{\bullet}^{(n-1)}$, the orderings x_0, \ldots, x_n of P_0 and x'_0, \ldots, x'_n of P'_0 are f_{\bullet} -compatible. This completes the proof.

The next result is essentially a convenient restatement of Proposition 2.6(3).

LEMMA 3.8. Suppose that P and P' are finite posets and $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ is an $A_{\bullet}(\emptyset)$ -isomorphism. Let $x, y \in P$ and $x', y' \in P'$ be elements such that $x' \in \text{supp } f_1[x]$ and $y' \in \text{supp } f_1[y]$. If x' < y', then x < y.

PROOF. Let C be the matrix of f_1 . Then $c_{x'x} \neq 0$ and $c_{y'y} \neq 0$, so $c_{x'x}c_{y'y} \neq 0$. If x' < y', then Proposition 2.6(3) implies that x < y.

Suppose that P is a poset, S is a subset of P, and $y \in P$. We will write S < y if x < y for all $x \in S$. Recall that $P_{<y}$ denotes the subposet of P consisting of all elements x such that x < y. Thus S < y if and only if $S \subseteq P_{<y}$.

LEMMA 3.9. Assume that P and P' are finite posets and $f_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$ is an isomorphism. Let $H \subseteq P$ and $H' \subseteq P'$ be the subposets consisting of all elements that are not of maximum height, and let $h_{\bullet} : A_{\bullet}(H) \to A_{\bullet}(H')$ be the isomorphism

[13]

obtained by restricting f_{\bullet} to $A_{\bullet}(H)$. Suppose that there exist isomorphisms of posets $\psi : H \to H'$ and $\psi' : H' \to H$ and tall orders x_0, \ldots, x_m on H_0 and x'_0, \ldots, x'_m on H'_0 such that x_0, \ldots, x_m is h_{\bullet} -compatible with $0, \psi(x_1), \ldots, \psi(x_m)$ and x'_0, \ldots, x'_m is h_{\bullet}^{-1} -compatible with $0, \psi'(x'_1), \ldots, \psi'(x'_m)$. If $S \subseteq H$, let e(S) denote the number of $y \in P - H$ such that $S = P_{<y}$; if $S' \subseteq H'$, let e'(S') denote the number of $y' \in P' - H'$ such that $S' = P'_{<y'}$. Then $e(S) = e'(\psi(S))$ for all $S \subseteq H$, and $e'(S') = e(\psi'(S'))$ for all $S' \subseteq H'$.

PROOF. If $S \subseteq H$, let g(S) denote the number of elements $y \in P - H$ such that S < y; define g'(S') similarly for any $S' \subseteq H'$.

Fix $S \subseteq H$, and suppose that there is an element $y' \in P' - H'$ such that $\psi(S) < y'$. Let y be an element of P such that $y' \in \text{supp } f_1[y]$. Then $y \in P - H$ by Proposition 3.4. Let x be an element of S, and let i be the index such that $x = x_i$. Then x_i and $\psi(x_i)$ are mutually $h_{\bullet}^{(i)}$ -supportive, and the definition of $h_1^{(i)}$ shows that $\psi(x_i) \in \text{supp } f_1[x_i]$. But $\psi(x_i) < y'$, so Lemma 3.8 implies that $x = x_i < y$ and hence S < y. Because this holds for every y such that $y' \in \text{supp } f_1[y]$, the element $a \in A_1(P)$ such that $f_1(a) = [y']$ is an R-linear combination of an element of $A_1(H)$ and elements [y] such that S < y. It follows that $g(S) \ge g'(\psi(S))$ for all $S \subseteq H$. Similarly, $g'(S') \ge g(\psi'(S'))$ for all $S' \subseteq H'$. In particular, if $S \subseteq H$, then $g(S) \ge g'(\psi(S)) \ge g(\psi'\psi(S))$. By induction it follows that

$$g(S) \ge g'(\psi(S)) \ge g((\psi'\psi)'(S))$$

for all $t \ge 1$. But $\psi'\psi: H \to H$ is a bijection, so it permutes the subsets of H. Thus there is an integer $t \ge 1$ such that $(\psi'\psi)'(S) = S$ for all $S \subseteq H$, and $g(S) = g'(\psi(S))$ for all $S \subseteq H$.

