POSETS AND DIFFERENTIAL GRADED ALGEBRAS

JACQUI RAMAGGE and WAYNE W. WHEELER

(Received 1 June 1996)

Communicated by L. Kovács

Abstract

If P is a partially ordered set and R is a commutative ring, then a certain differential graded R-algebra $A_{\bullet}(P)$ is defined from the order relation on P. The algebra $A_{\bullet}(\emptyset)$ corresponding to the empty poset is always contained in $A_{\bullet}(P)$ so that $A_{\bullet}(P)$ can be regarded as an $A_{\bullet}(\emptyset)$-algebra. The main result of this paper shows that if R is an integral domain and P and P^{\prime} are finite posets such that $A_{\bullet}(P) \cong A_{\bullet}\left(P^{\prime}\right)$ as differential graded $A_{0}(6)$-algebras, then P and P^{\prime} are isomorphic.

1991 Mathematics subject classification (Amer: Math. Soc.): primary 06A06.

1. Introduction

A common way to study partially ordered sets involves associating certain algebraic objects with a poset and then trying to gain new insights by considering these associated objects. For example, the concept of a Cohen-Macaulay poset arises naturally from the study of Stanley-Reisner rings [1,3]. On the other hand, algebraic constructions associated with partially ordered sets have also proven to have widespread applicability within algebra itself, particularly in the area of representation theory [2].

The current work, which grew out of an interest in posets that arise in group representation theory, is based upon this interplay between partially ordered sets and algebra. If P is a partially ordered set and R is an integral domain, then we define a graded R-algebra $A_{\bullet}(P)$. The definition involves forming a new poset P_{0} by adjoining a minimum element 0 to the poset P. For any $n \geq 0$ the component $A_{n}(P)$ of degree n is the free R-module on the symbols $\left[x_{1}<\cdots<x_{n}\right]$ whenever $x_{1}<\cdots<x_{n}$ is a chain in P_{0}. Using the order relation on P_{0}, one can define a multiplication on $A_{\bullet}(P)$,

[^0]and it also has an R-endomorphism of degree -1 that makes $A_{\bullet}(P)$ into a differential graded R-algebra. The algebra $A_{\bullet}(\emptyset)$ corresponding to the empty poset is necessarily contained in $A_{\bullet}(P)$ so that $A_{\bullet}(P)$ is in fact an $A_{\bullet}(\emptyset)$-algebra.

Now suppose that P and P^{\prime} are finite posets and $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ is an isomorphism of differential graded $A_{\bullet}(\emptyset)$-algebras. If f_{0} maps the distinguished basis of $A_{\bullet}(P)$ to that of $A_{\bullet}\left(P^{\prime}\right)$, then the definition of the multiplication in $A_{\bullet}(P)$ makes it easy to see that P and P^{\prime} are isomorphic. The main result of this paper shows that this conclusion is valid even if f_{\bullet} does not preserve the distinguished basis. Thus one can recover the poset P from the algebra $A_{\bullet}(P)$ with no additional information.

Section 2 of the paper contains the definition of $A_{\bullet}(P)$ and a proof that it is a differential graded $A_{\bullet}(\emptyset)$-algebra. The proof that the algebra $A_{\bullet}(P)$ determines the poset P is given in Section 3. Finally, Section 4 gives a description of the graded center in terms of certain annihilators in $A_{\bullet}(P)$. Although we have chosen to assume throughout the paper that the coefficient ring R is an integral domain, it should be noted that this assumption is often not necessary. In particular, all of the results of Section 2 hold over an arbitrary commutative ring.

2. The definition and basic properties of the algebra

If P is a partially ordered set and R is an integral domain, then we will define a differential graded R-algebra $A_{\bullet}(P)$ from the poset P. The first step is to define a new poset P_{0} in which the points consist of the points in P, together with one additional point called 0 . The order $<$ on P_{0} is given by taking $x<y$ in P_{0} if either $x=0$ and $y \in P$ or $x, y \in P$ and $x<y$ in P.

For each $n \geq 0$ the component $A_{n}(P)$ is defined to be the free R-module on the symbols $\left[x_{1}<x_{2}<\cdots<x_{n}\right]$ whenever $x_{1}<x_{2}<\cdots<x_{n}$ is a strictly increasing chain in P_{0}. For convenience we will also use the symbol $\left[x_{1}<x_{2}<\cdots<x_{n}\right]$ even when $x_{1}, x_{2}, \ldots, x_{n}$ do not form a strictly increasing chain in P_{0}, but in this case we set $\left[x_{1}<x_{2}<\cdots<x_{n}\right]$ equal to 0 in $A_{n}(P)$. Note that $A_{0}(P)$ is a free R-module of rank one, generated by the symbol [].

Define a multiplication on the (non-zero) basis elements of $A_{\bullet}(P)$ by setting

$$
\begin{aligned}
& {\left[x_{1}<\cdots<x_{m}\right]\left[y_{1}<\cdots<y_{n}\right]} \\
& \quad= \begin{cases}{\left[x_{1}<\cdots<x_{m}<y_{1}<\cdots<y_{n}\right]} & \text { if } x_{m}<y_{1} \\
(-1)^{m-1}\left[0<x_{1}<\cdots<x_{m-1}<y_{1}<\cdots<y_{n}\right] \\
+(-1)^{m}\left[0<x_{1}<\cdots<x_{m}<y_{2}<\cdots<y_{n}\right] & \text { if } x_{m} \nless y_{1},\end{cases}
\end{aligned}
$$

and extend this multiplication to all of $A_{\bullet}(P)$ by linearity. In the proofs of the following propositions it is important to bear in mind that the equation defining this multiplication applies only to products of non-zero generators of $A_{\bullet}(P)$.

Proposition 2.1. Let P be a partially ordered set. Then $A_{\bullet}(P)$ is a graded associative algebra with 1 .

Proof. The identity element of $A_{\bullet}(P)$ is given by [], and it is clear from the definition of the product that $A_{m}(P) A_{n}(P)=A_{m+n}(P)$. Thus it is only necessary to show that $A_{\bullet}(P)$ is associative.

Let $a, b, c \in A_{\bullet}(P)$ be homogeneous elements. We will prove that $(a b) c=a(b c)$ by induction on $\operatorname{deg} b$. The equality clearly holds if $\operatorname{deg} a=0$, $\operatorname{deg} b=0$, or $\operatorname{deg} c=0$, so assume that $\operatorname{deg} b=1, \operatorname{deg} a \geq 1$, and $\operatorname{deg} c \geq 1$. To prove that $(a b) c=a(b c)$, it suffices to consider the case in which a, b, and c are non-zero homogeneous generators. Suppose, then, that $a=\left[x_{1}<\cdots<x_{m}\right], b=\left[y_{1}\right]$, and $c=\left[z_{1}<\cdots<z_{p}\right]$. If $x_{m}<y_{1}<z_{1}$, then it is easy to see that $(a b) c=a(b c)$, so suppose that $x_{m} \nless y_{1}$ but $y_{1}<z_{1}$. Then

$$
\begin{aligned}
(a b) c= & \left(\left[x_{1}<\cdots<x_{m}\right]\left[y_{1}\right]\right)\left[z_{1}<\cdots<z_{p}\right] \\
= & (-1)^{m-1}\left[0<x_{1}<\cdots<x_{m-1}<y_{1}\right]\left[z_{1}<\cdots<z_{p}\right] \\
& +(-1)^{m}\left[0<x_{1}<\cdots<x_{m}\right]\left[z_{1}<\cdots<z_{p}\right] \\
= & (-1)^{m-1}\left[0<x_{1}<\cdots<x_{m-1}<y_{1}<z_{1}<\cdots<z_{p}\right] \\
& +(-1)^{m}\left[0<x_{1}<\cdots<x_{m}<z_{1}<\cdots<z_{p}\right] \\
= & {\left[x_{1}<\cdots<x_{m}\right]\left[y_{1}<z_{1}<\cdots<z_{p}\right] } \\
= & {\left[x_{1}<\cdots<x_{m}\right]\left(\left[y_{1}\right]\left[z_{1}<\cdots<z_{p}\right]\right) } \\
= & a(b c) .
\end{aligned}
$$

Similar computations show that $(a b) c=a(b c)$ when $x_{m}<y_{1}$ and $y_{1} \nless z_{1}$, and also when $x_{m} \nless y_{1}$ and $y_{1} \nless z_{1}$.

It follows that if a, b, and c are any homogeneous elements of $A_{\bullet}(P)$ with $\operatorname{deg} b=$ 1 , then $(a b) c=a(b c)$. Assume by induction that $n \geq 1$ and that if a, b, and c are homogeneous with deg $b \leq n$, then $(a b) c=a(b c)$. Then

$$
\begin{aligned}
\left(a\left[y_{1}<\cdots<y_{n+1}\right]\right) c & =\left(a\left(\left[y_{1}<\cdots<y_{n}\right]\left[y_{n+1}\right]\right)\right) c \\
& =\left(\left(a\left[y_{1}<\cdots<y_{n}\right]\right)\left[y_{n+1}\right]\right) c \\
& =\left(a\left[y_{1}<\cdots<y_{n}\right]\right)\left(\left[y_{n+1}\right] c\right) \\
& =a\left(\left[y_{1}<\cdots<y_{n}\right]\left(\left[y_{n+1}\right] c\right)\right) \\
& =a\left(\left(\left[y_{1}<\cdots<y_{n}\right]\left[y_{n+1}\right]\right) c\right) \\
& =a\left(\left[y_{1}<\cdots<y_{n+1}\right] c\right) .
\end{aligned}
$$

Hence $(a b) c=a(b c)$ whenever a, b, and c are homogeneous with $\operatorname{deg} b \leq n+1$, and it follows that $A_{\bullet}(P)$ is associative. This completes the proof.

