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Abstract. We give an example of a principal algebraic action of the non-commutative free
group F of rank two by automorphisms of a connected compact abelian group for which
there is an explicit measurable isomorphism with the full Bernoulli 3-shift action of F. The
isomorphism is defined using homoclinic points, a method that has been used to construct
symbolic covers of algebraic actions. To our knowledge, this is the first example of a
Bernoulli algebraic action of F without an obvious independent generator. Our methods
can be generalized to a large class of acting groups.
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1. Introduction
Halmos [8] first observed that a continuous automorphism of a compact group auto-
matically preserves Haar measure, providing a rich class of examples in ergodic theory.
Using Pontryagin duality theory, it is possible to obtain explicit and concrete answers
to dynamical questions. In particular, a series of papers in the 1970s culminated in the
definitive result that every ergodic automorphism of a compact abelian group is measurably
isomorphic to a Bernoulli shift [18, 19].

The study of the joint action of several commuting automorphisms of a compact
abelian group was initiated by Bruce Kitchens and the second author [14]. This has
ultimately led to a detailed understanding of such actions, called algebraic Z

d -actions,
as described in [24]. Here there is a natural necessary condition for such actions to be
measurably isomorphic to Bernoulli shifts, namely having completely positive entropy, and
this condition can be checked using commutative algebra [16, Theorem 6.5]. The second
author and Dan Rudolph showed in [23] that this condition is also sufficient.
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For acting groups that are not commutative, much less is known. See, for example, our
recent survey [16] of algebraic actions of the discrete Heisenberg group. Even for this
group we do not know a general method to decide whether or not a given algebraic action
is measurably isomorphic to a Bernoulli action.

The study of actions of general countable groups, even beyond amenable groups,
has been revolutionized by Lewis Bowen’s introduction of new ideas about entropy and
independence. The recent book of Kerr and Li [13] gives a comprehensive account of
these developments, in particular of how entropy can be defined for actions of sofic groups.
Algebraic actions supply a large class of interesting examples for this theory. The study
of entropy for algebraic actions of non-commutative groups was initiated by Christopher
Deninger [5], who showed that entropy could be computed for many amenable groups
using the Fuglede–Kadison determinant of an associated operator in a von Neumann
algebra. This insight was developed in a series of papers by several authors, leading to
a definitive form for algebraic actions of general sofic groups by Hayes [9].

However, little is known about when algebraic actions of sofic groups are measurably
isomorphic to Bernoulli actions. The reason for this ignorance is that many of the essential
results for the Bernoulli theory of amenable group actions due to Ornstein and Weiss [20]
fail for sofic groups. For instance, factors of Bernoulli actions may fail to be Bernoulli. A
striking example of this is due to Popa [21, 22]: the algebraic action of a countable group
� having property (T) on the quotient of T

� by the subgroup of constant points is not
Bernoulli (see [3, Theorem 7.2] for a succinct explanation).

In this paper we construct an explicit measurable isomorphism between an algebraic
action of the (non-commutative) free group F of rank two on a connected compact abelian
group and the full 3-shift action of F which preserves the respective measures. We believe
that this is the first non-trivial example of this sort, where there is no obvious independent
generator. Our proof uses symbolic covers, homoclinic points, and a percolation argument
from [7, Proposition 5.1]. That argument relies on the fact that for expansive algebraic
Z

d -actions Haar measure is the unique measure of maximal entropy. However, it an open
question whether this remains true for F (see [3, Question 7]). Here we give an alternative
argument, showing that the image of the 3-shift measure is invariant under translations by
all elements in the dense homoclinic group, and hence it must be Haar measure.

Our methods can be generalized to the class of so-called indicable groups, namely those
groups for which there is a surjective homomorphism to Z. In this setting, recent work of
Hayes [11] provides a systematic way of proving an image measure is Haar using Fourier
coefficients. We use this alternative to the homoclinic group argument while extending
our results to indicable groups and other algebraic actions. By a result of Kerr [12], these
algebraic actions also have completely positive entropy.

