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0. Introduction. The aim of this paper is to give certain conditions characterizing
ruled affine surfaces in terms of the Blaschke structure (V, h,S) induced on a surface
(M,f) in R3. The investigation of affine ruled surfaces was started by W. Blaschke in the
beginning of our century (see [1]). The description of affine ruled surfaces can be also
found in the book [11], [3] and [7]. Ruled extremal surfaces are described in [9]. We show
in the present paper that a shape operator 5 is a Codazzi tensor with respect to the
Levi-Civita connection V of affine metric h if and only if (M,f) is an affine sphere or a
ruled surface. Affine surfaces with VS = 0 are described in [2] (see also [4]). We also show
that a surface which is not an affine sphere is ruled iff im(S - HI) = ker(5 - HI) and
ket(S - HI) c ker dH. Finally we prove that an affine surface with indefinite affine metric
is a ruled affine sphere if and only if the difference tensor K is a Codazzi tensor with
respect to V.

1. Preliminaries. For the basic facts concerning affine differential geometry we refer
to [10]. Let (V, h,S) be the Blaschke structure induced on an affine surface (M,f) in R3

and V be the Levi-Civita connection for h. Then V = V + K where K is a difference tensor.
The Blaschke structure induced on a surface (A/,/) in R3 is characterized by the
conditions

(A) tr,K(.,.) = 0;

(G) R(X,Y)Z = h(Y,Z)SX -h(X,Z)SY\

(Gl) R(X, Y)Z = H(h(Y, Z)X - h{X, Z)Y) + VK(X, Y, Z) - VK(Y, X, Z);

(Cl) Vh(X, Y, Z) = WJ(Y, X, Z) = -2h(K(X, Y), Z);

(C2) VS(X, Y) - VS(Y, X) = K(SX, Y) - K(X, 57);

(R) h(SX,Y) = h(Y,SX);

(K) [Kx, KY]Z = -J(h(Y, Z)X - h(X, Z)Y),

where by J = \h(K,K) we denote the Fubini-Pick invariant. The number H = \irS is
called an affine mean curvature of the affine surface (M,f) with induced structure
(V,/i,5).

2. Surfaces in R3 with symmetric VS. We begin with the following lemma.

LEMMA 1. Let (V, h,S) be an induced Blaschke structure with symmetric VS. Then
[Kx,S] = Kx°S-S°Kx = 0 for every X e TM and S = HI or J = 0, which means that
(M,f) is (locally) an affine sphere or a ruled surface.

Proof. From the Codazzi equation (C2) we get

K(SX,Y) = K(X,SY). (1)
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Hence SK(X, Y) = K(SX, Y) and VS = VS (which follows from [4, p. 181]). Consequently

[Kx,S} = 0 (2)

for every X e TM. Equation (2) implies

S°[Kx,Ky)=[KX,Ky}°S (3)

for every X,Y e TM. Using (K) we obtain

-JS(h(Y, Z)X -h(X, Z)Y) = -J(h(SY, Z)X - h(SX, Z)Y). (4)

Hence 7 = 0 or

h(Y, Z)SX - h(X, Z)SY = h(SY, Z)X - h(SX, Z)Y. (5)

Taking the trace of (5) with respect to Y we get h{SX - (trS)A\ Z) = -h(SX, Z) which
means 5 = HI. Let us recall that an affine surface with 7 = 0 is a quadratic or a ruled
surface (see [11], [7]). This completes the proof. •

Our next lemma characterizes ruled surfaces that are not spheres.

LEMMA 2. Let (V, h,S) be the induced Blaschke structure on a surface (A/,/) such
that

ker(5 - HI) = im(S - HI) c ker dH. (*)

Then (M,f) is ruled.