We now use induction on |H - S| to show that $e(S) = e'(\psi(S))$ for all $S \subseteq H$. If |H - S| = 0, then S = H and $\psi(S) = H'$. But e(H) = g(H) = g'(H') = e'(H'), so the result holds in this case.

Now assume that $S \subseteq H$ and |H - S| > 0. Let S_1, \ldots, S_r be all of the distinct subsets of H that contain S properly. Then $\psi(S_1), \ldots, \psi(S_r)$ are all of the distinct subsets of H' that contain $\psi(S)$ properly. By induction it follows that $e(S_i) = e'(\psi(S_i))$ for all i, so

$$e(S) = g(S) - \sum_{i=1}^{r} e(S_i) = g'(\psi(S)) - \sum_{i=1}^{r} e'(\psi(S_i)) = e'(\psi(S)).$$

Similarly, $e'(S') = e(\psi'(S'))$ for all $S' \subseteq H'$, and this completes the proof.

THEOREM 3.10. Assume that R is a field. Let P and P' be finite posets, and let $f_{\bullet}: A_{\bullet}(P) \to A_{\bullet}(P')$ be an isomorphism. Then there exist isomorphisms of posets

 $\phi: P \to P'$ and $\phi': P' \to P$ and tall orders x_0, \ldots, x_n on P_0 and x'_0, \ldots, x'_n on P'_0 such that x_0, \ldots, x_n is f_{\bullet} -compatible with $0, \phi(x_1), \ldots, \phi(x_n)$ and x'_0, \ldots, x'_n is f_{\bullet}^{-1} -compatible with $0, \phi'(x'_1), \ldots, \phi'(x'_n)$.

PROOF. The proof proceeds by induction on h(P). First suppose that h(P) = 1. By Proposition 3.7 there are f_{\bullet} -compatible orderings x_0, \ldots, x_n of P_0 and y'_0, \ldots, y'_n of P'_0 . Define $\phi : P \to P'$ by setting $\phi(x_i) = y'_i$ for $1 \le i \le n$. Then ϕ is an isomorphism of posets having the desired properties. The same argument applied to f_{\bullet}^{-1} gives the isomorphism $\phi' : P' \to P$.

Now suppose that h(P) > 1. Let $H \subseteq P$ and $H' \subseteq P'$ be the subposets consisting of all elements that are not of maximum height. Then h(H) = h(P) - 1, and f_{\bullet} restricts to an isomorphism $h_{\bullet} : A_{\bullet}(H) \to A_{\bullet}(H')$. By induction there are isomorphisms of posets $\psi : H \to H'$ and $\psi' : H' \to H$ and tall orders x_0, \ldots, x_m on H_0 and x'_0, \ldots, x'_m on H'_0 such that x_0, \ldots, x_m is h_{\bullet} -compatible with $0, \psi(x_1), \ldots, \psi(x_m)$ and x'_0, \ldots, x'_m is h_{\bullet}^{-1} -compatible with $0, \psi'(x'_1), \ldots, \psi'(x'_m)$.

Write the power set $\mathscr{P}(H)$ of H as $\mathscr{P}(H) = \{S_1, \ldots, S_{2^m}\}$, where the subsets S_1, \ldots, S_{2^m} are indexed so that $|S_1| \leq \cdots \leq |S_{2^m}|$. For $1 \leq i \leq 2^m$ set

$$T_i = \{y \in P - H \mid S_i = P_{< y}\}$$
 and $T'_i = \{y' \in P' - H' \mid \psi(S_i) = P'_{< y'}\}$.