2. Algebraic actions
Let � be a countable discrete group with identity element 1� . An algebraic �-action on
a compact abelian group X is a homomorphism α : � → aut(X) from � to the group of
(continuous) algebraic automorphisms of X. We denote the image of s ∈ � under α by αs ,
so that αst = αs ◦ αt and α1� = IdX.
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Let Z� denote the integral group ring of �, consisting of all sums of the form g =∑
s∈� gss, where gs ∈ Z for every s ∈ � and only finitely many gs are non-zero. The

(additive) Pontryagin dual of Z� is T� , where T = R/Z and the dual pairing is given by
〈x, g〉 = ∑

s∈� xsgs for x ∈ T
� and g ∈ Z�. Left multiplication by � on Z� defines a

�-action that dualizes to the algebraic �-action σ on T
� given by σ s(x)t = xs−1t .

Fix an f ∈ Z�, and let Z�f denote the left principal ideal in Z� generated by f .
The compact dual group of Z�/Z�f is then a subgroup of T

� denoted by Xf , and
the restriction of σ to Xf is an algebraic �-action denoted by αf . We call (Xf , αf )

the principal algebraic �-action defined by f . This action automatically preserves Haar
measure μf on Xf .

A convenient concrete description of principal actions uses formal sums. Identify x ∈
T

� with the sum
∑

t∈� xt t , where xt ∈ T for every t ∈ �. Then � acts on T
� by left

multiplication. Explicitly,

σ s(x) = s · x = s ·
∑
t∈�

xt t =
∑
t∈�

xt st =
∑
t∈�

xs−1t t ,

so that σ s(x)t = xs−1t . Similarly, if g ∈ Z� we can formally multiply x by g on the right
by expanding out and collecting terms, with the result denoted by x · g. We can express the
dual pairing by 〈x, g〉 = (x · g∗)1� . Let f ∗ = ∑

s∈� fs s
−1. Then Xf is the subgroup of

T
� consisting of all x for which x · f ∗ = 0. Thus x ∈ Xf if and only if

∑
s∈� fs xts = 0

for every t ∈ �, a finite integral condition on the coordinates of x.
We will use a similar convention for other spaces as well, for instance �∞(�, R) and

�∞(�, Z).

3. The homoclinic map
Our focus will be on algebraic actions of the free group F of rank two generated by a

and b. We let S = {a, b, a−1, b−1} be the standard generating set, and use S to define the
word metric | · |S on F. Our main example is the principal algebraic F-action defined by
f = 3 − a − b ∈ ZF.

First observe that f ∗ = 3 − a−1 − b−1 is invertible in �1(F, R) by using geometric
series. Specifically, if N denotes the set of all words in a−1 and b−1 (including 1F), then
(f ∗)−1 = (1/3)

∑
s∈N 3−|s|s, which we denote by w�.

Note that 0 � w�
s � 1/3 for every s ∈ F. Hence by putting a = b = 1, we see that

1 = f ∗(1, 1)−1 =
∑
s∈F

w�
s = ‖w�‖1,

and hence w� is a probability distribution on F. For every d ∈ �∞(F, Z) we define
(d · w�)s = ∑

t∈F dt w
�
t−1s

. Clearly |(d · w�)s | � ‖d‖∞‖w�‖1 for every s ∈ F. Hence
we can define � : �∞(F, Z) → �∞(F, R) by �(d) = d · w�.

Let π : �∞(F, R) → T
F be the projection map defined by reducing each coordinate

(mod 1). Clearly π is continuous and equivariant. The composition φ = π ◦ � : �∞(F, Z)

→ T
F is called the homoclinic map. Since w� · f ∗ = 1� , if d ∈ �∞(F, Z) then

φ(d) · f ∗ = π(�(d)) · f ∗ = π(d · w�) · f ∗ = π(d · w� · f ∗) = π(d) = 0,

and hence the image of φ is contained in Xf .
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A point x ∈ Xf is homoclinic if lim|s|→∞ xs = 0. The subset �f of all homoclinic
points is clearly a subgroup of Xf , called the homoclinic group of αf .

Considering 1F ∈ ZF as an element of �∞(F, Z), we put x� = φ(1�) = π(w�). Since
F is residually finite, the results of [6, §4] apply to show that αf is expansive, that �f =
φ(ZF) consists of all finite integral combinations of shifts of x�, and that �f is dense in
Xf . This density plays a key role in §6.

Let Y = {0, 1, 2}F ⊂ �∞(F, Z), and let ν denote product measure on Y with each
symbol having measure 1/3. Then the standard shift-action σ of F on Y preserves ν, and
is called the full 3-shift action of F.