If $1 \leq i \leq n$, then we write $\left[x_{1}<\cdots<\hat{x}_{i}<\cdots<x_{n}\right]$ for $\left[x_{1}<\cdots<x_{i-1}<\right.$ $\left.x_{i+1}<\cdots<x_{n}\right]$. Define a sequence of R-linear maps $d: A_{n}(P) \rightarrow A_{n-1}(P)$ by setting

$$
d\left[x_{1}<\cdots<x_{n}\right]=\sum_{i=1}^{n}(-1)^{i-1}\left[x_{1}<\cdots<\hat{x}_{i}<\cdots<x_{n}\right]
$$

on all non-zero homogeneous generators $\left[x_{1}<\cdots<x_{n}\right]$. It is easy to verify that $d^{2}=0$.

Proposition 2.2. Let P be a partially ordered set, and suppose that $a \in A_{m}(P)$ and $b \in A_{n}(P)$. Then

$$
d(a b)=(d a) b+(-1)^{m} a(d b)
$$

and $\left(A_{\bullet}(P), d\right)$ is a differential graded R-algebra.

PROOF. We will prove that $d(a b)=(d a) b+(-1)^{m} a(d b)$ by induction on m. It is clear that the equation holds if $m=0$ or $n=0$, so assume that $m=1$ and $n \geq 1$. To prove that the equation holds in this case, it suffices to consider the situation in which a and b are non-zero homogeneous generators. Suppose, then, that $a=\left[x_{1}\right]$ and $b=\left[y_{1}<\cdots<y_{n}\right]$. If $x_{1}<y_{1}$, then

$$
\begin{aligned}
(d a) b & +(-1)^{m} a(d b) \\
& =\left[y_{1}<\cdots<y_{n}\right]-\sum_{i=1}^{n}(-1)^{i-1}\left[x_{1}<y_{1}<\cdots<\hat{y}_{i}<\cdots<y_{n}\right] \\
& =d\left[x_{1}<y_{1}<\cdots<y_{n}\right]=d(a b)
\end{aligned}
$$

Now suppose that $x_{1} \nless y_{1}$. Then one can check that

$$
\begin{aligned}
& (d a) b+(-1)^{m} a(d b) \\
& \quad=\left[y_{1}<\cdots<y_{n}\right]-\sum_{i=1}^{n}(-1)^{i-1}\left[x_{1}\right]\left[y_{1}<\cdots<\hat{y}_{i}<\cdots<y_{n}\right] \\
& =\left[y_{1}<\cdots<y_{n}\right]-\left[x_{1}\right]\left[y_{2}<\cdots<y_{n}\right] \\
& \quad-\sum_{i=2}^{n}\left((-1)^{i-1}\left[0<y_{1}<\cdots<\hat{y}_{i}<\cdots<y_{n}\right]\right. \\
& \left.\quad+(-1)^{i}\left[0<x_{1}<y_{2}<\cdots<\hat{y}_{i}<\cdots<y_{n}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[y_{1}<\cdots<y_{n}\right]+\sum_{i=1}^{n}(-1)^{i}\left[0<y_{1}<\cdots<\hat{y}_{i}<\cdots<y_{n}\right] } \\
& -\left[x_{1}\right]\left[y_{2}<\cdots<y_{n}\right]+\left[0<y_{2}<\cdots<y_{n}\right] \\
& -\sum_{i=2}^{n}(-1)^{i}\left[0<x_{1}<y_{2}<\cdots<\hat{y}_{i}<\cdots<y_{n}\right] \\
= & d\left[0<y_{1}<\cdots<y_{n}\right]-d\left[0<x_{1}<y_{2}<\cdots<y_{n}\right] \\
= & d\left(\left[x_{1}\right]\left[y_{1}<\cdots<y_{n}\right]\right)=d(a b) .
\end{aligned}
$$

It now follows that if a and b are any homogeneous elements of $A_{\bullet}(P)$ with $\operatorname{deg} a=1$, then $d(a b)=(d a) b-a(d b)$. Assume by induction that $m \geq 1$ and that if a and b are homogeneous with deg $a \leq m$, then $d(a b)=(d a) b+(-1)^{\operatorname{deg} a} a(d b)$. Then

$$
\begin{aligned}
&\left(d\left[x_{1}<\cdots<x_{m+1}\right]\right) b+(-1)^{m+1}\left[x_{1}<\cdots<x_{m+1}\right] d b \\
&= d\left(\left[x_{1}\right]\left[x_{2}<\cdots<x_{m+1}\right]\right) b+(-1)^{m+1}\left[x_{1}<\cdots<x_{m+1}\right] d b \\
&= {\left[x_{2}<\cdots<x_{m+1}\right] b-\left[x_{1}\right]\left(d\left[x_{2}<\cdots<x_{m+1}\right]\right) b } \\
&+(-1)^{m+1}\left[x_{1}<\cdots<x_{m+1}\right] d b \\
&= {\left[x_{2}<\cdots<x_{m+1}\right] b } \\
&-\left[x_{1}\right]\left(\left(d\left[x_{2}<\cdots<x_{m+1}\right]\right) b+(-1)^{m}\left[x_{2}<\cdots<x_{m+1}\right] d b\right) \\
&=\left(d\left[x_{1}\right]\right)\left[x_{2}<\cdots<x_{m+1}\right] b-\left[x_{1}\right] d\left(\left[x_{2}<\cdots<x_{m+1}\right] b\right) \\
&= d\left(\left[x_{1}<x_{2}<\cdots<x_{m+1}\right] b\right) .
\end{aligned}
$$

Hence $d(a b)=(d a) b+(-1)^{\operatorname{deg} a} a(d b)$ whenever a and b are homogeneous with $\operatorname{deg} a \leq m+1$, and it follows that $A_{\bullet}(P)$ is a differential graded R-algebra.

If P is any poset, then the algebra $A_{\bullet}(\emptyset)$ corresponding to the empty poset is just the subalgebra of $A_{\bullet}(P)$ spanned by [] and [0]. Thus $A_{\bullet}(P)$ is actually a differential graded $A_{\bullet}(\emptyset)$-algebra. Unless otherwise specified, therefore, any homomorphism $g_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ that we consider will be assumed to be a homomorphism of differential graded $A_{\bullet}\left((\chi)\right.$-algebras so that $g_{\bullet}([0])=[0]$. For simplicity of notation we generally write $g_{\bullet}\left[x_{1}<\cdots<x_{n}\right]$ instead of $g_{\bullet}\left(\left[x_{1}<\cdots<x_{n}\right]\right)$.

Let P and P^{\prime} be partially ordered sets, and let $f_{1}: A_{1}(P) \rightarrow A_{1}\left(P^{\prime}\right)$ be an R-linear map given by

$$
f_{1}[x]=\sum_{x^{\prime} \in P_{0}^{\prime}} c_{x^{\prime} x}\left[x^{\prime}\right]
$$

for some elements $c_{x^{\prime} x} \in R$. We want to explore the conditions under which f_{1} extends to a homomorphism $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ of differential graded $A_{\bullet}(\emptyset)$-algebras. The matrix $C=\left(c_{x^{\prime} x}\right)$ will be referred to as the matrix of f_{1}.

Let $f_{0}: A_{0}(P) \rightarrow A_{0}\left(P^{\prime}\right)$ be the unique R-linear map satisfying $f_{0}[]=[]$, and for $n \geq 2$ let $f_{n}: A_{n}(P) \rightarrow A_{n}\left(P^{\prime}\right)$ be the unique R-linear map defined on basis elements of $A_{n}(P)$ by

$$
f_{n}\left[y_{1}<\cdots<y_{n}\right]=f_{1}\left[y_{1}\right] \cdots f_{1}\left[y_{n}\right] .
$$

In this way we associate an R-linear map $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ to each R-linear map $f_{1}: A_{1}(P) \rightarrow A_{1}\left(P^{\prime}\right)$.

Lemma 2.3. Let P and P^{\prime} be posets, and let $f_{1}: A_{1}(P) \rightarrow A_{1}\left(P^{\prime}\right)$ be an R-linear map with matrix $C=\left(c_{x^{\prime} x}\right)$. Then the R-linear map $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ satisfies $d f_{1}=f_{0} d$ if and only if $\sum_{x^{\prime} \in P_{0}^{\prime}} c_{x^{\prime} x}=1$ for all $x \in P_{0}$.

Proof. Let $x \in P_{0}$. Then $d f_{1}[x]=d \sum_{x^{\prime} \in P_{0}^{\prime}} c_{x^{\prime} x}\left[x^{\prime}\right]=\sum_{x^{\prime} \in P_{1}^{\prime}} c_{x^{\prime} x}[$, and $f_{0} d[x]=f_{0}[]=[]$. Hence $d f_{1}[x]=f_{0} d[x]$ if and only if $\sum_{x^{\prime} \in P_{0}^{\prime}} c_{x^{\prime} x}=1$, as desired.

Lemma 2.4. Let P and P^{\prime} be posets, and let $f_{1}: A_{1}(P) \rightarrow A_{1}\left(P^{\prime}\right)$ be an R-linear map with matrix $C=\left(c_{x^{\prime} x}\right)$. Suppose that $f_{1}[0]=[0]$ and that $d f_{1}=f_{0} d$. Then the following conditions are equivalent:
(1) If $x, y \in P_{0}$ and $x \nless y$, then $[0] f_{1}[x] f_{1}[y]=0$.
(2) If $a, b \in A_{\bullet}(P)$, then $f_{\bullet}(a b)=f_{\bullet}(a) f_{\bullet}(b)$.
(3) If $x \nless y$ in P_{0} and $0 \neq x^{\prime}<y^{\prime}$ in P_{0}^{\prime}, then $c_{x^{\prime} x} c_{y^{\prime} y}=0$.

