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SUMMARY

The daily progression of the 2006 (January–June) Nigerian avian influenza (AI H5N1) epidemic

was assessed in relation to both spatial variables and the generation interval of the invading virus.

Proximity to the highway network appeared to promote epidemic dispersal : from the first

AI generation interval onwards >20% of all cases were located at <5 km from the nearest

major road. Fifty-seven per cent of all cases were located f31 km from three highway

intersections. Findings suggest that the spatial features of emerging infections could be key in

their control. When the spatial location of a transmission factor is well known, such as that of the

highway network, and a substantial percentage of cases (e.g. >20%) are near that factor, early

interventions focusing on transmission factors, such as road blocks that prevent poultry trade,

may be more efficacious than interventions applied only to the susceptible population.

Key words: Avian flu, emerging infections, geographical information systems, surveillance.

Historically, epidemiological control policy has

focused on the population of hosts more often than

it has addressed transmission factors. Yet, factors like

the highway network may be important to epidemic

dispersal. For instance, the prevalence of some human

infectious diseases may be higher in municipalities

crossed by or next to major roads than in inhabited

territories not linked by interstate highways [1]. In

viral diseases affecting animals, proximity to inter-

state highways and/or location in areas of high road

density may promote epidemic dispersal [2]. These

concepts were considered in the analysis of the daily

progression of the 2006 Nigerian highly pathogenic

avian influenza (HPAI) virus epidemic (subtype

H5N1), where spatial and bio-temporal factors were

explored. The spatial component analysed was the
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Fig. 1. Spatial-temporal progression of the 2006 Nigerian avian influenza virus (subtype H5N1) epidemic. Spatial location of
weekly cases (infected farms) in relation to (state) poultry population density (a), road density (b), and human population

density (c). Note that some farms located at a short distance are represented by a single point. (d) Median distance between
pairs of infected farms. Box plots describe the median distance (central horizontal line) as well as 25th and 75th percentiles
(whiskers). Asterisks denote observations above the 75th percentile. Note that no calculations were made at epidemic weeks 2

and 3 because only one case was reported in each of these weeks. (e) Percentage of cases (n=113 farms, January–June 2006)
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distance from each infected farm to the nearest major

road (DNR), major road intersection (DNI), or other

infected farms. The bio-temporal component investi-

gatedwas the generation interval (transmissionperiod)

of the pathogenic agent [3], which includes but exceeds

the viral replication period. While the replication

period (for HPAI, estimated as y2 days) refers to a

single host [4], theHPAI generation interval (estimated

as y10 days) denotes the time period between the

infection reports for two individuals, located in dif-

ferent farms or flocks, when one of these individuals is

the primary case and the other is the secondary case

[5, 6]. Because the HPAI virus may survive outside the

host (e.g. in faeces, water [7]), its generation interval is

usually longer than its replication period. The purpose

of this study was to utilize the data collected in the

2006 Nigerian HPAI H5N1 epidemic in order to gen-

erate hypotheses on transmission factors associated

with emerging infections of rapid dissemination.

The unit of study was the group of Nigerian cases

(infected poultry farms, expressed as counts, percent-

ages, or case density/km2). Any farm reporting at

least one infected animal was defined as a case. Each

case was characterized by its (a) latitude and longi-

tude, (b) reporting time, and (c) Nigerian state of

affiliation. Additional variables were (d) state road

density (km of roads per km2 of state area), (e) state

human population density (inhabitants/km2), and (f)

state poultry population density (birds/km2), as well as

the Euclidean distance (km) from the centroid of each

infected farm to (g) the nearest major road (DNR), (h)

the nearest major road intersection (DNI), or (i) any

other infected farm. Cases were analysed as counts or

percentages of (a) all cases (located at specified DNR

or DNI), (b) new weekly cases, or (c) in relation to

10-day periods (assumed to reflect the HPAI H5N1

inter-farm generation interval).

Both the case geo-temporal data (113 poultry farms

reported as infected by HPAI H5N1 between January

and June, 2006) and the human and poultry popu-

lation data of all Nigerian states were provided by

the National Veterinary Research Institute of Nigeria

[8, 9]. The Nigerian major road network map was

derived from country situational base maps produced

by the World Health Organization [10]. The estimated

HPAI generation interval considered inter-farm, not

intra-farm, infections [5, 6].