Then P - H is the disjoint union of T_1, \ldots, T_{2^m} , and P' - H' is the disjoint union of T'_1, \ldots, T'_{2^m} . Moreover, $|T_i| = |T'_i|$ for all *i* by Lemma 3.9.

Choose an ordering x_{m+1}, \ldots, x_n on P - H such that if $x_s \in T_i, x_t \in T_j$, and i < j, then s < t. Similarly, choose an ordering y'_{m+1}, \ldots, y'_n on P' - H' such that if $y'_s \in T'_i, y'_t \in T'_j$, and i < j, then s < t. Let C denote the matrix of f_1 , and assume that C is written with respect to the ordered bases $[x_0], \ldots, [x_n]$ of $A_1(P)$ and $[0], [\psi(x_1)], \ldots, [\psi(x_m)], [y'_{m+1}], \ldots, [y'_n]$ of $A_1(P')$. Then C is a block upper triangular matrix: the first diagonal block C_1 has columns indexed by $[x_0], \ldots, [x_m]$ and rows indexed by $[0], [\psi(x_1)], \ldots, [\psi(x_m)]$; the other diagonal block C_2 has columns indexed by $[x_{m+1}], \ldots, [x_n]$ and rows indexed by $[x_{m+1}], \ldots, [x_n]$ and rows indexed by $[y'_{m+1}], \ldots, [y'_n]$. In particular, det $C = (\det C_1)(\det C_2)$.

Suppose that $y' \in T'_i$ and $y \in T_j$ are elements with $c_{y'y} \neq 0$. If $x \in S_i$, then $\psi(x) < y'$. Because x_0, \ldots, x_m is h_{\bullet} -compatible with $0, \psi(x_1), \ldots, \psi(x_m)$, it follows that $\psi(x) \in \text{supp } h_1[x] = \text{supp } f_1[x]$ and hence x < y by Lemma 3.8. Then $S_i < y$ so that $S_i \subseteq P_{<y} = S_j$. Hence $i \leq j$, and the submatrix C_2 is itself block upper triangular: the *i*th diagonal block of C_2 has columns indexed by elements in T_i and rows indexed by elements in T'_i .

Let $x \in P_0$ and $x' \in P'$. If $x \in H_0$, set $\tilde{c}_{x'x} = c_{x'x}$; if $x \in T_i$ and $x' \in T'_i$, set $\tilde{c}_{x'x} = c_{x'x}$; and if $x \in T_i$ and $x' \in P' - T'_i$, set $\tilde{c}_{x'x} = 0$. Finally, set

$$\tilde{c}_{0x} = 1 - \sum_{x' \in P'} \tilde{c}_{x'x}$$

for all $x \in P_0$. By Proposition 2.6 the matrix $\tilde{C} = (\tilde{c}_{x'x})$ determines a homomorphism $\tilde{f}_{\bullet} : A_{\bullet}(P) \to A_{\bullet}(P')$. Because \tilde{C} is a block upper triangular matrix with the same diagonal blocks as C, it follows that det $\tilde{C} = \det C \neq 0$. Thus \tilde{f}_{\bullet} is an isomorphism. Moreover, \tilde{f}_{\bullet} restricts to an isomorphism $\tilde{f}_{\bullet} : A_{\bullet}(T_i) \to A_{\bullet}(T'_i)$ for all i. Let $0 = t_{i0}, t_{i1}, \ldots, t_{im_i}$ be the ordering on $(T_i)_0$ obtained by regarding T_i as a subset of the ordered set $P - H = \{x_{m+1}, \ldots, x_n\}$. By Proposition 3.7 there is an \tilde{f}_{\bullet} -compatible ordering $t'_{i0}, \ldots, t'_{im_i}$ of $(T'_i)_0$. Then the function $\psi_i : T_i \to T'_i$ given by $\psi_i(t_{ij}) = t'_{ij}$ for $1 \le j \le m_i$ is a bijection.