THEOREM 3.1. Let (Y , σ , ν) be the full 3-shift action of F and (Xf , αf , μf ) be the
principal algebraic F-action defined by f = 3 − a − b. The homoclinic map φ : Y → Xf

given by φ(d) = π(d · w�) = d · x� is continuous, equivariant, surjective, one-to-one off
a ν-null set, and φ∗ν = μf . Thus φ is a measurable isomorphism between (Xf , αf , μf )

and a Bernoulli shift.

4. Symbolic covers
In this section we find bounded subsets of �∞(F, Z) that are mapped onto Xf by the
homoclinic map φ, that is, symbolic covers of (Xf , αf ).

LEMMA 4.1. φ({0, 1, 2, 3}F) = Xf .

Proof. Let x ∈ Xf . There is a unique v ∈ [0, 1)F with π(v) = x. Since

0Xf
= x · f ∗ = π(v) · f ∗ = π(v · f ∗),

it follows that v · f ∗ ∈ �∞(F, Z). Simple inequalities imply that −1 � v · f ∗ � 2 coor-
dinatewise. Let 1 = ∑

s∈F s, so that �(1) = 1 · w� = 1 since w� is a probability
distribution. Then d := v · f ∗ + 1 ∈ {0, 1, 2, 3}F, and since f ∗ · w� = 1, we have that
φ(d) = π((v · f ∗ + 1) · w�) = π(v + 1) = π(v) = x.

Let C = [F, F] be the commutator subgroup of F, so that F/C ∼= Z
2 with commuting

generators aC and bC. Define a homomorphism F/C → Z by mapping both aC and bC

to 1 ∈ Z. For s ∈ F let [s] denote the image of sC in Z. Then [ · ] : F → Z is a surjective
homomorphism with [sa] = [sb] = [s] + 1 for every s ∈ F. For example, [a2b−3a−1b] =
2 − 3 − 1 + 1 = −1. Clearly |[s]| � |s|S for all s ∈ F.

We will use [ · ] to improve the previous result to obtain an optimal symbolic cover
of Xf .

LEMMA 4.2. φ({0, 1, 2}F) = Xf .

Proof. Let x ∈ Xf . By Lemma 4.1, there is a d ∈ {0, 1, 2, 3}F with φ(d) = x. Using d ,
we inductively construct a sequence of points in {0, 1, 2, 3, 4, 5}F all of which map to x

under φ, and such that any limit point e of this sequence is contained in {0, 1, 2}F. Then
φ(e) = x by continuity of φ.

Let Bn = {s ∈ F : |s|S � n}. Fix n � 1. We inductively construct d(n), d(n−1), . . . ,
d(−n−1) in �∞(F, Z) with the following properties:
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(1) 0 � d
(k)
s � 2 if s ∈ Bn and [s] > k;

(2) 0 � d
(k)
s � 5 if s ∈ Bn and [s] = k;

(3) 0 � d
(k)
s � 3 if s ∈ Bn and [s] < k;

(4) 0 � d
(k)
s � 5 if s /∈ Bn;

(5) φ(d(k)) = x.
The element d(n) = d trivially satisfies (1)–(5). Suppose we have found d(k) satisfying

(1)–(5) for some k with −n � k � n. Construct d(k−1) as follows. If [s] �= k − 1 or k, put
d

(k−1)
s = d

(k)
s . For each s ∈ Bn with [s] = k, if 0 � d

(k)
s � 2 put d

(k−1)
s = d

(k)
s , otherwise

put d
(k−1)
s = d

(k)
s − 3 and add 1 to the coordinates at sa−1 and at sb−1. Let d(k−1) denote

the result after all these operations are carried out.
We claim that d(k−1) satisfies (1)–(5) with k replaced by k − 1. By construction,

d
(k−1)
s = d

(k)
s whenever [s] is not k − 1 or k, verifying (3). If s ∈ Bn and [s] = k,

then 0 � d
(k)
s � 5 and so d

(k−1)
s , which is d

(k)
s reduced by 3 if it is more than 2,

satisfies 0 � d
(k−1)
s � 2, verifying (1). If s ∈ Bn and [s] = k − 1, then 0 � d

(k)
s � 3,

and d
(k−1)
s is either d

(k)
s , d

(k)
s + 1, or d

(k)
s + 2, depending on the coordinates at sa and

at sb, verifying (2). If s /∈ Bn, then 0 � d
(n)
s = ds � 3. When constructing the d(k) the

coordinate at s can change at most once, when k = [s] + 1, and in this case can increase
only by 0, 1, or 2, depending on the coordinates at sa and sa, verifying (4). Finally, the
construction of d(k−1) shows that d(k−1) = d(k) − g · f ∗ for some g ∈ ZF. Hence

φ(d(k−1)) = π(d(k) · w� − g · f ∗ · w�) = φ(d(k)) − π(g) = φ(d(k)),

verifying (5) by induction.
By compactness of {0, 1, . . . , 5}F, the sequence {d(−n−1)} has a convergent subse-

quence, say with limit e. Then e ∈ {0, 1, 2}F by (1), and φ(e) = x by (5) and continuity
of φ.