Proof. Let $x, y \in P_{0}$ with $x \nless y$. Then

$$
[0] f_{1}[x] f_{1}[y]=[0] \sum_{x^{\prime} \in P_{0}^{\prime}} c_{x^{\prime} x}\left[x^{\prime}\right] \sum_{y^{\prime} \in P_{0}^{\prime}} c_{y^{\prime} y}\left[y^{\prime}\right]=\sum_{0 \neq x^{\prime}<y^{\prime}} c_{x^{\prime} x} c_{y^{\prime} y}\left[0<x^{\prime}<y^{\prime}\right],
$$

and it follows that (1) and (3) are equivalent.
Now suppose that (2) holds. If $x, y \in P_{0}$ and $x \nless y$, then

$$
[0] f_{1}[x] f_{1}[y]=f_{3}([0][x][y])=f_{3}([0][0<y]-[0][0<x])=0
$$

Thus we see that (2) implies (1).
Finally, we show that (3) implies (2). To prove that $f_{\bullet}(a b)=f_{\bullet}(a) f_{\bullet}(b)$ for all $a, b \in A_{\bullet}(P)$, it suffices to consider the case in which a and b are homogeneous basis elements. In fact, it is enough to prove that

$$
f_{n+1}\left([x]\left[y_{1}<\cdots<y_{n}\right]\right)=f_{1}[x] f_{n}\left[y_{1}<\cdots<y_{n}\right]
$$

whenever $x \in P_{0}$ and $y_{1}<\cdots<y_{n}$ in P_{0}. The result is immediate if $n=0$, so assume that $n \geq 1$. If $x<y_{1}$, then

$$
\begin{aligned}
f_{n+1}\left([x]\left[y_{1}<\cdots<y_{n}\right]\right) & =f_{n+1}\left[x<y_{1}<\cdots<y_{n}\right] \\
& =f_{1}[x] f_{1}\left[y_{1}\right] \cdots f_{1}\left[y_{n}\right] \\
& =f_{1}[x] f_{n}\left[y_{1}<\cdots<y_{n}\right]
\end{aligned}
$$

as desired. Thus we may assume that $x \nless y_{1}$.
We now prove that if $n \geq 1$ and $x \nless y_{1}$, then $f_{n+1}\left([x]\left[y_{1}<\cdots<y_{n}\right]\right)=$ $f_{1}[x] f_{n}\left[y_{1}<\cdots<y_{n}\right]$. First suppose that $n=1$. Then (3) implies that

$$
\begin{aligned}
f_{1}[x] f_{1}\left[y_{1}\right]= & \sum_{x^{\prime}, y^{\prime} \in P_{01}^{\prime}} c_{x^{\prime} x} c_{y^{\prime} y_{1}}\left[x^{\prime}\right]\left[y^{\prime}\right] \\
= & \sum_{y^{\prime} \in P^{\prime}} \sum_{0 \neq x^{\prime}<y^{\prime}} c_{x^{\prime} x} c_{y^{\prime} y_{1}}\left[x^{\prime}<y^{\prime}\right]+\sum_{y^{\prime} \in P^{\prime}} c_{0 x^{\prime}} c_{y^{\prime} y_{1}}\left[0<y^{\prime}\right] \\
& -\sum_{x^{\prime} \in P^{\prime}} c_{x^{\prime} x} c_{0 y_{1}}\left[0<x^{\prime}\right]+\sum_{y^{\prime} \in P^{\prime}} \sum_{0 \neq x^{\prime} \neq y^{\prime}} c_{x^{\prime} x} c_{y^{\prime} y_{1}}\left(\left[0<y^{\prime}\right]-\left[0<x^{\prime}\right]\right) \\
= & \sum_{y^{\prime} \in P^{\prime}}\left(c_{0,} c_{y^{\prime} y_{1}}-c_{y^{\prime} x} c_{0 y_{1}}+\sum_{0 \neq x^{\prime} \nless y^{\prime}} c_{x^{\prime} x} c_{y^{\prime} y_{1}}-\sum_{0 \neq x^{\prime} \ngtr y^{\prime}} c_{y^{\prime} x} c_{x^{\prime} y_{1}}\right)\left[0<y^{\prime}\right] \\
= & \sum_{y^{\prime} \in P^{\prime}}\left(\sum_{x^{\prime} \in P_{0}^{\prime}} c_{x^{\prime} x} c_{y^{\prime} y_{1}}-\sum_{x^{\prime} \in P_{0}^{\prime}} c_{y^{\prime} x} c_{x^{\prime} y_{1}}\right)\left[0<y^{\prime}\right] .
\end{aligned}
$$

Since $d f_{1}=f_{0} d$, Lemma 2.3 implies that

$$
\begin{align*}
f_{1}[x] f_{1}\left[y_{1}\right] & =\sum_{y^{\prime} \in P^{\prime}}\left(c_{y^{\prime} y_{1}}-c_{y^{\prime} x}\right)\left[0<y^{\prime}\right] \\
& =\sum_{y^{\prime} \in P_{0}^{\prime}} c_{y^{\prime} y_{1}}[0]\left[y^{\prime}\right]-\sum_{y^{\prime} \in P_{0}^{\prime}} c_{y^{\prime} x}[0]\left[y^{\prime}\right] \tag{2.5}\\
& =[0] f_{1}\left[y_{1}\right]-[0] f_{1}[x] \\
& =f_{2}\left[0<y_{1}\right]-f_{2}[0<x] \\
& =f_{2}\left([x]\left[y_{1}\right]\right)
\end{align*}
$$

Now suppose that $n \geq 2$. Using (2.5) and (1), we see that

$$
\begin{aligned}
f_{1}[x] f_{n}\left[y_{1}<\cdots<y_{n}\right] & =f_{1}[x] f_{1}\left[y_{1}\right] \cdots f_{1}\left[y_{n}\right] \\
& =[0] f_{1}\left[y_{1}\right] \cdots f_{1}\left[y_{n}\right]-[0] f_{1}[x] f_{1}\left[y_{2}\right] \cdots f_{1}\left[y_{n}\right] \\
& =f_{n+1}\left[0<y_{1}<\cdots<y_{n}\right]-f_{n+1}\left[0<x<y_{2}<\cdots<y_{n}\right] \\
& =f_{n+1}\left([x]\left[y_{1}<\cdots<y_{n}\right]\right) .
\end{aligned}
$$

Thus (2) follows, and this completes the proof.

Proposition 2.6. Let P and P^{\prime} be partially ordered sets, and let $f_{1}: A_{1}(P) \rightarrow$ $A_{1}\left(P^{\prime}\right)$ be an R-linear map with matrix $C=\left(c_{x^{\prime} x}\right)$. Then f_{1} extends to a homomorphism $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ of differential graded $A_{\bullet}(\emptyset)$-algebras if and only if the following conditions are satisfied.
(1) $c_{00}=1$ and $c_{x^{\prime} 0}=0$ for all $x^{\prime} \in P^{\prime}$.
(2) $\sum_{x^{\prime} \in P_{0}^{\prime}} c_{x^{\prime} x}=1$ for all $x \in P_{0}$.
(3) If $x \nless y$ in P_{0} and $0 \neq x^{\prime}<y^{\prime}$ in P_{0}^{\prime}, then $c_{x^{\prime} x} c_{y^{\prime} y}=0$.

Proof. Note that f_{1} extends to a homomorphism f_{0} of differential graded $A_{\bullet}(\emptyset)$ algebras if and only if the following conditions are satisfied:
(1') $f_{0}[]=[]$ and $f_{1}[0]=[0]$.
(2) $d f_{n+1}=f_{n} d$ for all $n \geq 0$.
(3) $\quad f_{\bullet}(a b)=f_{\bullet}(a) f_{\bullet}(b)$ for all $a, b \in A_{\bullet}(P)$.

Thus it suffices to show that conditions (1), (2), and (3) are equivalent to conditions (1^{\prime}), $\left(2^{\prime}\right)$, and (3^{\prime}). We have defined f_{0} so that $f_{0}[]=[]$, and $f_{1}[0]=[0]$ precisely when $c_{00}=1$ and $c_{x^{\prime} 0}=0$ for all $x^{\prime} \in P^{\prime}$. Thus (1) is equivalent to (1^{\prime}).

Suppose that (1^{\prime}), (2^{\prime}), and (3^{\prime}) hold. Then Lemma 2.3 implies that (2) holds, and Lemma 2.4 implies that (3) holds.

Conversely, suppose that f_{1} satisfies (1), (2), and (3). Then f_{0} also satisfies (1^{\prime}), and Lemma 2.3 implies that $d f_{1}=f_{0} d$. By Lemma 2.4 it follows that f_{0} satisfies (3^{\prime}), so it only remains to show that $d f_{n+1}=f_{n} d$ for $n \geq 1$. If $\left[y_{1}<\cdots<y_{n+1}\right]$ is any basis element of $A_{n+1}(P)$, then by induction it follows that

$$
\begin{aligned}
d f_{n+1} & {\left[y_{1}<\cdots<y_{n+1}\right] } \\
& =d\left(f_{n}\left[y_{1}<\cdots<y_{n}\right] f_{1}\left[y_{n+1}\right]\right) \\
& =\left(d f_{n}\left[y_{1}<\cdots<y_{n}\right]\right) f_{1}\left[y_{n+1}\right]+(-1)^{n} f_{n}\left[y_{1}<\cdots<y_{n}\right] d f_{1}\left[y_{n+1}\right] \\
& =\left(f_{n-1} d\left[y_{1}<\cdots<y_{n}\right]\right) f_{1}\left[y_{n+1}\right]+(-1)^{n} f_{n}\left[y_{1}<\cdots<y_{n}\right] f_{0} d\left[y_{n+1}\right] \\
& =f_{n}\left(\left(d\left[y_{1}<\cdots<y_{n}\right]\right)\left[y_{n+1}\right]+(-1)^{n}\left[y_{1}<\cdots<y_{n}\right] d\left[y_{n+1}\right]\right) \\
& =f_{n} d\left[y_{1}<\cdots<y_{n+1}\right]
\end{aligned}
$$

This completes the proof.