Because P - H is the disjoint union of T_1, \ldots, T_{2^m} , it is possible to define a function $\phi: P \to P'$ by setting

$$\phi(x) = \begin{cases} \psi(x) & \text{if } x \in H \\ \psi_i(x) & \text{if } x \in T_i, \end{cases}$$

and it is clear that ϕ is a bijection. Suppose that x < y in *P*. If $x, y \in H$, then $\phi(x) < \phi(y)$ because ψ is an isomorphism of posets. If x and y are not both in *H*, then $x \in S_i$ and $y \in T_i$ for some *i*. Then $\phi(y) = \psi_i(y) \in T'_i$, so $\psi(S_i) < \phi(y)$. But $\phi(x) = \psi(x) \in \psi(S_i)$, so $\phi(x) < \phi(y)$. Hence ϕ is an isomorphism of posets.

Finally, the ordering x_0, \ldots, x_m of H_0 is h_{\bullet} -compatible with $0, \phi(x_1), \ldots, \phi(x_m)$, and for each *i* the orderings t_{i0}, \ldots, t_{im_i} of $(T_i)_0$ and $0, \phi(t_{i1}), \ldots, \phi(t_{im_i})$ of $(T'_i)_0$ are \tilde{f}_{\bullet} -compatible. It follows that the ordering x_0, \ldots, x_n of P_0 is f_{\bullet} -compatible with the ordering $0, \phi(x_1), \ldots, \phi(x_n)$ of P'_0 .

The same argument shows that there exist an isomorphism of posets $\phi': P' \to P$ and a tall order x'_0, \ldots, x'_n on P'_0 that is f_{\bullet}^{-1} -compatible with the ordering $0, \phi'(x'_1), \ldots, \phi'(x'_n)$, and this completes the proof.

COROLLARY 3.11. If P and P' are finite partially ordered sets such that $A_{\bullet}(P) \cong A_{\bullet}(P')$, then $P \cong P'$.

PROOF. By working over the quotient field of R, we may assume that R is itself a field. Then the result follows immediately from Theorem 3.10.

4. Annihilators and the graded center

The purpose of this section is to give a description of the graded center of $A_{\bullet}(P)$ in terms of the elements that annihilate all homogeneous elements of positive degree in $A_{\bullet}(P)$. Recall that the graded center $Z_{\bullet}(P)$ is defined to be the *R*-submodule generated by all homogeneous elements $z \in A_{\bullet}(P)$ such that $az = (-1)^{(\deg a)(\deg z)} za$

16

for all homogeneous elements $a \in A_{\bullet}(P)$. Note that if $z \in Z_m(P)$ and $a \in A_n(P)$ are any two homogeneous elements, then

$$(da)z + (-1)^{n}a(dz) = d(az)$$

= $(-1)^{mn}d(za)$
= $(-1)^{mn}(dz)a + (-1)^{m(n-1)}z(da)$
= $(-1)^{mn}(dz)a + (da)z$.

Hence $a(dz) = (-1)^{(m-1)m}(dz)a$, and it follows that $dz \in Z_{m-1}(P)$. Thus $Z_{\bullet}(P)$ is a differential graded $A_{\bullet}(\emptyset)$ -subalgebra of $A_{\bullet}(P)$.

If S is any subset of $A_{\bullet}(P)$, then Ann S will denote the ideal consisting of all two-sided annihilators of S; in other words,

Ann
$$S = \{x \in A_{\bullet}(P) \mid xs = sx = 0 \text{ for all } s \in S\}.$$

Let $A_+(P)$ denote the ideal of $A_{\bullet}(P)$ generated by all homogeneous elements of positive degree. Then the annihilator Ann $A_+(P) = \text{Ann } A_1(P)$ is a homogeneous ideal of $A_{\bullet}(P)$. Let $I_{\bullet}(P)$ denote the differential graded ideal generated by Ann $A_+(P)$. The first result of this section gives an explicit description of Ann $A_+(P)$.

