UNDIRECTED GRAPHS REALIZABLE AS GRAPHS OF MODULAR LATTICES

LAURENCE R. ALVAREZ

1. Introduction. If (L, \geqslant) is a lattice or partial order we may think of its Hesse diagram as a directed graph, G, containing the single edge $E(c, d)$ if and only if c covers d in (L, \geqslant). This graph we shall call the graph of (L, \geqslant). Strictly speaking it is the basis graph of (L, \geqslant) with the loops at each vertex removed; see (3, p. 170).

We shall say that an undirected graph G_{u} can be realized as the graph of a (modular) (distributive) lattice if and only if there is some (modular) (distributive) lattice whose graph has G_{u} as its associated undirected graph. The main objective of this paper is to characterize those undirected graphs which can be realized as the graph of a modular lattice of finite length and to extend the result to distributive lattices of finite length. This is accomplished in Theorems 2 and 3.

In what follows G_{u} will always be an undirected graph, usually the associated undirected graph of the directed graph G. We shall use $u(c, d)[p(c, d)]$ and $E(c, d)\left[P(c, d)=P\left(c, e_{1}, e_{2}, \ldots, e_{n}, d\right)\right]$ to denote respectively undirected and directed edges [arcs] from c to $d . V(G)\left[V\left(G_{u}\right)\right]$ will be the vertex set of the graph $G\left[G_{u}\right]$.
2. Necessity. Throughout this section (L, \geqslant) will be a modular lattice of finite length, G its graph, and G_{u} the associated undirected graph of G. The maximal chains in (L, \geqslant) correspond in a $1-1$ fashion to the directed arcs of G, and to each of these there corresponds an undirected arc in G_{u}. If $c, d \in L$, $c \geqslant \mathrm{~d}$, there are two ways of thinking of the distance from c to d. One is to consider the distance from c to d as the length of a shortest maximal chain from c to d in (L, \geqslant) or equivalently the length of a shortest directed arc from c to d in G. This we shall call the directed distance from c to d, and we shall denote it by $\Delta(c, d)$. The other way is to consider the distance from c to d as the length of a shortest undirected arc from c to d in G_{u}. This we shall call the undirected distance from c to d, and we shall denote it by $\delta(c, d)$.

We note that: (1) since (L, \geqslant) is a modular lattice of finite length, $\Delta(c, d)$ is the length of any maximal chain or directed arc from c to d; (2) a simple induction argument shows that $\Delta(c, d)=\delta(c, d)$; and (3) G_{u} is connected and of finite diameter, so $\delta(c, d)$ is defined for all $c, d \in V\left(G_{u}\right)$.

[^0]We now proceed with a succession of lemmas leading to the conclusion that G_{u} satisfies the following three conditions:
I. G_{u} is a connected graph of finite diameter which contains no loops, multiple edges, or circuits of odd length.
II. There exist two vertices, a_{1} and a_{2} in $V\left(G_{u}\right)$ such that $\operatorname{dia}\left(G_{u}\right)=\delta\left(a_{1}, a_{2}\right)$ and if $u(c, d)$ and $u(c, e)$ are distinct edges of G_{u}, and $\delta\left(a_{i}, e\right)=\delta\left(a_{i}, d\right)=$ $\delta\left(a_{i}, c\right)+1$, then there is a unique $f_{i} \in V\left(G_{u}\right)$ such that $\delta\left(a_{i}, f_{i}\right)=\delta\left(a_{i}, c\right)+2$ and $u\left(f_{i}, e\right)$ and $u\left(f_{i}, d\right) \in G_{u} ; i=1,2$.
III. If the subgraph, F_{u}, of the edges of a cube formed by removing one vertex and its incident edges is a subgraph of G_{u}, then the whole cube must be a subgraph of G_{u}.

Lemma 1. G_{u} is a connected graph of finite diameter which contains no loops or multiple edges.

The proof follows directly from the definition of G_{u}.
Lemma 2. A connected undirected graph H_{u} contains an odd circuit if and only if given any $h \in V\left(H_{u}\right)$ there exists an edge $u\left(h_{1}, h_{2}\right) \in H_{u}$ such that $\delta\left(h, h_{1}\right)=$ $\delta\left(h, h_{2}\right)$.