5. Injectivity of the homoclinic map
Here we show that the homoclinic map φ : Y → Xf is one-to-one off a ν-null subset of Y .
The proof uses a modification of the percolation argument in [7, Proposition 5.1].

PROPOSITION 5.1. Let φ : (Y , σ , ν) → (Xf , αf , μf ) be the homoclinic map. Then there
is a σ -invariant subset E ⊂ Y with ν(E) = 0 and such that φ is one-to-one on Y \ E.

Proof. Let d ∈ Y . Suppose that there is an e ∈ Y such that e �= d and φ(e) = φ(d).
Then (e − d) · x� = 0, so that c := (e − d) · w� ∈ �∞(F, Z). Since −2 � e − d � 2
and w� is a probability distribution, it follows that −2 � c � 2. Furthermore, c · f ∗ =
(e − d) · w� · f ∗ = e − d , and so −2 � c · f ∗ � 2. This condition defines a shift of
finite type � ⊂ {−2, . . . , 2}F consisting of all c for which −2 � 3cs − csa − csb � 2 for
every s ∈ F. A direct calculation shows that there are 41 triples (k, l, m) ∈ {−2, . . . , 2}3

with −2 � 3k − l − m � 2, and these are the allowed patterns for (cs , csa , csb) that
define �.

First suppose that c ∈ � has cs = 2 for some s ∈ F. The only allowed pattern of
the form (2, l, m) is (2, 2, 2), showing that csa = 2 and csb = 2 as well. Repeating
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this argument shows that (csan , csan+1 , csanb) = (2, 2, 2) for every n � 0. Hence
(c · f ∗)san = 2 for every n � 0. Since 0 � e, d � 2 and esan − dsan = (c · f ∗)san = 2,
we conclude that dsan = 0 for every n � 0. Hence d is contained in a ν-null set E(s).
Letting E1 = ⋃

s∈F E(s), we see that ν(E1) = 0 and that if cs = 2 for some s ∈ F then
d ∈ E1.

The case cs = −2 for some s ∈ F is similar, resulting in another ν-null set E2.
Thus we are reduced to the case −1 � c � 1 and the corresponding shift of finite type

�′ ⊂ {−1, 0, 1}F defined by the same finite-type condition −2 � 3cs − csa − csb � 2
for every s ∈ F. Another direct calculation shows that there are 15 allowed patterns in
{−1, 0, 1}3, a subset of the 41 patterns above.

Let c ∈ �′ with cs = 1 for some s ∈ F. The only allowed patterns of the form
(1, l, m) are (1, 0, 1), (1, 1, 0), and (1, 1, 1). Fix n � 1. From c we construct a word
p = p1p2 . . . pn with pj = a or b inductively as follows. Denote p1p2 . . . pk by sk for
1 � k � n, and define s0 = 1, so that css0 = 1. Suppose that p1, . . . , pk have been found
so that cssk = 1. If csska = 1, then put pk+1 = a, otherwise put pk+1 = b.

This process guarantees that cssk = 1 for every 0 � k � n, but also provides more
information about other coordinates of c which we use to constrain the coordinates of d .

If pk+1 = b, then (cssk , csska , csskb) = (1, 0, 1), so that (c · f ∗)ssk = 2, forcing dssk = 0
as before.

If pk+1 = a, there are two cases for (cssk , csska , csskb), either (1, 1, 0) or (1, 1, 1). In
the first case, (c · f ∗)ssk = 2, and again dssk = 0. In the second case, (c · f ∗)ssk = 1, and
so (essk , dssk ) is either (1, 0) or (2, 1). But this also means that csskb = 1, and so esskb −
dsskb = (c · f ∗)sskb = 1 or 2, and in either case dsskb = 0 or 1. Hence (dssk , dsskb) can be
only one of five out of nine possible pairs, namely (0, 0), (0, 1), (0, 2), (1, 0), or (1, 1).
Observe that since [ssj ] = [s] + j and b �= a, it follows that sskb cannot occur among the
ssj for 0 � j � n.