PROPOSITION 4.1. Let P be a finite non-empty poset. Then Ann $A_+(P)$ is the span of all elements of the form $[0 < m < \cdots < M]$, where m is minimal and M is maximal in P. In particular, if P contains no connected components of height one, then $I_1(P) = 0$.

PROOF. If *m* is minimal and *M* is maximal in *P*, then the definition of the multiplication in $A_{\bullet}(P)$ shows that $[0 < m < \cdots < M] \in \text{Ann } A_{+}(P)$. Conversely, suppose that $x = \sum_{i=1}^{s} c_i [x_{0i} < \cdots < x_{ni}]$ is a homogeneous element of Ann $A_{+}(P)$ with $c_i \neq 0$ for $1 \le i \le s$. Because [0]x = 0, it follows that $x_{0i} = 0$ for all *i*. If n = 0, then it is easy to see that *P* is empty, so we may assume that n > 0. Let *m* be a minimal element of *P*. Then

$$0 = [m]x = -\sum_{i=1}^{s} c_i [0 < m < x_{1i} < \cdots < x_{ni}],$$

and it follows that $m \neq x_{1i}$ for all *i*. Because this relation holds for every minimal element *m* of *P*, we conclude that x_{1i} is minimal for all *i*. Similarly, if *M* is a maximal element of *P*, then the fact that 0 = x[M] implies that x_{ni} is maximal for all *i*. This proves the first statement, and the second follows easily.

PROPOSITION 4.2. Let P be a finite non-empty poset. If a and b are homogeneous elements of $I_{\bullet}(P)$, then ab = 0.

17

PROOF. Because $a, b \in I_{\bullet}(P)$, it is possible to write a = a' + da'' and b = b' + db''for some homogeneous elements $a', a'', b', b'' \in Ann A_+(P) \subseteq A_+(P)$. Then

$$ab = (a' + da'')(b' + db'') = (da'')(db'') = d(a''(db'')) = 0$$

as desired.

PROPOSITION 4.3. Let P be a finite poset. Then $Z_{\bullet}(P)$ is the differential graded $A_{\bullet}(\emptyset)$ -algebra generated by Ann $A_{+}(P)$. Moreover, if P is non-empty, then $Z_{\bullet}(P) = A_{\bullet}(\emptyset) \oplus I_{\bullet}(P)$ as graded R-modules.

PROOF. We begin by showing that $Z_{\bullet}(P) = A_{\bullet}(\emptyset) + I_{\bullet}(P)$. It is clear that $A_{\bullet}(\emptyset) + I_{\bullet}(P) \subseteq Z_{\bullet}(P)$, and we will prove that $Z_n(P) = A_n(\emptyset) + I_n(P)$ for all *n* by downward induction on *n*. If *N* is the largest degree such that $A_N(P) \neq 0$, then certainly $Z_n(P) = A_n(\emptyset) + I_n(P) = 0$ for all n > N, and $Z_N(P) = A_N(P) = A_N(\emptyset) + I_N(P)$. Now suppose that $1 \leq n < N$ and that $Z_{n+1}(P) = A_{n+1}(\emptyset) + I_{n+1}(P)$. Let $x \in Z_n(P)$. Then x = [0](dx) + d([0]x), and by induction $[0]x \in Z_{n+1}(P) = A_{n+1}(\emptyset) + I_{n+1}(P)$. Hence $d([0]x) \in I_n(P)$, and it suffices to show that $[0](dx) \in A_n(\emptyset) + I_n(P)$. If n = 1, then [0](dx) is a multiple of [0], so it lies in $A_1(\emptyset)$. Thus we may assume that $2 \leq n < N$. Write $dx = \sum_{i=1}^{s} c_i [x_{1i} < \cdots < x_{n-1,i}]$, and let $y \in P_0$. Then

$$\sum_{i=1}^{s} (-1)^{n-1} c_i [0 < x_{1i} < \dots < x_{n-1,i} < y] = \sum_{i=1}^{s} c_i [x_{1i} < \dots < x_{n-1,i}] [0 < y]$$
$$= (dx) [0] [y] = [0] [y] (dx)$$
$$= \sum_{i=1}^{s} c_i [0 < y] [x_{1i} < \dots < x_{n-1,i}].$$