Proof. Assume H_{u} contains an odd circuit and let $h \in V\left(H_{u}\right)$ be arbitrary. Let $p\left(h_{0}, h_{1}, \ldots, h_{n}, h_{0}\right)$ be any odd circuit of H_{u}, h_{0} chosen such that $\delta\left(h, h_{0}\right) \leqslant \delta\left(h, h_{j}\right)$ for all $j=0,1, \ldots, n$. Either $\delta\left(h, h_{0}\right)=\delta\left(h, h_{n}\right)$ or there is some $j=0,1, \ldots, n-1$ such that $\delta\left(h, h_{j}\right)=\delta\left(h, h_{j+1}\right)$, for otherwise
$\delta\left(h, h_{0}\right)=\delta\left(h, h_{1}\right) \pm 1=\delta\left(h, h_{2}\right) \pm 1 \pm 1=\ldots=\delta\left(h, h_{0}\right) \pm 1 \pm 1 \ldots \pm 1$,
$n+1$ terms
which is impossible since n must be even.
Now let $h \in V\left(H_{u}\right)$ and $u\left(h_{1}, h_{2}\right) \in H_{u}$ be such that $\delta\left(h, h_{1}\right)=\delta\left(h, h_{2}\right)$. There are shortest arcs $p_{1}\left(h, h_{1}\right)$ and $p_{2}\left(h, h_{2}\right)$ from h to h_{1} and h_{2} respectively. The path formed by going from h to h_{1} on $p_{1}\left(h, h_{1}\right)$, then from h_{1} to h_{2} on $u\left(h_{1}, h_{2}\right)$, and then back to h by the reverse of $p_{2}\left(h, h_{2}\right)$ is a path of odd length. At least one of its components must be a cycle of odd length.

Lemma 3. G_{u} contains no odd circuits.
Proof. If G_{u} contained an odd circuit, there would be some edge, $u(c, d) \in G_{u}$, such that $\delta(I, c)=\delta(I, d)$ where I is the largest element of the lattice. This means, however, that $\Delta(I, c)=\Delta(I, d)$ and $u(c, d)$ cannot be directed in such a way that (L, \geqslant) satisfies the Jordan-Dedekind chain condition.

Theorem 1. The vertices c and d are complementary elements of (L, \geqslant) if and only if $\delta(c, d)=\operatorname{dia}\left(G_{u}\right)$.

Proof. First we show that $\delta(I, 0)=\operatorname{dia}\left(G_{u}\right)$. Let $e, f \in V\left(G_{u}\right)$ be arbitrary.

Then

$$
2 \delta(e, f) \leqslant \delta(I, e)+\delta(I, f)+\delta(e, 0)+\delta(f, 0)=2 \delta(I, 0)
$$

so $\delta(e, f) \leqslant \delta(I, 0)$ for all $e, f \in V\left(G_{u}\right)$.
Now if c and d are complementary elements of (L, \geqslant) and $p(c, d)$ is any shortest arc from c to d, then to $p(c, d)$ there corresponds a sequence of directed edges of G. This sequence may be replaced by another sequence of the same length constituting two arcs, one from $c \cup d=I$ to c (this one traversed backwards) and one from I to d. Likewise it can be replaced by a sequence of the same length constituting two arcs, one from c to $c \cap d=0$ and one from 0 to d (this one traversed backwards). We may conclude, therefore, that

$$
2 \delta(c, d)=\delta(c, I)+\delta(I, d)+\delta(c, 0)+\delta(0, d)=2 \delta(I, 0)=2 \operatorname{dia}\left(G_{u}\right)
$$

By the above argument if $\delta(c, d)=\operatorname{dia}\left(G_{u}\right)$, then $\delta(c \cup d, c \cap d)=\operatorname{dia}\left(G_{u}\right)$, implying $c \cup d=I$ and $c \cap d=0$.

Lemma 4. G_{u} satisfies Condition II.

Proof. According to Theorem $1, \delta(I, 0)=\operatorname{dia}\left(G_{u}\right)$. If we take $a_{1}=I$ and $a_{2}=0$, then the covering conditions imply II.

Lemma 5. G_{u} satisfies Condition III.
Proof. Using the fact that there is essentially only one way in which a rectangle of G_{u} can be directed, it can be shown that there are exactly four (two of which are isomorphic) non-dual directed graphs that can result from F_{u} being a subgraph of G_{u}. Each of these gives rise to the required vertex and edges by use of the covering conditions. The details are straightforward.