Proof. From (*) it follows that there exists a local frame such that (see [12]):

SE, = HEU SE2 = HE2 + Eu (6)

h(Eh E,) = 0, h(Eu E2) = £ , £ E K 1}. (7)

By (7) it is clear that VxEt \\ £,, Hence, (6) and (*) imply:

VS(E2, £,) = (E2H)Ej - (5 - W)(V£2£.) = (£2//)£,; (8)

V5(£,, E2) = (E,H)E2 - (5 - HI)(VE]E2) + V£,£,

= -(5-7/ / )(V£ ]£2) + V£l£1. (9)

From the Codazzi equation (C2) we get

K(EUSE2) - K(SEUE2) = K(EU £,) || £, (10)

and K(EuEl) = /?£,. By (7) and (A) we have /((E,, £2) = 0 and consequently 0 =
Vh(EuEuE2) = -2pe. Hence /3 = 0. It follows that KEl = 0 and in view of (K), 7 = 0
which means that (M,/) is ruled since, from (*), S^Hl. D

In Lemma 3 we show that a ruled surface which is not a sphere satisfies condition (*).

LEMMA 3. Let (M,f) be a surface with 7 = 0 and ST^HI. Then {M,f) is ruled,
condition {*) is satisfied, and S is a Codazzi tensor with respect to V.
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Proof. Since / = 0 we have a local frame (see [5]) such that

h(Eh E,) = 0,h (£,,£2) = 1, (11)

and

KEl = 0,K(E2,E2) = yEu (12)

where y is a smooth function and consequently, in view of (Gl), we also have

R(El,E2)E1 = SEl = HEu (13)

„ E2)E2 = SE2 = HE2 + (3<u(£,) - £, y)£,, (14)

where VxEx = (o[X)Ev From (12), (13), (14) it follows that [S,KX] = O for every
X E TM. Hence VS is symmetric, £, H = 0 and condition (*) holds. •

We have now proved:

THEOREM. For an affine surface (A/,/) with the induced Blaschke structure (V,h,S)
the following conditions are equivalent:

(a) VS is a symmetric tensor;
(b) VS = VS;
(c) [Kx, S] = 0 for every X <=TM;
(d) S = HIorJ = 0;
(e) im(5 - ///) = ker(5 - ///) c ker dH or S = ///;
(f) (M,f) is ruled or is an affine sphere.

Proof. These are straightforward consequences of the above lemmas. •

REMARK 1. It is easy to show that an affine surface (A/,/) with induced structure
(V,h,S) is protectively flat if and only if

VS(X, Y) - VS(Y, X) = (XH)Y - (YH)X.

Hence as an application of our result we get:

COROLLARY 1. The only projectively flat affine surfaces with constant affine mean
curvature are affine spheres and ruled surfaces with constant curvature. A ruled surface is
projectively flat if and only if its affine mean curvature is constant.

I obtain the last part of this Corollary by different methods in [6].
We finish by characterizing affine spheres with vanishing Fubini-Pick invariant.

PROPOSITION. Let (A/,/) be an affine surface with induced Blaschke structure. Then
(A/,/) is a sphere with vanishing Fubini-Pick invariant if and only ifVK is a symmetric
tensor.

Proof. As V = V + K, we obtain

VK(X, Y, Z) - VK(Y, X, Z) = VK(X, Y, Z) - VK(Y, X, Z) - 2[KX, KY]Z. (15)

As [Kx, KY]Z = -J(h(Y, Z)X -h(X, Z)Y), from (Gl) we get

R(X, Y)Z = VK(X, Y, Z) - VK(Y, X, Z) + (H + 2J){h{Y, Z)X - h(X, Z)Y). (16)
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If VK is symmetric then (16) yields (on using formula SX = trhR(X,.).)

SX = (H + 2J)X. (17)

From (17) it follows / = 0 and S = Hid. Now if (M,f) is an affine sphere with 7 = 0 then
from (15) and (Gl) it is clear that VK is a symmetric tensor.

COROLLARY 2. An affine surface with an indefinite induced Blaschke metric is a ruled
affine sphere if and only if K is a Codazzi tensor relative to the induced Blaschke
connection V.

REMARK 2. Let us note that VK = 0 if and only if VK = 0 and 7 = 0; hence an affine
surface (M,f) with VK = 0 is a Cayley surface or a quadric (see [8]).
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