If any term in this last sum is non-zero, then it follows that $c_j[0 < y < x_{1j} < \cdots < x_{n-1,j}] \neq 0$ for some j with $1 \leq j \leq s$. But such a term cannot occur in the sum $\sum_i (-1)^{n-1} c_i[0 < x_{1i} < \cdots < x_{n-1,i} < y]$ because $n \geq 2$. Thus $[y][0](dx) = (-1)^n[0](dx)[y] = -[0][y](dx) = 0$, and it follows that $[0](dx) \in A_n(P) \cap \text{Ann } A_1(P) \subseteq I_n(P)$. Hence $Z_n(P) = A_n(\emptyset) + I_n(P)$ for all $n \geq 1$. But $Z_0(P) = A_0(\emptyset) + I_0(P)$, so $Z_{\bullet}(P) = A_{\bullet}(\emptyset) + I_{\bullet}(P)$, as desired.

To show that the sum $A_{\bullet}(\emptyset) + I_{\bullet}(P)$ is direct when P is non-empty, it suffices to show that $I_0(P) = 0$ and $R[0] \cap I_1(P) = 0$. Both of these facts follow easily from Proposition 4.1.

If P is a finite non-empty poset, let P^* denote the dual of P. By Proposition 4.1 there is an R-linear map f_{\bullet} : Ann $A_+(P) \rightarrow$ Ann $A_+(P^*)$ satisfying

$$f_{\bullet}[0 < m < \cdots < M] = [0 < M < \cdots < m],$$

and f_{\bullet} extends uniquely to an isomorphism of differential graded $A_{\bullet}(\emptyset)$ -algebras $f_{\bullet}: Z_{\bullet}(P) \to Z_{\bullet}(P^*)$ by Proposition 4.3. Thus we obtain the following result.

COROLLARY 4.4. If P is a finite poset, then $Z_{\bullet}(P) \cong Z_{\bullet}(P^*)$.

It often happens, however, that two posets P and Q satisfy $Z_{\bullet}(P) \cong Z_{\bullet}(Q)$ even when $Q \ncong P$ and $Q \ncong P^*$. Such an example is given by the following posets P and Q:

Indeed, Ann $A_+(P)$ is given by the span of $\{[0 < a < b_i] \mid 1 \le i \le 4\}$, whereas Ann $A_+(Q)$ is given by the span of $\{[0 < u_i < v_j] \mid 1 \le i, j \le 2\}$. If f is any bijection between these sets, then it is easy to see that f extends uniquely to a differential graded $A_{\bullet}(\emptyset)$ -isomorphism between $Z_{\bullet}(P)$ and $Z_{\bullet}(Q)$.

References

- [1] W. Bruns and J. Herzog, Cohen-Macaulay rings (Cambridge Univ. Press, Cambridge, 1993).
- [2] D. Simpson, *Linear representations of partially ordered sets and vector space categories* (Gordon and Breach, Amsterdam, 1992).
- [3] R. Stanley, 'Cohen-Macaulay complexes', in: *Higher combinatorics* (ed. M. Aigner) (Reidel, Dordrecht, 1977) pp. 51-62.

Mathematics Department University of Newcastle NSW 2308 Australia e-mail: jacqui@maths.newcastle.edu.au Department of Mathematics University of Georgia Athens, GA 30602 USA e-mail: www@alpha.math.uga.edu