Let m be the number of as appearing in p = p1p2 . . . pn. Then d is contained in a
subset of Y of measure (5/9)m(1/3)n−m, one factor of 5/9 for each a in p and one factor
of 1/3 for each b. Thus summing over all possible words p, we see that any d in this case
must lie in a set E(s,n) ⊂ Y with

ν(E(s,n)) �
n∑

m=0

(
n

m

)(
5
9

)m(
1
3

)n−m

=
(

8
9

)n

→ 0 as n → ∞. (5.1)

Since E(s,n+1) ⊂ E(s,n) for every n � 1, their intersection E(s) := ⋂∞
n=1 E(s,n) has

ν(E(s)) = 0. Hence E3 := ⋃
s∈F E(s) is also ν-null. This shows that if e − d = c · f ∗

and cs = 1 for some s ∈ F, then d ∈ E3. The case cs = −1 is exactly the same, resulting
in a further ν-null set E4.

Thus if d is not in the σ -invariant ν-null set
⋃4

j=1 Ej , then there is no e �= d with
φ(e) = φ(d), concluding the proof.

We remark that although φ is one-to-one ν-almost everywhere, there are subsets of Y of
large cardinality that map to a common point. For example, the equation φ(d) = 0 leads
to an uncountable shift of finite type in {0, 1, 2}F whose image under the map c �→ c · f ∗
is the set of solutions.
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6. Isomorphism
To show that the homoclinic map φ : (Y , σ , ν) → (Xf , αf , μf ) is a measurable iso-
morphism of F-actions, it only remains to show that φ∗ν = μf . The sofic entropy of
αf with respect to μf equals log 3 by [2, Theorem 1.2]. Furthermore, the sofic entropy
of αf with respect to φ∗ν is also log 3 by [1, Proposition 2.2] using the homoclinic
isomorphism with the full 3-shift. If we knew that Haar measure were the unique
αf -invariant measure of maximal entropy, we would be done. This is indeed the case
for expansive algebraic actions of amenable groups with completely positive entropy
[4, Theorem 8.6], but remains open for actions of general sofic groups, and in particular
for free groups [3, Question 7]. Bowen [3, Theorem 8.2] has constructed a cautionary
example of a transitive shift of finite type over F with (at least) two measures of maximal
entropy.

Thus a different proof that φ∗ν = μf is necessary. Our proof creates enough
group-like structure in Y to show that φ∗ν is invariant under translation by every
element in the homoclinic group �f . Then density of �f in Xf implies that φ∗ν is
a translation-invariant probability measure on Xf , and hence must coincide with Haar
measure μf .

PROPOSITION 6.1. Let δ ∈ Y be the element given by δ1F = 1 and δs = 0 for every
s �= 1F. Define a map τ : Y → Y by τ(d) = ρ(d + δ), where ρ denotes the reduction
process from the proof of Lemma 4.2. Then τ is well defined and one-to-one off a ν-null
set, τ∗ν = ν, and φ(τ(d)) = φ(d) for every d ∈ Y .

Proof. We decompose Y into a countable collection of disjoint cylinder sets whose union
has full measure, and such that τ has the required properties on each cylinder set. To do
this, we introduce a tree structure that reflects coordinates affected by the reduction process
applied to d + δ.

For notational simplicity, let A = a−1 and B = b−1. Denote the set of all words in
A and B (including 1) by N . If s = s1ss . . . sn ∈ N , an initial subword of s is one
of the form s1s2 . . . sk for some 0 � k � n, where by convention this product is 1
if k = 0. A tree is a finite subset of N that is closed under taking initial subwords.
If T is a tree, we define T = T ∪ T A ∪ T B, where T A = {tA : t ∈ T } and T B =
{tB : t ∈ T }, and ∂T = T \ T . For example, if T = {1, A, B, AB, BA, BB}, then T =
{1, A, AA, AB, ABA, ABB, B, BA, BAA, BAB, BBA, BBB} and ∂T = {AA, ABA,
ABB, BAA, BAB, BBA, BBB}.

Each tree corresponds to an ordered binary tree, and conversely. From basic
and well-known properties of such trees we know that |T | = 2|T | + 1 and that
|∂T | = |T | + 1.