Lemmas $1,3,4$, and 5 show that the three conditions are necessary in order that G_{u} be realizable as the graph of a modular lattice of finite length.
3. Sufficiency. Throughout this section G_{u} will be an undirected graph satisfying Conditions I, II, and III, and $a=a_{1}$ and $b=a_{2}$ will be as in Condition II.

Since G_{u} is connected and contains no odd circuits, we shall direct the edges of G_{u} away from the vertex a by directing each edge towards the vertex farthest from a. That this can be done is assured by Lemma 2. This directed graph we denote by G, and we shall prove that G is the graph of a modular lattice of finite length. In particular we shall show that the pair $(L, \geqslant), L=V(G)$, where $c \geqslant d$ if and only if there is a directed arc (possibly of zero length) from c to d in G, is a modular lattice of finite length.

Lemma 6. (1) If $c \geqslant d$, then $\delta(c, d)=\Delta(c, d)$.
(2) (L, \geqslant) is a partial order of finite length satisfying the JordanDedekind chain condition.
(3) The graph of (L, \geqslant) is G, and $a \geqslant c$ for all $c \in L$.

Proof. (1) Let $c \geqslant d$ and $P\left(e_{0}, e_{1}, e_{2}, \ldots, e_{n}\right), e_{0}=c, e_{n}=d$, be any arc in G from c to d. If $n=1, \delta(c, d)=1=\Delta(c, d)$. If m is the smallest integer such that $\delta\left(c, e_{m}\right) \neq m$ and $\delta\left(c, e_{k}\right)=k$ for all $0 \leqslant k<m$, then

$$
\delta\left(c, e_{m}\right)=(m-1) \pm 1
$$

Since $\delta\left(c, e_{m}\right)=m-2$ is impossible, $\delta\left(c, e_{m}\right)=m$, This yields a contradiction, so no such m exists and $\delta(c, d)=n=\Delta(c, d)$.
(2) Since G cannot contain any directed circuits, " \geqslant " is anti-symmetric; it is clearly reflexive and transitive. Hence, (L, \geqslant) is a partial order. That (L, \geqslant) is of finite length and satisfies the Jordan-Dedekind chain condition follows immediately from (1).
(3) G is a directed graph with no multiple edges; G is acyclic and transitive, so by ($3, \mathrm{p} .170$) G is the graph of a partial order. That (L, \geqslant) is that partial order is clear. That $a \geqslant c$ for all $c \in L$ follows from the way G is directed.

Lemma 7. (L, \geqslant) satisfies the two covering conditions of a modular lattice, and $c \geqslant b$ for all $c \in L$.

Proof. If c covers d and $e, d \neq e$, then

$$
\delta(a, c)+1=\delta(a, d)=\delta(a, e)
$$

and Condition II implies that there is a unique $f \in L$ such that d and e cover f.

Let $c \in L$ be arbitrary and let $d \in L$ by any minimal element of $\{e \mid e \geqslant c$ and $e \geqslant b\}$. We shall show that $d=c$. If $d \neq c$, then there are non-intersecting (except at d) maximal chains from d to c and from d to b. We have, therefore, an edge $E(d, e), e \geqslant c$, and an arc $P_{1}\left(e_{0}, e_{1}, e_{2}, \ldots, e_{n}\right), e_{0}=d, e_{n}=b$ in G. According to the first part of this lemma and the minimality of d, we can construct an arc of $G, P_{2}\left(f_{0}, f_{1}, \ldots, f_{n}\right), f_{0}=e$, such that $f_{j} \neq e_{i}$ for any $i, j=0,1, \ldots, n$, and e_{j} covers f_{j} for each $j=0,1, \ldots, n$. Since this gives an edge $E\left(b, f_{n}\right) \in G$ contradicting the choice of b, we must conclude that $d=c$ and $c \geqslant b$ for all $c \in L$.

The second covering condition now follows. Since

$$
\delta(b, c)=\Delta(c, b)=\Delta(a, b)-\Delta(a, c)=\operatorname{dia}\left(G_{u}\right)-\delta(a, c),
$$

a simple calculation shows that $E(e, f) \in G$ if and only if $\delta(b, f)=\delta(b, e)-1$. Thus, II gives the second covering condition in the same way that II gave the first one.