COROLLARY 2.7. Let $f: P \rightarrow P^{\prime}$ be a map of posets. Then the following conditions are equivalent.
(1) There is a homomorphism $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ of differential graded $A_{\bullet}(\emptyset)$ algebras satisfying $f_{1}[x]=[f(x)]$ for all $x \in P$.
(2) There is a homomorphism $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ of differential graded $A_{\bullet}(\emptyset)$ algebras such that f_{n} satisfies

$$
f_{n}\left[x_{1}<\cdots<x_{n}\right]=\left[f\left(x_{1}\right)<\cdots<f\left(x_{n}\right)\right] \text { for all } n \geq 1
$$

(3) If $f(x)<f(y)$, then $x<y$ for all $x, y \in P$.

Proof. First suppose that (1) holds. We will prove by induction on n that f_{n} is given by

$$
f_{n}\left[x_{1}<\cdots<x_{n}\right]=\left[f\left(x_{1}\right)<\cdots<f\left(x_{n}\right)\right]
$$

for all $n \geq 1$. This equation is true for $n=1$ by assumption. Let $\left[x_{1}<\cdots<x_{n+1}\right.$] be a non-zero homogeneous generator. Because $x_{n}<x_{n+1}$ and f is a map of posets, it follows that $f\left(x_{n}\right) \leq f\left(x_{n+1}\right)$. Thus

$$
\left[f\left(x_{1}\right)<\cdots<f\left(x_{n}\right)\right]\left[f\left(x_{n+1}\right)\right]=\left[f\left(x_{1}\right)<\cdots<f\left(x_{n+1}\right)\right]
$$

even if $f\left(x_{n}\right)=f\left(x_{n+1}\right)$. Hence

$$
\begin{aligned}
f_{n+1}\left[x_{1}<\cdots<x_{n+1}\right] & =f_{n+1}\left(\left[x_{1}<\cdots<x_{n}\right]\left[x_{n+1}\right]\right) \\
& =f_{n}\left[x_{1}<\cdots<x_{n}\right] f_{1}\left[x_{n+1}\right] \\
& =\left[f\left(x_{1}\right)<\cdots<f\left(x_{n}\right)\right]\left[f\left(x_{n+1}\right)\right] \\
& =\left[f\left(x_{1}\right)<\cdots<f\left(x_{n+1}\right)\right]
\end{aligned}
$$

and (2) follows.
It is trivial that (2) implies (1), so assume that (1) holds. If $x \in P$, then the matrix $C=\left(c_{x^{\prime} x}\right)$ of f_{1} satisfies $c_{x^{\prime} x}=1$ if $x^{\prime}=f(x)$ and $c_{x^{\prime} x}=0$ if $x^{\prime} \neq f(x)$. Proposition 2.6 shows that if $x \nless y$ in P_{0} and $0 \neq x^{\prime}<y^{\prime}$ in P_{0}^{\prime}, then $c_{x^{\prime} x} c_{y^{\prime} y}=0$. But if $x, y \in P$ are elements such that $f(x)<f(y)$, then $c_{f(x), x} c_{f(y), y}=1$, so it follows that $x<y$. Hence (1) implies (3).

Finally, suppose that (3) holds. Extend f to a map $f: P_{0} \rightarrow P_{0}^{\prime}$ by defining $f(0)=0$, and let $f_{1}: A_{1}(P) \rightarrow A_{1}\left(P^{\prime}\right)$ be the R-linear map satisfying $f_{1}[x]=$ $[f(x)]$ for all $x \in P_{0}$. Then all of the conditions of Proposition 2.6 are satisfied, and it follows that f_{1} extends to a homomorphism $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ of differential graded $A_{\mathbf{\bullet}}(\emptyset)$-algebras, as desired.

Finally, we end this section with the following simple but useful observation.

Proposition 2.8. If P is a poset, then $A_{\bullet}(P)$ is contractible. In fact, if s_{0} : $A_{\bullet}(P) \rightarrow A_{\bullet}(P)$ is the map of degree one satisfying $s_{\bullet}(x)=[0] x$ for every homogeneous element $x \in A_{\bullet}(P)$, then s_{0} is a contracting homotopy.

Proof. Let $x \in A_{\bullet}(P)$ be homogeneous. Because d is a derivation, it follows that $d s_{\bullet}(x)+s_{\bullet} d(x)=d([0] x)+[0](d x)=x$, as desired.

3. Isomorphic algebras

In this section our goal is to show that if P and P^{\prime} are finite posets such that $A_{\bullet}(P) \cong A_{\bullet}\left(P^{\prime}\right)$ as differential graded $A_{\bullet}(\emptyset)$-algebras, then $P \cong P^{\prime}$. While this fact is obvious if there is an isomorphism from $A_{\bullet}(P)$ to $A_{\bullet}\left(P^{\prime}\right)$ that maps each basis element $\left[x_{1}<\cdots<x_{n}\right]$ of $A_{\bullet}(P)$ to a basis element of $A_{\bullet}\left(P^{\prime}\right)$, not all isomorphisms arise in this way. Nevertheless, it is easy to see that certain invariants associated with the posets are the same. For example, the rank of $A_{1}(P)$ is just the cardinality $\left|P_{0}\right|=|P|+1$, so it follows that $|P|=\left|P^{\prime}\right|$.

Another invariant that can easily be recovered from the algebra $A_{0}(P)$ is the height of the poset. Recall that an element $x \in P$ is said to have height $h_{P}(x)=n$ if n is the largest number such that there is a chain $x_{1}<\cdots<x_{n}=x$ in P. The height $h(P)$ of the poset P is defined to be the supremum of the heights of its elements. If P is finite with $h(P)=n$, then $h\left(P_{0}\right)=n+1$ so that $A_{n+1}(P) \neq 0$ but $A_{m}(P)=0$ for all $m>n+1$. Thus $h(P)=h\left(P^{\prime}\right)$ if P and P^{\prime} are finite posets such that $A_{\bullet}(P) \cong A_{0}\left(P^{\prime}\right)$. A connection between $A_{\bullet}(P)$ and the heights of individual elements in P is given by the following lemma.

Lemma 3.1. Let P be a poset, and let $x \in P$. If there is an element $a \in A_{n-1}(P)$ such that $[0] a[x] \neq 0$, then $h_{P}(x) \geq n$.

Proof. It suffices to consider the case in which $n \geq 2$. Suppose that $a \in A_{n-1}(P)$ is an element such that $[0] a[x] \neq 0$. Then there is a basis element $\left[y_{1}<\cdots<y_{n-1}\right] \in$ $A_{n-1}(P)$ such that $[0]\left[y_{1}<\cdots<y_{n-1}\right][x] \neq 0$, so the product $\left[y_{1}<\cdots<y_{n-1}\right][x]$ does not lie in the ideal $[0] A_{\bullet}(P)$ generated by [0]. Hence $y_{1} \neq 0$ and $y_{n-1}<x$ so that $y_{1}<\cdots<y_{n-1}<x$ is a chain in P. Thus $h_{P}(x) \geq n$, as desired.

Proposition 3.2. Suppose that P and P^{\prime} are finite posets and $f_{\bullet}: A_{\bullet}(P) \rightarrow$ $A_{\bullet}\left(P^{\prime}\right)$ is an isomorphism such that $C=\left(c_{x^{\prime} x}\right)$ is the matrix of f_{1}. Let $H \subseteq P$ and $H^{\prime} \subseteq P^{\prime}$ be the subposets consisting of all elements that are not of maximum height, and let $x^{\prime} \in P^{\prime}$. Then $x^{\prime} \in H^{\prime}$ if and only if $c_{x^{\prime} x} \neq 0$ for some $x \in H$.

Proof. Suppose that $x^{\prime} \in P^{\prime}$ is an element such that $c_{x^{\prime} x}=0$ for all $x \in H$. Because f_{0} is an isomorphism, there are distinct elements $m_{1}, \ldots, m_{s} \in P-H$ and $b_{1}, \ldots, b_{s} \in$ $R-\{0\}$ such that $\left[x^{\prime}\right]=b_{1} f_{1}\left[m_{1}\right]+\cdots+b_{s} f_{1}\left[m_{s}\right]$. Let $0<x_{1}<\cdots<x_{n-1}<m_{1}$ be a chain of maximum length in P_{0}, and set $a=b_{1}\left[m_{1}\right]+\cdots+b_{s}\left[m_{s}\right] \in A_{1}(P)$. Then $\left[0<x_{1}<\cdots<x_{n-1}\right] a \neq 0$, so

$$
0 \neq f_{n+1}\left(\left[0<x_{1}<\cdots<x_{n-1}\right] a\right)=[0] f_{n-1}\left[x_{1}<\cdots<x_{n-1}\right]\left[x^{\prime}\right] .
$$

It follows by Lemma 3.1 that

$$
h_{P^{\prime}}\left(x^{\prime}\right) \geq n=h_{P}\left(m_{1}\right)=h(P)=h\left(P^{\prime}\right) .
$$

Hence $x^{\prime} \notin H^{\prime}$, as desired.
Conversely, suppose that $x^{\prime} \in P^{\prime}-H^{\prime}$ and $x \in P$ are elements such that $c_{x^{\prime} x} \neq 0$. Let $0<x_{1}^{\prime}<\cdots<x_{n-1}^{\prime}<x^{\prime}$ be a chain of maximum length in P_{0}^{\prime}, and let $b \in A_{n-1}(P)$ be the element with $f_{n-1}(b)=\left[x_{1}^{\prime}<\cdots<x_{n-1}^{\prime}\right]$. Then

$$
f_{n+1}([0] b[x])=\left[0<x_{1}^{\prime}<\cdots<x_{n-1}^{\prime}\right] \sum_{y^{\prime} \in P_{0}^{\prime}} c_{y^{\prime} x}\left[y^{\prime}\right]
$$

is non-zero because $c_{x^{\prime} x}\left[0<x_{1}^{\prime}<\cdots<x_{n-1}^{\prime}<x^{\prime}\right] \neq 0$. Hence $[0] b[x] \neq 0$, and Lemma 3.1 implies that

$$
h_{P}(x) \geq n=h_{P^{\prime}}\left(x^{\prime}\right)=h\left(P^{\prime}\right)=h(P) .
$$

Thus $x \notin H$, and this completes the proof.