Let T be a tree and ω ∈ {0, 1}∂T . Define the cylinder set ET, ω ⊂ Y by ET, ω f̂ :

ET, ω = {d ∈ Y : dt = 2 for every t ∈ T and ds = ωs for every s ∈ ∂T }.

By convention, we allow T = ∅ and in this case define T = {1�} and ∂T = {1�}. Observe
that if d ∈ ET, ω, then the reduction process resulting in ρ(d + δ) will halt after finitely
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many steps, alter only the coordinates of d within T , and have value

ρ(d + δ)s =

⎧⎪⎪⎨
⎪⎪⎩

0 if s ∈ T ,

ds + 1 if s ∈ ∂T ,

ds if s /∈ T .

Clearly τ is one-to-one on ET, ω, and ν(τ(ET, ω)) = ν(ET, ω) = (1/3)|T |.
The collection {ET, ω : T is a tree and ω ∈ {0, 1}∂T } is pairwise disjoint, and the images

of these sets under τ are also pairwise disjoint. It is known that

|{T : |T | = n}| = Cn = 1
n + 1

(
2n

n

)
,

where Cn is the nth Catalan number, and that
∞∑

n=0

Cnu
n = 2/(1 + √

1 − 4u). Hence

∑
T

∑
ω∈{0,1}∂T

ν(ET, ω) =
∑
T

2|∂T |
(

1
3

)|T |
=

∞∑
n=0

Cn2n+1
(

1
3

)2n+1

= 2
3

∞∑
n=0

Cn

(
2
9

)n

= 1,

proving that τ is well defined and one-to-one off a ν-null set, and that τ∗ν = ν. The
reduction process ρ does not affect the image under φ, and so φ(τ(d)) = φ(ρ(d + δ)) =
φ(d + δ) = φ(d) + x�.

Proof of Theorem 3.1. If τ : Y → Y is the map defined in Proposition 6.1, then for every
s ∈ F we have that (σs ◦ τ ◦ σ−1

s )(d) = ρ(d + s · δ). Since both σs and τ preserve ν, and
since

φ((σs ◦ τ ◦ σ−1
s )(d)) = φ(ρ(d + s · δ)) = φ(d + s · δ) = φ(d) + s · x�,

it follows that for every s ∈ F and every Borel set E ⊂ Xf we have that

(φ∗ν)(E + s · x�) = ν(φ−1(E + s · x�)) = ν((σs ◦ τ ◦ σ−1
s )(φ−1(E)))

= ν(φ−1E) = (φ∗ν)(E).

Hence φ∗ν is invariant under translation by all integral combinations of shifts of x�,
that is, under translation by all elements in �f . Then density of �f implies that φ∗ν
is translation-invariant, and so φ∗ν = μf .

7. Generalizations
In this section we generalize Theorem 3.1 to a larger class of acting groups and also to
more principal actions.

A countable group � is called indicable if there is a surjective homomorphism
[ · ] : � → Z. Many of our earlier arguments extend to indicable acting groups. An
exception is the combinatorial proof of Proposition 6.1, from which we deduced that
φ∗ν = μf . However, we can substitute an analytic alternative due to Hayes [10, Theorem
3.6] which is both more general and in addition establishes the surjectivity of the
homoclinic map without resorting to the reduction process in Lemma 4.2.
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We can also adapt our arguments to elements of the form M − a − b ∈ Z� where
M � 3. The main issue here is extending Proposition 5.1 to prove injectivity. One might
expect that the shift of finite type within {−M + 1, . . . , M − 1}� analogous to �′ ⊂
{−1, 0, 1}F would be significantly more complicated. However, it turns out that these
coincide for all M � 3, and so the argument can be applied almost verbatim.

THEOREM 7.1. Let � be a countable group equipped with a homomorphism [ · ] : � → Z.
Suppose that a and b are distinct elements of � with [a] = [b] = 1, and that M � 3 is
an integer. Let f = M − a − b ∈ Z�. Then the principal algebraic �-action (Xf , αf ) is
measurably isomorphic to the Bernoulli �-action on {0, 1, . . . , M − 1}� with the uniform
base probability measure.