Lemma 8. Any rectangle of four edges in G is directed as the graph of the distributive lattice of length two on four elements.

Proof. By Lemma 6 there cannot be any arcs of length four or three. If c and d cover both e and $f, c \neq d, e \neq f$, we have a contradiction to the preceding lemma. Therefore, the only possibility is for the edges to be directed as desired.

We shall now show in three steps that given any two elements c and d in L,
the set $\{e \mid e \geqslant c$ and $e \geqslant d\}$ has a unique minimal element. This, of course, will mean that every pair of elements of L has a least upper bound, and since L has a lower bound, we shall have shown that (L, \geqslant) is a lattice.

Lemma 9. If e covers c and $d, c \neq d, f>c, f>d$, and $\Delta(f, c)=\Delta(f, d)$, then $f \geqslant e$.

Proof. The proof proceeds by induction on $\Delta(f, c)$. If c, d, e, f are as in the statement of the lemma and $\Delta(f, c)=1$, then $e=f$ by Lemma 8 . We now assume that for some $m>0$ the lemma is true for all c, d, e, f as above such that $\Delta(f, c)<m$. Let $c, d, e, f \in L$ be as above and let $\Delta(f, c)=m$. Let us further assume that $f \ngtr e$. There are in G two arcs,

$$
P_{01}\left(c_{00}, c_{01}, \ldots, c_{0 m}\right) \text { and } P_{02}\left(d_{00}, d_{01}, \ldots, d_{0 m}\right),
$$

where $c_{00}=f=d_{00}, c_{0 m}=c$, and $d_{0 m}=d$. Note that $c_{0 j} \neq d_{0 j}$ for all $1 \leqslant j<m$; otherwise $f>e$ by the inductive hypothesis. Using Lemma 7, the Jordan-Dedekind chain condition, and the inductive hypothesis, we can find $c_{10}, c_{11}, \ldots, c_{1, m-1}, c_{10}=d_{10}, d_{11}, \ldots, d_{1, m-1}$ such that
(1) $\left\{c_{10}, c_{11}, \ldots, c_{1, m-1}, d_{10}, d_{11}, \ldots, d_{1, m-1}\right\} \cap$

$$
\left\{c_{00}, c_{01}, \ldots, c_{0 m}, d_{00}, d_{01}, \ldots, d_{0 m}, e\right\}=\emptyset
$$

(2) $c_{1 i}$ covers $c_{1, i+1}$ and is covered by $c_{0, i+1}$ and $d_{1 i}$ covers $d_{1, i+1}$ and is covered by $d_{0, i+1}$ for all $0 \leqslant i \leqslant m-1$.

Now we show that $c_{1, m-1} \neq d_{1, m-1}$. Assume that $c_{1, m-1}=d_{1, m-1} . c_{0 m}$ and $d_{1, m-2}$ cover $c_{1, m-1}=d_{1, m-1}$ and $c_{0 m} \neq d_{1, m-2}$. Hence by Lemma 7 there is a g which covers both. According to Condition III and Lemma 8 there is some $h \in L$ which covers $g, d_{0, m-1}$, and e. If $g=c_{0, m-1}$, the inductive hypothesis implies that $f>h>e$, contrary to our assumption. If $g \neq c_{0, m-1}$, the inductive hypothesis implies that $c_{01}>g$, and hence that $c_{00}=f>e$, which again is contrary to assumption. We conclude that $c_{1, m-1} \neq d_{1, m-1}$.

Since e covers $c_{0 m}$ and $d_{0 m}$ and $c_{0 m} \neq d_{0 m}$, there is an e_{1} which is covered by both $c_{0 m}$ and $d_{0 m}$. We can conclude that $e_{1} \neq c_{1, m-1}$ or $d_{1, m-1}$ as follows. If $e_{1}=c_{1, m-1}$, then $c_{10}>e_{1}$ and $c_{10}>d_{1, m-1}$. Hence $c_{10}>d_{0 m}$ by the inductive hypothesis. But now $c_{01}>c_{10}>d_{0 m}$ and $c_{01}>c_{0 m}$. Hence $c_{01}>e$ by the inductive hypothesis, and therefore $f>e$. A similar argument applies if instead $e_{1}=d_{1, m-1}$.