Corollary 3.3. Suppose that P and P^{\prime} are finite posets and $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ is an isomorphism. Let $H \subseteq P$ and $H^{\prime} \subseteq P^{\prime}$ be the subposets consisting of all elements that are not of maximum height. Then f_{\bullet} restricts to an isomorphism $h_{\bullet}: A_{\bullet}(H) \rightarrow A_{\bullet}\left(H^{\prime}\right)$.

Proposition 3.4. Let P and P^{\prime} be finite posets, and let $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ be an isomorphism such that $C=\left(c_{x^{\prime} x}\right)$ is the matrix of f_{1}. If $x \in P$ and $x^{\prime} \in P^{\prime}$ are elements with $c_{x^{\prime} x} \neq 0$, then $h_{P^{\prime}}\left(x^{\prime}\right) \leq h_{P}(x)$.

Proof. The proof proceeds by induction on $h(P)$. The result is obvious if $h(P)=$ 1, so assume that $h(P)>1$. Let $H \subseteq P$ and $H^{\prime} \subseteq P^{\prime}$ be the subposets consisting of all elements that are not of maximum height. Corollary 3.3 implies that if $x \in H$ and $x^{\prime} \in P^{\prime}$ are elements such that $c_{x^{\prime} x} \neq 0$, then $x^{\prime} \in H^{\prime}$. Then $h_{H^{\prime}}\left(x^{\prime}\right) \leq h_{H}(x)$ by induction, and the result follows in this case. On the other hand, if $x \in P-H$, then

$$
h_{P}(x)=h(P)=h\left(P^{\prime}\right) \geq h_{P^{\prime}}\left(x^{\prime}\right)
$$

for all $x^{\prime} \in P^{\prime}$, as desired.

DEFINITION 3.5. Let P be a finite poset, and let $a \in A_{1}(P)$. Write $a=\sum_{x \in P_{0}} a_{x}[x]$. The set supp $a=\left\{x \in P \mid a_{x} \neq 0\right\}$ will be called the support of a in P.

Let P^{\prime} be another poset, and let $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ be an $A_{\bullet}(\emptyset)$-isomorphism. Two elements $x \in P$ and $x^{\prime} \in P^{\prime}$ will be called mutually f_{0}-supportive (or simply mutually supportive when f_{\bullet} is understood) provided that $x^{\prime} \in \operatorname{supp} f_{1}[x]$ and $x \in$ supp $f_{1}^{-1}\left[x^{\prime}\right]$.

Note that the support of an element $a \in A_{1}(P)$ is defined to be a subset of P, not of P_{0}; we do not consider 0 to lie in the support of a even if $a_{0} \neq 0$.

It will be important to observe that if $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ is an isomorphism and $x \in P$, then there is always an element $x^{\prime} \in P^{\prime}$ such that x and x^{\prime} are mutually supportive. Indeed, suppose that C is the matrix of f_{1} and D is the matrix of f_{1}^{-1}. Then $1=\sum_{x^{\prime} \in P_{0}^{\prime}} d_{x x^{\prime}} c_{x^{\prime} x}$, and there is an element $x^{\prime} \in P_{0}^{\prime}$ such that $d_{x x^{\prime}} c_{x^{\prime} x} \neq 0$. Because f_{1} is an isomorphism with $f_{1}[0]=[0]$, it is easy to see that $x^{\prime} \neq 0$. Then $x \in P$ and $x^{\prime} \in P^{\prime}$ are mutually supportive. Moreover, any two mutually supportive elements must have the same height by Proposition 3.4.

If P is a finite partially ordered set, then it will sometimes be useful to consider total orders on P_{0} in addition to the original partial order. For convenience we will generally specify a total ordering on P_{0} simply by listing all of the elements x_{0}, \ldots, x_{n} of P_{0} in increasing order. The symbol $<$ will still be reserved for the partial order on P_{0}.

DEFINITION 3.6. Let P be a partially ordered set with $|P|=n$, and write $P_{0}=$ $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. We will say that $x_{0}, x_{1}, \ldots, x_{n}$ is a tall order on P_{0} if $i<j$ whenever $h_{P_{0}}\left(x_{i}\right)<h_{P_{0}}\left(x_{j}\right)$.

Suppose that $x_{0}, x_{1}, \ldots, x_{n}$ is a tall order on P_{0}, and suppose that $x_{i}<x_{j}$ for some i and j. Then $h_{P_{0}}\left(x_{i}\right)<h_{P_{0}}\left(x_{j}\right)$, so $i<j$. Thus the total ordering on P_{0} specified by $x_{0}, x_{1}, \ldots, x_{n}$ is compatible with the original partial ordering. In particular, $x_{0}=0$.

Now suppose that P and P^{\prime} are finite partially ordered sets, and let $f_{\bullet}: A_{\bullet}(P) \rightarrow$ $A_{\bullet}\left(P^{\prime}\right)$ be an $A_{\bullet}(\emptyset)$-isomorphism. Suppose that x_{0}, \ldots, x_{n} is a tall order on P_{0} and $x_{0}^{\prime}, \ldots, x_{n}^{\prime}$ is a tall order on P_{0}^{\prime}. If C is the matrix of f_{1}, then for simplicity write $c_{i j}$ for $c_{x_{i}^{\prime} x_{j}}$. For any integer m with $1 \leq m \leq n$ let $P(m)$ be the subposet of P given by $P(m)=\left\{x_{1}, \ldots, x_{m}\right\}$, and let $P^{\prime}(m)$ be the subposet of P^{\prime} given by $P^{\prime}(m)=\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$. Let $f_{1}^{(m)}: A_{1}(P(m)) \rightarrow A_{1}\left(P^{\prime}(m)\right)$ be the R-linear map satisfying

$$
f_{1}^{(m)}\left[x_{i}\right]=\left(1-\sum_{j=1}^{m} c_{j i}\right)[0]+\sum_{j=1}^{m} c_{j i}\left[x_{j}^{\prime}\right]
$$

for $0 \leq i \leq m$. Then Proposition 2.6 shows that $f_{1}^{(m)}$ extends to a homomorphism $f_{\bullet}^{(m)}: A_{\bullet}(P(m)) \rightarrow A_{\bullet}\left(P^{\prime}(m)\right)$ of differential graded $A_{\bullet}(\emptyset)$-algebras. We will say that the orderings x_{0}, \ldots, x_{n} of P_{0} and $x_{0}^{\prime}, \ldots, x_{n}^{\prime}$ of P_{0}^{\prime} are f_{0}-compatible if $f_{\bullet}^{(m)}$ is an isomorphism such that x_{m} and x_{m}^{\prime} are mutually $f_{\bullet}^{(m)}$-supportive for $1 \leq m \leq n$. Note that this condition implies that $x_{m}^{\prime} \in \operatorname{supp} f_{1}\left[x_{m}\right]$ for all m.

Proposition 3.7. Assume that R is a field. Let P and P^{\prime} be finite posets of height one, and let $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ be an $A_{\bullet}(\emptyset)$-isomorphism. Let $0=x_{0}, x_{1}, \ldots, x_{n}$ be any ordering of P_{0}. Then there exists an f_{0}-compatible ordering $x_{0}^{\prime}, \ldots, x_{n}^{\prime}$ of P_{0}^{\prime}.

Proof. The proof proceeds by induction on $n=|P|$. If $n=1$, then $P=\left\{x_{1}\right\}$. Let $x_{0}^{\prime}=0$, and let x_{1}^{\prime} be the unique element of P^{\prime}. Because x_{1} and x_{1}^{\prime} must be mutually f_{0}-supportive, the orderings x_{0}, x_{1} and $x_{0}^{\prime}, x_{1}^{\prime}$ are f_{0}-compatible.

Now suppose that $n>1$. Let $x=x_{n} \in P$, and let $x^{\prime} \in P^{\prime}$ be an element such that x and x^{\prime} are mutually f_{0}-supportive. Let C be the matrix of f_{1}, and let D be the matrix of f_{1}^{-1} so that $c_{x^{\prime},} \neq 0$ and $d_{x x^{\prime}} \neq 0$. Set $Q=P-\{x\}$ and $Q^{\prime}=P^{\prime}-\left\{x^{\prime}\right\}$, and let $g_{1}: A_{1}(Q) \rightarrow A_{1}\left(Q^{\prime}\right)$ be the R-linear map satisfying

$$
g_{1}[y]=\left(c_{0 y}+c_{x^{\prime} y}\right)[0]+\sum_{y^{\prime} \in Q^{\prime}} c_{y^{\prime} y}\left[y^{\prime}\right]
$$

for all $y \in Q_{0}$. By Proposition 2.6 the map g_{1} extends to an $A_{\bullet}(\emptyset)$-homomorphism $g_{\bullet}: A_{\bullet}(Q) \rightarrow A_{\bullet}\left(Q^{\prime}\right)$, and we will show that g_{\bullet} is an isomorphism.