We start by describing some routine extensions needed. As before, put f ∗ =
M − a−1 − b−1, and let w� = (f ∗)−1 ∈ �1(�, R). Then w�

s � 0 for every s ∈ �, and
‖w�‖1 = 1/(M − 2). Let x� = π(w�) ∈ T

� .
Let Y0 = {0, 1, . . . , M − 1} and ν0 be the uniform probability measure on Y0. The

Fourier transform of ν0 is given by ν̂0(ξ) = (1/M)
∑M−1

k=0 e2πikξ . Let Y = Y�
0 and ν =

ν⊗�
0 be product measure on Y . The homoclinic map φ : Y → Xf defined by φ(d) = d ·

x� = d · π(w�) is continuous.
Since f −1 ∈ �1(�, R), again by geometric series, it follows that g · f −1 ∈ �1(�, R) for

every g ∈ Z�. We abbreviate g · f −1 to g/f . We caution the reader that points of the form
π(g/f ) are not in Xf , but rather in Xf ∗ , which can be rather different.

The following is a special case of a result by Hayes [10, Theorem 3.6]. Although it is
relatively easy, for the convenience of the reader we give a direct proof.

PROPOSITION 7.2. With the above notation, let μ = φ∗ν, considered as a measure on T
� .

For every g ∈ Z� we have that

μ̂(g) =
∏
s∈�

ν̂0((g/f )s),

and this product is absolutely convergent.

Proof. By definition,

μ̂(g) =
∫
T�

e−2πi〈ξ ,g〉 dμ(ξ) =
∫

Y

e−2πi〈φ(d),g〉 dν(d).

In order to determine the exponent, note that (w�)∗ = 1/f and so

((d · w�) · g∗)1� =
∑
s∈�

ds

( ∑
tu=s−1

w�
t g∗

u

)

=
∑
s∈�

( ∑
u−1t−1=s

g
u−1(w

�)∗
t−1

)
ds =

∑
s∈�

(g/f )s ds .

Hence

exp[−2πi〈φ(d), g〉] = exp[−2πi((d · w�) · g∗)1� ]

= exp
[
−2πi

∑
s∈�

(g/f )s ds

]
=

∏
s∈�

exp[−2πi(g/f )s ds].
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Thus

μ̂(g) =
∫

Y

∏
s∈�

e−2πi(g/f )sds dν⊗�
0 (d)

=
∏
s∈�

∫
Y0

e−2πi(g/f )sds dν0(ds) =
∏
s∈�

ν̂0((g/f )s).

Since ν̂0 is smooth with ν̂0(0) = 1, and since g/f ∈ �1(�, R), the last product is clearly
absolutely convergent.

The preceding result is valid in great generality, for example for all polynomials with
a summable inverse. However, for our purposes we need more information about the
coordinates of g/f .

LEMMA 7.3. Under the hypotheses of Theorem 7.1, for every g ∈ Z� \ Z�f there is an
s ∈ � such that π((g/f )s) = k/M for some 1 � k � M − 1.

Proof. If g /∈ Z�f then π(g/f ) �= 0 in T
� . Since (1/f )s = 0 for every s ∈ � with

[s] < 0, it follows that {[s] : π((g/f ))s �= 0} is bounded below. Choose s0 that attains
this minimum. Since π(g/f ) · f = π((g/f ) · f ) = π(g) = 0, we obtain that

Mπ(g/f )s0 − π(g/f )s0a−1 − π(g/f )s0b−1 = 0.

But the second and third terms vanish by minimality of [s0], showing that π(g/f )s0 has
the required form.

Proof of Theorem 7.1. First observe that ν̂0(k/M) = 0 for 1 � k � M − 1, while
ν̂0|Z ≡ 1. Furthermore, μ̂(g) = ∏

s∈� ν̂0((g/f )s) for every g ∈ Z� by Proposition 7.2
and Lemma 7.3. If g ∈ Z�f , then g/f has integral coordinates and hence μ̂(g) = 1. If
g ∈ Z� \ Z�f , then there is an s for which π((g/f )s) = k/M for some 1 � k � M − 1.
Then ν̂0((g/f )s) = 0 and so μ̂(g) = 0. Hence μ̂ and μ̂f both equal the indicator function
of Z�f , and so μ = μf .

Since φ is continuous and φ∗ν = μf has full support, it follows that φ is surjective.
Finally, consider the proof for injectivity in Proposition 5.1. Suppose that e, d ∈ Y with

φ(e) = φ(d). Then e · w� − d · w� = c ∈ �∞(�, Z). But

‖e · w� − d · w�‖∞ � ‖e − d‖∞‖w�‖1 � M − 1
M − 2

.