Farm-related distances were calculated using

Geographical Information Systems (GIS, ArcView

GIS 3.3 and ArcGIS Desktop 9.0, both from ESRI,

USA). To generate the DNR, the GIS NEAR command

identified the road segment nearest to each infected

farm, the latitude and longitude values of the nearest

point on this road segment, and the distance to the

nearest point. These attributes were added to the in-

fected farm layer. To calculate the DNI, a GIS point

layer of all road intersections was created. Using the

POINTDISTANCE command, a table was generated which

contained (a) farm identifier, (b) nearest intersection

identifier, and (c) distance. The same procedure cal-

culated the distance between every pair of infected

farms at a particular time unit ; for instance, if 10 farms

reported infections at a certain week, the median inter-

farm distance at that time was that of 45 farm pairs

(10r9/2). To empirically determine (a) whether dis-

ease clustering occurred, (b) if so, whether clustering

was associated with major road intersections, and (c)

if so, the critical radius of clusters (the smallest radius

of circles that, earlier and over time, contained the

highest percentage of weekly cases), using intersection

identifiers, circles of various (arbitrarily chosen) radii

were created, which were centred at road intersections

(‘nodes’). Counts or percentages of weekly cases fall-

ing inside nodes were compared to the values found

outside nodes. Density layers (road, human popu-

lation, and poultry population) were produced by in-

tersecting the variable of interest (e.g. ‘ road network’)

with the appropriate spatial scale (e.g. ‘states ’).

Relationships between (state) density-related vari-

ables were explored with regression analysis. Median

weekly inter-farm distances among infected farms

were calculated with the Mann–Whitney test. Data

were processed with Minitab 15 (Minitab Inc., USA).

Relationships between (state) case density/km2 and

other (state) variables were explored (Fig. 1a–c).

Neither poultry density nor human population

vs. distance to the nearest road (DNR). (f ) Number of cases per epidemic day. (g) Cases within and outside 31-km radius
circles (nodes), centred at major road intersections. (h) Percentage of new weekly cases vs. distance to the nearest road

intersection (DNI), reported within 10-, 22-, 31-, and 34-km nodes. The smallest radius yielding the highest percentage of new
cases earlier and for longer was f31 km DNI. The difference in percentage of cases found between f21 and f31 km DNI
was substantial (otwofold at f31 km DNI than at f21 km DNI); in contrast, the additional percentage of cases found at
f34 km than at f31 km DNI was negligible. (i) Count-based, composite (epidemic-temporal-spatial) number of cases per

generation interval (10 days each) and per DNR class.
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density predicted case density. While road density

approached significance as a predictor of case density

(P=0.06), its validity was questionable because re-

sults were highly influenced by the data from one

state, likely to be an outlier (not shown).

The median Euclidean distance between pairs of

newly infected farms per week was higher at the end

of the period under study (weeks 15–24, median:

785.1 km, n=190 farm pairs) than before week 15

(median: 233.4 km, n=1048 farm pairs, Fig. 1d), a

statistically significant difference as determined by the

Mann–Whitney test (P<0.001). However, because in

emerging infections epidemic data cannot be con-

sidered to be independent random samples, the bio-

logical significance of this calculation is unknown.

The data collected on the infected farm distance to

the nearest road (DNR) supported the analysis of four

spatial classes: <5 km, 5 to <10 km, 10–15 km, and

>15 km DNR. Farms at a <5 km DNR accounted

for 38% of all cases (43/113, Fig. 1e, Table 1). When

the number of cases per epidemic day was plotted, sev-

eral gaps before the epidemic peak (day 33) indicated

that even in the period of greater case growth, cases

were not always reported on a daily basis (Fig. 1f ).

The median DNI was 24.2 km in the first week.

Farms located ato100 kmDNI only became infected

after epidemic week 4. Case clustering was observed:

57% of all cases (65/113) were within 31 km of three

road intersections (Fig. 1g). From the second

epidemic week onwards, cases at f10 km DNI

accounted for a substantial percentage of new weekly

cases (y20%, Fig. 1h).

When, instead of days or weeks, epidemic data were

analysed with a double descriptor [number of cases

per estimated HPAI generation interval, per spatial

(DNR) class], an exponential growth phase was ob-

served between the second and fourth generation in-

tervals with cases reported in each of the generation

intervals until the fourteenth generation interval of

the epidemic (Fig. 1 i). Two epidemic phases were

observed: (1) the one comprising first generation in-

terval, and (2) the phase that included the remaining

intervals (Fig. 1 i). While both <10 km DNR and

>15 km DNR cases were observed in the first gener-

ation interval, <10 km DNR cases predominated in

the second interval. Cases located at <5 km DNR

represented >20% of all cases in each of the first

eight generation intervals (Fig. 1 i). By epidemic day 4

Table 1. Case (infected farm) Euclidean distance to the nearest road (DNR) by epidemic day (n=113 farms)

Case DNR
(km)

Epidemic
day

Case DNR
(km)

Epidemic
day

Case DNR
(km)

Epidemic
day

Case DNR
(km)

Epidemic
day

Case DNR
(km)

Epidemic
day

4.23 1 78.38 32 30.78 37 8.30 52 0.23 94

29.32 1 48.49 33 1.07 38 1.83 53 4.23 101
1.59 1 14.30 33 0.81 38 19.30 54 1.41 101
13.12 3 5.47 33 3.23 38 12.93 54 30.78 101