Let B be the matrix of g_{1}, and let B_{0} be the submatrix obtained by deleting the row and column corresponding to the basis element [0]. Because $g_{1}[0]=[0]$, expanding by minors along the column corresponding to [0] shows that det $B=\operatorname{det} B_{0}$. But B_{0} is also the submatrix of C obtained by deleting the rows corresponding to $[0]$ and $\left[x^{\prime}\right]$ and the columns corresponding to $[0]$ and $[x]$. Because $D=C^{-1}$ and $f_{1}[0]=[0]$, it follows that $d_{x x^{\prime}}=\operatorname{det} B_{0} / \operatorname{det} C$. But $d_{x x^{\prime}} \neq 0$, so $\operatorname{det} B=\operatorname{det} B_{0} \neq 0$. Hence g. is an isomorphism.

It now follows by induction that there exists an ordering $x_{0}^{\prime}, \ldots, x_{n-1}^{\prime}$ of Q_{0}^{\prime} that is g_{\bullet}-compatible with the ordering x_{0}, \ldots, x_{n-1} of Q_{0}. Set $x_{n}^{\prime}=x^{\prime}$. Because $g_{\bullet}=f_{\bullet}^{(n-1)}$, the orderings x_{0}, \ldots, x_{n} of P_{0} and $x_{0}^{\prime}, \ldots, x_{n}^{\prime}$ of P_{0}^{\prime} are f_{0}-compatible. This completes the proof.

The next result is essentially a convenient restatement of Proposition 2.6(3).

Lemma 3.8. Suppose that P and P^{\prime} are finite posets and $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ is an A.(())-isomorphism. Let $x, y \in P$ and $x^{\prime}, y^{\prime} \in P^{\prime}$ be elements such that $x^{\prime} \in \operatorname{supp} f_{1}[x]$ and $y^{\prime} \in \operatorname{supp} f_{1}[y]$. If $x^{\prime}<y^{\prime}$, then $x<y$.

PROOF. Let C be the matrix of f_{1}. Then $c_{x^{\prime} x} \neq 0$ and $c_{y^{\prime} y} \neq 0$, so $c_{x^{\prime} x} c_{y^{\prime} y} \neq 0$. If $x^{\prime}<y^{\prime}$, then Proposition 2.6(3) implies that $x<y$.

Suppose that P is a poset, S is a subset of P, and $y \in P$. We will write $S<y$ if $x<y$ for all $x \in S$. Recall that $P_{<y}$ denotes the subposet of P consisting of all elements x such that $x<y$. Thus $S<y$ if and only if $S \subseteq P_{<y}$.

Lemma 3.9. Assume that P and P^{\prime} are finite posets and $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ is an isomorphism. Let $H \subseteq P$ and $H^{\prime} \subseteq P^{\prime}$ be the subposets consisting of all elements that are not of maximum height, and let $h_{\bullet}: A_{\bullet}(H) \rightarrow A_{\bullet}\left(H^{\prime}\right)$ be the isomorphism
obtained by restricting f_{\bullet} to $A_{\bullet}(H)$. Suppose that there exist isomorphisms of posets $\psi: H \rightarrow H^{\prime}$ and $\psi^{\prime}: H^{\prime} \rightarrow H$ and tall orders x_{0}, \ldots, x_{m} on H_{0} and $x_{0}^{\prime}, \ldots, x_{m}^{\prime}$ on H_{0}^{\prime} such that x_{0}, \ldots, x_{m} is h_{\bullet}-compatible with $0, \psi\left(x_{1}\right), \ldots, \psi\left(x_{m}\right)$ and $x_{0}^{\prime}, \ldots, x_{m}^{\prime}$ is h_{-}^{-1}-compatible with $0, \psi^{\prime}\left(x_{1}^{\prime}\right), \ldots, \psi^{\prime}\left(x_{m}^{\prime}\right)$. If $S \subseteq H$, let $e(S)$ denote the number of $y \in P-H$ such that $S=P_{<y} ;$ if $S^{\prime} \subseteq H^{\prime}$, let $e^{\prime}\left(S^{\prime}\right)$ denote the number of $y^{\prime} \in P^{\prime}-H^{\prime}$ such that $S^{\prime}=P_{<y^{\prime}}^{\prime}$. Then $e(S)=e^{\prime}(\psi(S))$ for all $S \subseteq H$, and $e^{\prime}\left(S^{\prime}\right)=e\left(\psi^{\prime}\left(S^{\prime}\right)\right)$ for all $S^{\prime} \subseteq H^{\prime}$.

Proof. If $S \subseteq H$, let $g(S)$ denote the number of elements $y \in P-H$ such that $S<y$; define $g^{\prime}\left(S^{\prime}\right)$ similarly for any $S^{\prime} \subseteq H^{\prime}$.

Fix $S \subseteq H$, and suppose that there is an element $y^{\prime} \in P^{\prime}-H^{\prime}$ such that $\psi(S)<$ y^{\prime}. Let y be an element of P such that $y^{\prime} \in \operatorname{supp} f_{1}[y]$. Then $y \in P-H$ by Proposition 3.4. Let x be an element of S, and let i be the index such that $x=x_{i}$. Then x_{i} and $\psi\left(x_{i}\right)$ are mutually $h_{\bullet}^{(i)}$-supportive, and the definition of $h_{1}^{(i)}$ shows that $\psi\left(x_{i}\right) \in \operatorname{supp} f_{1}\left[x_{i}\right]$. But $\psi\left(x_{i}\right)<y^{\prime}$, so Lemma 3.8 implies that $x=x_{i}<y$ and hence $S<y$. Because this holds for every y such that $y^{\prime} \in \operatorname{supp} f_{1}[y]$, the element $a \in A_{1}(P)$ such that $f_{1}(a)=\left[y^{\prime}\right]$ is an R-linear combination of an element of $A_{1}(H)$ and elements [y] such that $S<y$. It follows that $g(S) \geq g^{\prime}(\psi(S))$ for all $S \subseteq H$. Similarly, $g^{\prime}\left(S^{\prime}\right) \geq g\left(\psi^{\prime}\left(S^{\prime}\right)\right)$ for all $S^{\prime} \subseteq H^{\prime}$. In particular, if $S \subseteq H$, then $g(S) \geq g^{\prime}(\psi(S)) \geq g\left(\psi^{\prime} \psi(S)\right)$. By induction it follows that

$$
g(S) \geq g^{\prime}(\psi(S)) \geq g\left(\left(\psi^{\prime} \psi\right)^{t}(S)\right)
$$

for all $t \geq 1$. But $\psi^{\prime} \psi: H \rightarrow H$ is a bijection, so it permutes the subsets of H. Thus there is an integer $t \geq 1$ such that $\left(\psi^{\prime} \psi\right)^{t}(S)=S$ for all $S \subseteq H$, and $g(S)=g^{\prime}(\psi(S))$ for all $S \subseteq H$.

We now use induction on $|H-S|$ to show that $e(S)=e^{\prime}(\psi(S))$ for all $S \subseteq H$. If $|H-S|=0$, then $S=H$ and $\psi(S)=H^{\prime}$. But $e(H)=g(H)=g^{\prime}\left(H^{\prime}\right)=e^{\prime}\left(H^{\prime}\right)$, so the result holds in this case.

Now assume that $S \subseteq H$ and $|H-S|>0$. Let S_{1}, \ldots, S_{r} be all of the distinct subsets of H that contain S properly. Then $\psi\left(S_{1}\right), \ldots, \psi\left(S_{r}\right)$ are all of the distinct subsets of H^{\prime} that contain $\psi(S)$ properly. By induction it follows that $e\left(S_{i}\right)=$ $e^{\prime}\left(\psi\left(S_{i}\right)\right)$ for all i, so

$$
e(S)=g(S)-\sum_{i=1}^{r} e\left(S_{i}\right)=g^{\prime}(\psi(S))-\sum_{i=1}^{r} e^{\prime}\left(\psi\left(S_{i}\right)\right)=e^{\prime}(\psi(S))
$$

Similarly, $e^{\prime}\left(S^{\prime}\right)=e\left(\psi^{\prime}\left(S^{\prime}\right)\right)$ for all $S^{\prime} \subseteq H^{\prime}$, and this completes the proof.

Theorem 3.10. Assume that R is a field. Let P and P^{\prime} be finite posets, and let $f_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$ be an isomorphism. Then there exist isomorphisms of posets
$\phi: P \rightarrow P^{\prime}$ and $\phi^{\prime}: P^{\prime} \rightarrow P$ and tall orders x_{0}, \ldots, x_{n} on P_{0} and $x_{0}^{\prime}, \ldots, x_{n}^{\prime}$ on P_{0}^{\prime} such that x_{0}, \ldots, x_{n} is f_{0}-compatible with $0, \phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)$ and $x_{0}^{\prime}, \ldots, x_{n}^{\prime}$ is f_{0}^{-1}-compatible with $0, \phi^{\prime}\left(x_{1}^{\prime}\right), \ldots, \phi^{\prime}\left(x_{n}^{\prime}\right)$.

Proof. The proof proceeds by induction on $h(P)$. First suppose that $h(P)=1$. By Proposition 3.7 there are f_{0}-compatible orderings x_{0}, \ldots, x_{n} of P_{0} and $y_{0}^{\prime}, \ldots, y_{n}^{\prime}$ of P_{0}^{\prime}. Define $\phi: P \rightarrow P^{\prime}$ by setting $\phi\left(x_{i}\right)=y_{i}^{\prime}$ for $1 \leq i \leq n$. Then ϕ is an isomorphism of posets having the desired properties. The same argument applied to f_{0}^{-1} gives the isomorphism $\phi^{\prime}: P^{\prime} \rightarrow P$.