If M � 4, then (M − 1)/(M − 2) < 2, and so −1 � c � 1. Furthermore, the allowed
blocks in defining the shift of finite type � over F are exactly those in the proof that remain
after the possibility that cs = 2 or cs = −2 have been dealt with. Explicitly, {(k, l, m) ∈
{−1, 0, 1}3 : −M + 1 � 3k − l − m � M − 1} is the same set of 15 patterns. The proof
now proceeds as before, with the bound of (8/9)n replaced by [(2M + 2)/M2]n.

8. Remarks and questions
Suppose that � is a countable group and that [ · ] : � → Z is a homomorphism. Let f ∈
Z� have the form f = M − ∑

s∈I fs s, where both [s] � 1 and fs > 0 hold for every

https://doi.org/10.1017/etds.2021.56 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.56


New examples of Bernoulli algebraic actions 2933

s ∈ I , and where M >
∑

s∈I fs . Using the same notation as in §7, we see that w� =
(f ∗)−1 ∈ �1(�, R) defines the continuous homoclinic map φ : Y → Xf . Proposition 7.2
and Lemma 7.3 easily extend to show that φ is surjective and maps the Bernoulli measure
ν̂⊗�

0 to Haar measure μf . What is not obvious is whether φ is essentially one-to-one,
although this seems to us likely.

CONJECTURE 8.1. Let � be a countable group and [ · ] : � → Z be a homomorphism.
Suppose that f = M − ∑

s∈I fs s, where M >
∑

s∈I fs and [s] � 1 and fs > 0 for every
s ∈ I . Then the homoclinic map φ : Y → Xf is a measurable isomorphism.

The condition that the large coefficient of f occurs at an extreme coordinate with
respect to [ · ] is certainly necessary. Take, for example, � = Z = 〈a〉 and f = 3 − a −
a−1. Then αf has entropy log[(3 + √

5)/2] < log 3. Here Lemma 7.3 breaks down, since
the coordinates of 1/f are irrational. Indeed, it is even possible for these coordinates to be
transcendental [15, Example 5.8]. Einsiedler and the second author constructed an explicit
sofic shift and a continuous map from it to Xf that is essentially one-to-one [7, Example
4.1]. The extent to which algebraic actions have such “good” symbolic covers has been
extensively studied for � = Z

d , and now presents new possibilities for general �.
As observed in [7, Corollary 5.1] in the case � = Z

2, by varying [ · ] we can conclude
that the four elements 3 − a±1 − b±1 each give an algebraic �-action isomorphic to the
same Bernoulli �-action, and hence are isomorphic to each other. However, changing the
coefficient signs can seriously impede our analysis. For instance, using the notation in
Conjecture 8.1, does f = 3 + a + b define an algebraic �-action that is Bernoulli?

An element f ∈ Z� is lopsided if there is an s0 ∈ � such that |fs0 | >
∑

s �=s0
|fs |. For

an arbitrary countable group �, is every principal algebraic �-action defined by a lopsided
polynomial measurably isomorphic to a Bernoulli �-action? Hayes [11] showed that every
such action is a factor of a Bernoulli action under some mild orderability assumptions on
�. It follows that if � is amenable, then the action itself is Bernoulli by the results of
Ornstein and Weiss [20]. However, to our knowledge this remains open for non-amenable
groups, and even for free groups.

Next, consider the case � = F and f = 2 − a − b. If we attempt to mimic earlier
constructions, we immediately hit a roadblock that although 1/f ∗ is well defined, it is
no longer in �1(F, R), and so the convolution operator used to define the homoclinic map
has no clear meaning. However, here 1/f ∗ ∈ �2(F, R), and recent work of Hayes [10]
shows that convolution can be extended to square summable elements, using convergence
in measure. As a consequence, he obtains a well-defined measurable homoclinic map
φ : {0, 1}F → Xf , and his more general version of Proposition 7.2 shows that φ maps
the Bernoulli measure to Haar measure. However, this leaves open the enticing problem of
whether this explicit map is essentially one-to-one.

Finally, let � = F and f = 1 + a + b. Historically, it was the careful computation of
the entropy of the commutative version of this example that was the key to unlocking
the connection between entropy for algebraic actions and Mahler measure [17]. There
are tantalizing clues that the sofic entropy of αf not only is positive, but also has the
precise value log(3/

√
2). Essentially nothing is known about the dynamical properties of
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αf . Is it mixing? Does it have completely positive entropy (with respect to every sofic
approximation to F)? Is it measurably isomorphic to a Bernoulli F-action?
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