70.26 4 1.96 33 2.37 38 9.98 55 27.10 107
2.37 11 47.13 33 48.57 39 0.46 57 0.73 110
8.47 18 12.48 33 8.47 40 42.75 59 0.73 114
19.34 23 12.48 33 0.81 40 15.57 60 36.35 117

10.60 24 0.81 33 7.94 41 8.47 63 27.10 119
28.68 24 8.30 33 5.58 41 0.23 67 0.73 121
9.98 25 46.46 33 1.47 42 36.35 68 9.12 124

2.61 25 25.38 33 8.47 42 4.23 74 50.79 125
0.81 25 2.37 33 0.81 42 0.12 76 11.75 142
5.44 27 8.37 33 17.98 43 11.41 78 0.05 142

31.80 27 22.56 34 28.02 43 2.60 78 6.59 143
33.83 28 67.37 36 8.47 44 1.10 78 15.90 143
8.62 29 9.98 36 28.68 45 8.37 79 2.29 144
0.55 29 2.32 36 95.62 46 30.78 80 0.05 147

33.83 29 8.47 36 9.98 46 36.35 81 11.75 148
12.67 31 0.811 36 2.37 47 8.47 88 45.27 161
4.23 31 2.94 37 12.67 48 33.83 89 0.09 162

5.84 31 1.33 37 0.73 51 0.73 91
2.61 31 11.92 37 1.83 52 33.83 91
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(generation interval I), cases at <5 km DNR rep-

resented 40% of all infected farms.

These data support the hypothesis that the Nigerian

major highway network promoted epidemic spread.

In the first half of 2006, HPAI H5N1 cases could be

categorized into two major spatial classes: (1) the

predominant class, which included cases close to roads,

intersections, or other infected farms, and (2) a sec-

ondary class, including cases located at>15 kmDNR,

>31 km DNI, or long inter-farm distances. Because

not all road intersections were equally associated with

cases and >20% of cases reported at any generation

interval were at <5 km DNR, both a non-random

(clustered) case distribution hypothesis and Pareto

or power law distributions (the ‘20:80 rule ’) were

supported by the data [11]. The ‘20:80’ rule refers

to a high percentage of epidemic size (e.g. y80%)

associated with a few (e.g. y20%) highly influential

cases.

While the early cases were reported in the centre

and in the periphery of Nigeria (near Lagos), only

those near three major highway intersections (those in

the centre of the country) were predominantly associ-

ated with viral dispersal. The data did not appear to

support the hypothesis that migratory birds or wind

might have disseminated H5N1 within Nigeria. In

contrast, anthropogenic-mediated dispersal was likely.

Possible behaviours that may spread HPAI H5N1

include subsistence agricultural practices, such as live

bird markets [12] and early re-population of infected

premises with susceptible birds.

These hypotheses are unlikely to be contradicted by

non-reporting or delayed reporting. Because (1) the

unit of the outcome was not the number of infected

birds but the number of farms reporting infections,

and (2) HPAI is associated with high mortality [8, 9],

the magnitude of non-reporting in this epidemic could

not be as high as that of a subclinical disease or an

epidemic where the unit of the measured outcome is

the individual animal.

The use of temporal units expressed as (inter-farm)

HPAI generation intervals appeared to prevent false-

negative results. If expressed in days, the epidemic

might have seemed to cease when no new cases were

reported in three consecutive days – the time equiva-

lent to a replication period, as observed several times

before the epidemic peak (Fig. 1f). In contrast, when

measured as generation intervals, no gaps were ob-

served before the epidemic peak (Fig. 1 i). Caution is

warranted in relation to the generation interval con-

sidered here: the estimates used were based on studies

conducted in other countries where other HPAI sub-

types (not H5N1) were isolated [5, 6].

Within three epidemic weeks, the Nigerian scenario

showed infected farms separated by Euclidian dis-

tances >900 km. Later, pairs of infected farms

were up to 1500 km apart. This situation did not

support the hypothesis that post-outbreak policies

limited to the susceptible population (e.g. vaccination,

de-population, quarantine [3]) would be effective. In-

stead, this epidemic dataset provided an opportunity

to revise two aspects of control policy traditions: (1)

the time when control measures are chosen as well as

the focus of such measures, and (2) the feasibility

and information value of assessments that compare

infected and susceptible populations.

In emerging infectious diseases, decisions should

be made as early as possible [13]. Even if an early

decision to use an inexpensive control measure is

less certain than a decision that requires waiting for

definitive data, the early intervention may produce

much larger benefits and may therefore be the better

choice. However, control measures have classically

been based on the ratio between the number of sec-

ondary cases and those generated in the primary

generation interval [3, 4]. The calculation of this

ratio requires a waiting time of at least two gener-

ation intervals (y20 days in this scenario). At such

a late time in the epidemic progression, measures

focusing on susceptible hosts necessarily become

costly, complex, involve a large geographical scale,

and may require a lengthy period to induce effects.