Now suppose that $h(P)>1$. Let $H \subseteq P$ and $H^{\prime} \subseteq P^{\prime}$ be the subposets consisting of all elements that are not of maximum height. Then $h(H)=h(P)-1$, and f_{\bullet} restricts to an isomorphism $h_{\bullet}: A_{\bullet}(H) \rightarrow A_{\bullet}\left(H^{\prime}\right)$. By induction there are isomorphisms of posets $\psi: H \rightarrow H^{\prime}$ and $\psi^{\prime}: H^{\prime} \rightarrow H$ and tall orders x_{0}, \ldots, x_{m} on H_{0} and $x_{0}^{\prime}, \ldots, x_{m}^{\prime}$ on H_{0}^{\prime} such that x_{0}, \ldots, x_{m} is h_{0}-compatible with $0, \psi\left(x_{1}\right), \ldots, \psi\left(x_{m}\right)$ and $x_{0}^{\prime}, \ldots, x_{m}^{\prime}$ is h_{\bullet}^{-1}-compatible with $0, \psi^{\prime}\left(x_{1}^{\prime}\right), \ldots, \psi^{\prime}\left(x_{m}^{\prime}\right)$.

Write the power set $\mathscr{P}(H)$ of H as $\mathscr{P}(H)=\left\{S_{1}, \ldots, S_{2^{m}}\right\}$, where the subsets $S_{1}, \ldots, S_{2^{m}}$ are indexed so that $\left|S_{1}\right| \leq \cdots \leq\left|S_{2^{m}}\right|$. For $1 \leq i \leq 2^{m}$ set

$$
T_{i}=\left\{y \in P-H \mid S_{i}=P_{<y}\right\} \quad \text { and } \quad T_{i}^{\prime}=\left\{y^{\prime} \in P^{\prime}-H^{\prime} \mid \psi\left(S_{i}\right)=P_{<y^{\prime}}^{\prime}\right\}
$$

Then $P-H$ is the disjoint union of $T_{1}, \ldots, T_{2^{m}}$, and $P^{\prime}-H^{\prime}$ is the disjoint union of $T_{1}^{\prime}, \ldots, T_{2^{m}}^{\prime}$. Moreover, $\left|T_{i}\right|=\left|T_{i}^{\prime}\right|$ for all i by Lemma 3.9.

Choose an ordering x_{m+1}, \ldots, x_{n} on $P-H$ such that if $x_{s} \in T_{i}, x_{t} \in T_{j}$, and $i<j$, then $s<t$. Similarly, choose an ordering $y_{m+1}^{\prime}, \ldots, y_{n}^{\prime}$ on $P^{\prime}-H^{\prime}$ such that if $y_{s}^{\prime} \in T_{i}^{\prime}, y_{t}^{\prime} \in T_{j}^{\prime}$, and $i<j$, then $s<t$. Let C denote the matrix of f_{1}, and assume that C is written with respect to the ordered bases $\left[x_{0}\right], \ldots,\left[x_{n}\right]$ of $A_{1}(P)$ and $[0],\left[\psi\left(x_{1}\right)\right], \ldots,\left[\psi\left(x_{m}\right)\right],\left[y_{m+1}^{\prime}\right], \ldots,\left[y_{n}^{\prime}\right]$ of $A_{1}\left(P^{\prime}\right)$. Then C is a block upper triangular matrix: the first diagonal block C_{1} has columns indexed by $\left[x_{0}\right], \ldots,\left[x_{m}\right]$ and rows indexed by $[0],\left[\psi\left(x_{1}\right)\right], \ldots,\left[\psi\left(x_{m}\right)\right]$; the other diagonal block C_{2} has columns indexed by $\left[x_{m+1}\right], \ldots,\left[x_{n}\right]$ and rows indexed by $\left[y_{m+1}^{\prime}\right], \ldots,\left[y_{n}^{\prime}\right]$. In particular, $\operatorname{det} C=\left(\operatorname{det} C_{1}\right)\left(\operatorname{det} C_{2}\right)$.

Suppose that $y^{\prime} \in T_{i}^{\prime}$ and $y \in T_{j}$ are elements with $c_{y^{\prime} y} \neq 0$. If $x \in S_{i}$, then $\psi(x)<y^{\prime}$. Because x_{0}, \ldots, x_{m} is h_{0}-compatible with $0, \psi\left(x_{1}\right), \ldots, \psi\left(x_{m}\right)$, it follows that $\psi(x) \in \operatorname{supp} h_{1}[x]=\operatorname{supp} f_{i}[x]$ and hence $x<y$ by Lemma 3.8. Then $S_{i}<y$ so that $S_{i} \subseteq P_{<y}=S_{j}$. Hence $i \leq j$, and the submatrix C_{2} is itself block upper triangular: the $i^{\text {th }}$ diagonal block of C_{2} has columns indexed by elements in T_{i} and rows indexed by elements in T_{i}^{\prime}.

Let $x \in P_{0}$ and $x^{\prime} \in P^{\prime}$. If $x \in H_{0}$, set $\tilde{c}_{x^{\prime} x}=c_{x^{\prime} x}$; if $x \in T_{i}$ and $x^{\prime} \in T_{i}^{\prime}$, set $\tilde{c}_{x^{\prime} x}=c_{x^{\prime} x}$; and if $x \in T_{i}$ and $x^{\prime} \in P^{\prime}-T_{i}^{\prime}$, set $\tilde{c}_{x^{\prime} x}=0$. Finally, set

$$
\tilde{c}_{0 x}=1-\sum_{x^{\prime} \in P^{\prime}} \tilde{c}_{x^{\prime} x}
$$

for all $x \in P_{0}$. By Proposition 2.6 the matrix $\tilde{C}=\left(\tilde{c}_{x^{\prime} . x}\right)$ determines a homomorphism $\tilde{f}_{\bullet}: A_{\bullet}(P) \rightarrow A_{\bullet}\left(P^{\prime}\right)$. Because \tilde{C} is a block upper triangular matrix with the same diagonal blocks as C, it follows that $\operatorname{det} \tilde{C}=\operatorname{det} C \neq 0$. Thus \tilde{f}_{0} is an isomorphism. Moreover, \tilde{f}_{\bullet} restricts to an isomorphism $\tilde{f}_{\bullet}: A_{\bullet}\left(T_{i}\right) \rightarrow A_{\bullet}\left(T_{i}^{\prime}\right)$ for all i. Let $0=t_{i 0}, t_{i 1}, \ldots, t_{i m_{i}}$ be the ordering on $\left(T_{i}\right)_{0}$ obtained by regarding T_{i} as a subset of the ordered set $P-H=\left\{x_{m+1}, \ldots, x_{n}\right\}$. By Proposition 3.7 there is an \tilde{f}_{0}-compatible ordering $t_{i 0}^{\prime}, \ldots, t_{i m_{,}}^{\prime}$ of $\left(T_{i}^{\prime}\right)_{0}$. Then the function $\psi_{i}: T_{i} \rightarrow T_{i}^{\prime}$ given by $\psi_{i}\left(t_{i j}\right)=t_{i j}^{\prime}$ for $1 \leq j \leq m_{i}$ is a bijection.

Because $P-H$ is the disjoint union of $T_{1}, \ldots, T_{2^{\prime \prime}}$, it is possible to define a function $\phi: P \rightarrow P^{\prime}$ by setting

$$
\phi(x)= \begin{cases}\psi(x) & \text { if } x \in H \\ \psi_{i}(x) & \text { if } x \in T_{i}\end{cases}
$$

and it is clear that ϕ is a bijection. Suppose that $x<y$ in P. If $x, y \in H$, then $\phi(x)<\phi(y)$ because ψ is an isomorphism of posets. If x and y are not both in H, then $x \in S_{i}$ and $y \in T_{i}$ for some i. Then $\phi(y)=\psi_{i}(y) \in T_{i}^{\prime}$, so $\psi\left(S_{i}\right)<\phi(y)$. But $\phi(x)=\psi(x) \in \psi\left(S_{i}\right)$, so $\phi(x)<\phi(y)$. Hence ϕ is an isomorphism of posets.

Finally, the ordering x_{0}, \ldots, x_{m} of H_{0} is h_{\bullet}-compatible with $0, \phi\left(x_{1}\right), \ldots, \phi\left(x_{m}\right)$, and for each i the orderings $t_{i 0}, \ldots, t_{i m_{i}}$ of $\left(T_{i}\right)_{0}$ and $0, \phi\left(t_{i 1}\right) \ldots, \phi\left(t_{i m_{i}}\right)$ of $\left(T_{i}^{\prime}\right)_{0}$ are \tilde{f}_{\bullet}-compatible. It follows that the ordering x_{0}, \ldots, x_{n} of P_{0} is f_{\bullet}-compatible with the ordering $0, \phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)$ of P_{0}^{\prime}.

The same argument shows that there exist an isomorphism of posets $\phi^{\prime}: P^{\prime} \rightarrow P$ and a tall order $x_{0}^{\prime}, \ldots, x_{n}^{\prime}$ on P_{0}^{\prime} that is f_{0}^{-1}-compatible with the ordering $0, \phi^{\prime}\left(x_{1}^{\prime}\right) \ldots$, $\phi^{\prime}\left(x_{n}^{\prime}\right)$, and this completes the proof.

COROLLARY 3.11. If P and P^{\prime} are finite partially ordered sets such that $A_{.}(P) \cong$ A. $\left(P^{\prime}\right)$, then $P \cong P^{\prime}$.

PROOF. By working over the quotient field of R, we may assume that R is itself a field. Then the result follows immediately from Theorem 3.10.

4. Annihilators and the graded center

The purpose of this section is to give a description of the graded center of $A_{\bullet}(P)$ in terms of the elements that annihilate all homogeneous elements of positive degree in $A_{\bullet}(P)$. Recall that the graded center $Z_{\bullet}(P)$ is defined to be the R-submodule generated by all homogeneous elements $z \in A_{\bullet}(P)$ such that $a z=(-1)^{(\operatorname{deg} a)\left(\operatorname{deg} z^{z} z a\right.}$
for all homogeneous elements $a \in A_{\bullet}(P)$. Note that if $z \in Z_{m}(P)$ and $a \in A_{n}(P)$ are any two homogeneous elements, then

$$
\begin{aligned}
(d a) z+(-1)^{n} a(d z) & =d(a z) \\
& =(-1)^{m n} d(z a) \\
& =(-1)^{m n}(d z) a+(-1)^{m(n-1)} z(d a) \\
& =(-1)^{m n}(d z) a+(d a) z
\end{aligned}
$$

Hence $a(d z)=(-1)^{(m-1) m}(d z) a$, and it follows that $d z \in Z_{m-1}(P)$. Thus $Z_{\mathbf{0}}(P)$ is a differential graded $A_{\bullet}(\emptyset)$-subalgebra of $A_{\bullet}(P)$.

If S is any subset of $A_{\bullet}(P)$, then Ann S will denote the ideal consisting of all two-sided annihilators of S; in other words,

$$
\text { Ann } S=\left\{x \in A_{\mathbf{0}}(P) \mid x s=s x=0 \text { for all } s \in S\right\} .
$$

Let $A_{+}(P)$ denote the ideal of $A_{\mathbf{\bullet}}(P)$ generated by all homogeneous elements of positive degree. Then the annihilator Ann $A_{+}(P)=$ Ann $A_{1}(P)$ is a homogeneous ideal of $A_{\bullet}(P)$. Let $I_{\bullet}(P)$ denote the differential graded ideal generated by Ann $A_{+}(P)$. The first result of this section gives an explicit description of Ann $A_{+}(P)$.

Proposition 4.1. Let P be a finite non-empty poset. Then Ann $A_{+}(P)$ is the span of all elements of the form $[0<m<\cdots<M]$, where m is minimal and M is maximal in P. In particular, if P contains no connected components of height one, then $I_{1}(P)=0$.

Proof. If m is minimal and M is maximal in P, then the definition of the multiplication in $A_{\bullet}(P)$ shows that $[0<m<\cdots<M] \in$ Ann $A_{+}(P)$. Conversely, suppose that $x=\sum_{i=1}^{s} c_{i}\left[x_{0 i}<\cdots<x_{n i}\right]$ is a homogeneous element of Ann $A_{+}(P)$ with $c_{i} \neq 0$ for $1 \leq i \leq s$. Because [0$] x=0$, it follows that $x_{0 i}=0$ for all i. If $n=0$, then it is easy to see that P is empty, so we may assume that $n>0$. Let m be a minimal element of P. Then

$$
0=[m] x=-\sum_{i=1}^{s} c_{i}\left[0<m<x_{1 i}<\cdots<x_{n i}\right]
$$

and it follows that $m \nless x_{1 i}$ for all i. Because this relation holds for every minimal element m of P, we conclude that $x_{1 i}$ is minimal for all i. Similarly, if M is a maximal element of P, then the fact that $0=x[M]$ implies that $x_{n i}$ is maximal for all i. This proves the first statement, and the second follows easily.

PROPOSITION 4.2. Let P be a finite non-empty poset. If a and b are homogeneous elements of $I_{\bullet}(P)$, then $a b=0$.

Proof. Because $a, b \in I_{\bullet}(P)$, it is possible to write $a=a^{\prime}+d a^{\prime \prime}$ and $b=b^{\prime}+d b^{\prime \prime}$ for some homogeneous elements $a^{\prime}, a^{\prime \prime}, b^{\prime}, b^{\prime \prime} \in \operatorname{Ann} A_{+}(P) \subseteq A_{+}(P)$. Then

$$
a b=\left(a^{\prime}+d a^{\prime \prime}\right)\left(b^{\prime}+d b^{\prime \prime}\right)=\left(d a^{\prime \prime}\right)\left(d b^{\prime \prime}\right)=d\left(a^{\prime \prime}\left(d b^{\prime \prime}\right)\right)=0,
$$

as desired.

Proposition 4.3. Let P be a finite poset. Then $Z_{\mathbf{e}}(P)$ is the differential graded $A_{\bullet}(\emptyset)$-algebra generated by Ann $A_{+}(P)$. Moreover, if P is non-empty, then $Z_{\mathbf{0}}(P)=$ A. $(\emptyset) \oplus I_{.}(P)$ as graded R-modules.

Proof. We begin by showing that $Z_{\mathbf{0}}(P)=A_{\mathbf{\bullet}}(\emptyset)+I_{\mathbf{\bullet}}(P)$. It is clear that $A_{\mathbf{\bullet}}(\emptyset)+$ $I_{.}(P) \subseteq Z_{.}(P)$, and we will prove that $Z_{n}(P)=A_{n}(\emptyset)+I_{n}(P)$ for all n by downward induction on n. If N is the largest degree such that $A_{N}(P) \neq 0$, then certainly $Z_{n}(P)=A_{n}(\varnothing)+I_{n}(P)=0$ for all $n>N$, and $Z_{N}(P)=A_{N}(P)=A_{N}(\emptyset)+I_{N}(P)$.

Now suppose that $1 \leq n<N$ and that $Z_{n+1}(P)=A_{n+1}(\emptyset)+I_{n+1}(P)$. Let $x \in Z_{n}(P)$. Then $x=[0](d x)+d([0] x)$, and by induction $[0] x \in Z_{n+1}(P)=$ $A_{n+1}(\emptyset)+I_{n+1}(P)=I_{n+1}(P)$. Hence $d([0] x) \in I_{n}(P)$, and it suffices to show that $[0](d x) \in A_{n}(\emptyset)+I_{n}(P)$. If $n=1$, then $[0](d x)$ is a multiple of [0], so it lies in $A_{1}(\emptyset)$. Thus we may assume that $2 \leq n<N$. Write $d x=\sum_{i=1}^{s} c_{i}\left[x_{1 i}<\cdots<x_{n-1, i}\right]$, and let $y \in P_{0}$. Then

$$
\begin{aligned}
\sum_{i=1}^{s}(-1)^{n-1} c_{i}\left[0<x_{1 i}<\cdots<x_{n-1, i}<y\right] & =\sum_{i=1}^{s} c_{i}\left[x_{1 i}<\cdots<x_{n-1, i}\right][0<y] \\
& =(d x)[0][y]=[0][y](d x) \\
& =\sum_{i=1}^{s} c_{i}[0<y]\left[x_{1 i}<\cdots<x_{n-1, i}\right]
\end{aligned}
$$

If any term in this last sum is non-zero, then it follows that $c_{j}\left[0<y<x_{1 j}<\right.$ $\left.\cdots<x_{n-1, j}\right] \neq 0$ for some j with $1 \leq j \leq s$. But such a term cannot occur in the sum $\sum_{i}(-1)^{n-1} c_{i}\left[0<x_{1 i}<\cdots<x_{n-1, i}<y\right]$ because $n \geq 2$. Thus $[y][0](d x)=(-1)^{n}[0](d x)[y]=-[0][y](d x)=0$, and it follows that $[0](d x) \in$ $A_{n}(P) \cap$ Ann $A_{1}(P) \subseteq I_{n}(P)$. Hence $Z_{n}(P)=A_{n}(\emptyset)+I_{n}(P)$ for all $n \geq 1$. But $Z_{0}(P)=A_{0}(P)=A_{0}(\emptyset)+I_{0}(P)$, so $Z_{\bullet}(P)=A_{\bullet}(\emptyset)+I_{\bullet}(P)$, as desired.

To show that the sum $A_{\mathbf{0}}(\emptyset)+I_{0}(P)$ is direct when P is non-empty, it suffices to show that $I_{0}(P)=0$ and $R[0] \cap I_{1}(P)=0$. Both of these facts follow easily from Proposition 4.1.

If P is a finite non-empty poset, let P^{*} denote the dual of P. By Proposition 4.1 there is an R-linear map $f_{\bullet}:$ Ann $A_{+}(P) \rightarrow$ Ann $A_{+}\left(P^{*}\right)$ satisfying

$$
\text { f. }[0<m<\cdots<M]=[0<M<\cdots<m],
$$

and f_{0} extends uniquely to an isomorphism of differential graded $A_{\bullet}(\emptyset)$-algebras $f_{\bullet}: Z_{\bullet}(P) \rightarrow Z_{\bullet}\left(P^{*}\right)$ by Proposition 4.3. Thus we obtain the following result.

Corollary 4.4. If P is a finite poset, then $Z_{\bullet}(P) \cong Z_{\bullet}\left(P^{*}\right)$.
It often happens, however, that two posets P and Q satisfy $Z_{.}(P) \cong Z_{.}(Q)$ even when $Q \not \equiv P$ and $Q \not \equiv P^{*}$. Such an example is given by the following posets P and Q :

Indeed, Ann $A_{+}(P)$ is given by the span of $\left\{\left[0<a<b_{i}\right] \mid 1 \leq i \leq 4\right\}$, whereas Ann $A_{+}(Q)$ is given by the span of $\left\{\left[0<u_{i}<v_{j}\right] \mid 1 \leq i, j \leq 2\right\}$. If f is any bijection between these sets, then it is easy to see that f extends uniquely to a differential graded $A_{\bullet}(\varnothing)$-isomorphism between $Z_{\bullet}(P)$ and $Z_{\bullet}(Q)$.

References

[1] W. Bruns and J. Herzog. Cohen-Macaulay rings (Cambridge Univ. Press, Cambridge, 1993).
[2] D. Simpson, Linear representations of partially ordered sets and vector space categories (Gordon and Breach, Amsterdam. 1992).
[3] R. Stanley, 'Cohen-Macaulay complexes', in: Higher combinatorics (ed. M. Aigner) (Reidel, Dordrecht, 1977) pp. 51-62.

Mathematics Department
University of Newcastle
NSW 2308
Department of Mathematics
University of Georgia
Athens, GA 30602
Australia
USA
e-mail: jacqui@maths.newcastle.edu.au

[^0]: (C) 1998 Australian Mathematical Society 0263-6115/98 \$A2.00 + 0.00

 Second author partially supported by an IAS/Australian Universities Collaborative Research Grant from the Australian National University and by an NSF postdoctoral research fellowship