If, in addition to control policies that focus on

the susceptible host, early dissemination factors

are emphasized, more beneficial results might be

achieved.

In emerging infectious diseases, all cases, except

primary cases, are dependent, i.e. they are generated

from some of the primary cases [3, 14]. In this

scenario, not all secondary cases showed the spatial

features revealed by all primary cases. Only <10 km

DNR primary cases seemed to trigger the epidemic

spread: they predominated in 12/13 consecutive gen-

eration cycles (Fig. 1 i). Epidemic cases do not have

identical weight either: secondary cases generate more

cases than tertiary ones, tertiary cases create more

cases than quaternary ones, and the last cases – if the

epidemic stops – produce none.

Because comparisons between infected and sus-

ceptible populations are sensitive to statistical power

issues and emerging diseases are typically character-

ized by only a very few cases at the onset, such
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comparisons may be unfeasible in scenarios like the

one described. Even if feasible, comparisons between

infected and non-infected individuals may be incon-

sequential : if the putative dispersal mechanism as-

sociated with cases differs in magnitude in relation

to susceptible individuals, e.g. if the DNR of cases

measured at an early epidemic time is shorter than the

DNR of susceptible individuals, that difference is

not evidence that later changes (in any direction) may

occur. If, instead, no difference in DNR is found be-

tween infected and susceptible individuals, such a

finding would support an urgent intervention: it

would suggest that the mechanism already shown

to promote epidemic spread could soon reach in-

dividuals still not affected. These considerations,

together with the focus on early decision-making,

support the view that comparisons between infected

and susceptible populations may not apply to the

early phase of emerging infections. Instead, in early

phases of infectious epidemics, the priority, as John

Snow showed a century and a half ago, may be the

identification of plausible transmission factors

associated with cases [15].

A simple assessment of the association between the

percentage of cases and a transmission factor, if con-

ducted during the first generation interval of the in-

vading microbe, may improve decision-making. In the

situation under analysis, such a decision could have

been made at epidemic day 4 – one fifth of the time

required by classical models, i.e. two generation in-

tervals or 20 epidemic days. Because the percentage of

cases located a short distance from the nearest road

was known to be o20% before the first generation

interval concluded, a dispersal mechanism could have

been postulated: epidemic spread mediated by roads.

This data-driven proposition could have supported

the implementation of control measures at specific

spatial points, such as road blocks that prevent

poultry trade.

If the actual spread had been mediated by other

means, the cost of such decision would have been

negligible. However, if correct, this decision could

have stopped the epidemic spread because no sec-

ondary cases could occur. If (a) the percentage of

primary cases associated with a factor likely to act as

a dispersal mechanism is >20% [11], (b) the spatial

structure of this factor is known and measurable (such

as the location of major roads), and (c) the spatial

location of infected sites is also known (if the disease

is clinically observable, such as HPAI H5N1), then (d)

early decisions can be produced.

In emerging infections, if rapid dissemination oc-

curs, a pre-existing contact network may be sus-

pected. However, connectivity alone may not suffice

to explain epidemic dissemination. If connectivity is

too high (if space is completely occupied by a network

of highways or rivers), increased connectivity can only

occur at the expense of population density. Hence, the

interaction that involves connectivity, infected and

susceptible subpopulations is unlikely to be linear :

while epidemic diffusion requires a minimum of con-

nectivity, maximal epidemic diffusion may decrease, if

not cease, when increases in connectivity result in de-

creases of population density (e.g. a road density so

high that no land is available for housing or farms).

Hence, a practical application of these lessons is the

anticipatory generation of matrices that include

spatially explicit data on 100% of the susceptible

population. Such data may identify the specific net-

work nodes, e.g. highway intersections, that reveal not

only high connectivity values (e.g. shorter distances

between pairs of nodes), but also high demographic

values (e.g. high farm density). When such data are

available before emerging epidemics occur, then they

may help to allocate resources earlier, at the nodes

suspected to be critical. The effectiveness of control

measures meant to disrupt pre-existing networks can

only be effective if implemented earlier, not later.

Such early decisions could also increase the effective-

ness of later measures, reducing the cost or coverage

of mass vaccination, isolation, and other measures

focusing on the host.

These considerations may be of interest for policy-

makers of countries not yet affected by HPAI H5N1

as well as those of countries susceptible to emerging

infectious diseases. Information on variables such as

farm location, inter-farm distance, and the DNR and

DNI of each farm, if available before an emerging

infection occurs, could inform early implementation

of control policies.
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