We now use Lemma 7 again to find $c_{1 m}$ and $d_{1 m}$ such that e_{1} and $c_{1 m-1}$ cover $c_{1 m}$, and e_{1} and $d_{1, m-1}$ cover $d_{1 m}$. If $c_{1 m}=d_{1 m}$, according to Condition III and Lemma 8, we first have some $g \in L, g \neq c_{0 m}$ or $d_{0 m}$, which covers $c_{1, m-1}$ and $d_{1, m-1}$ and is covered by e. The inductive hypothesis yields $c_{01}>c_{10}>g$. Using it again, we obtain $c_{01}>e$, so $f>e$, contrary to our assumption. Thus $c_{1 m} \neq d_{1 m}$; cf. Figure 1.

Next we shall show that $c_{10}>e_{1}$. If $c_{10}>e_{1}$, then there is some $g \in L$ such that $c_{01}>g$ and g covers e_{1}. If $g=c_{0 m}$, then $d_{01}>c_{10}>g=c_{0 m}$ and $d_{01}>d_{0 m}$. Hence $d_{01}>e$ by the inductive hypothesis, and so $f>e$, which is impossible.

Figure 1

We deduce that $g \neq c_{0 m}$ and similarly $g \neq d_{0 m}$. Since $g \neq c_{0 m}$ or $d_{0 m}$, and $g, c_{0 m}$, and $d_{0 m}$ cover e_{1}, there are h_{1} and h_{2} in L such that h_{1} covers $c_{0 m}$ and g, and h_{2} covers $d_{0 m}$ and g. Now applying the inductive hypothesis twice, we conclude that $c_{01}>h_{1}$ and $d_{01}>h_{2}$; hence neither h_{1} nor h_{2} is equal to e. Now Condition III and Lemma 8 yield the existence of an $h_{3} \in L$ which covers h_{1}, h_{2}, and e, and the inductive hypothesis yields $f>h_{3}>e$. This contradiction to our assumption that $f \ngtr e$ implies that $c_{10} \ngtr e_{1}$, as desired.

We now have constructed two arcs $P_{11}\left(c_{10}, c_{1 m}\right)$ and $P_{12}\left(c_{10}, d_{1 m}\right)$ of length m and a vertex e_{1} which covers $c_{1 m}$ and $d_{1 m}$. Since $c_{10} \ngtr e_{1}$, the $c_{1 j}$'s must be distinct from the $d_{1 k}$'s (except for $c_{10}=d_{10}$), so the situation with respect to these arcs and the vertex e_{1} is the same as it was with respect to $P_{01}\left(f, c_{0 m}\right)$, $P_{02}\left(f, d_{0 m}\right)$, and e. We may, therefore, continue the above construction indefinitely, producing subsets of $L, V_{0}, V_{1}, V_{2}, \ldots$ such that for every $k=0,1,2, \ldots$:
(1) $V_{k}=\left\{c_{k 0}, c_{k 1}, \ldots, c_{k m}, d_{k 0}, d_{k 1}, \ldots, d_{k m}, e_{k}\right\}, e_{0}=e$, and $c_{k 0}=d_{k 0}$;
(2) $V_{k-1} \cap V_{k}=\emptyset$,
(3) $c_{k-1, j+1}$ covers $c_{k j}$ and $c_{k j}$ covers $c_{k, j+1}$ for each $j=0,1, \ldots, m-1$, and e_{k} covers $c_{k m}$ and $d_{k m}$,
(4) $c_{k 0}>e_{k}$.

We can, therefore, construct arcs and hence maximal chains

$$
P_{n}\left(e_{0}, c_{0 m}, e_{1}, c_{1 m}, \ldots, e_{n-1}, c_{n-1, m}, e_{n}\right)
$$

of arbitrary length, contradicting the fact that (L, \geqslant) is of finite length. This contradiction proves that $f>e$, as desired.

Lemma 10. If e and f are greater than c and $d, c \neq d$, then there is some $g \in L$ such that $e \geqslant g \geqslant c$ and $f \geqslant g \geqslant d$.

Proof. The proof of this lemma proceeds by induction on

$$
R=\frac{1}{2}[\Delta(e, c)+\Delta(e, d)+\Delta(f, c)+\Delta(f, d)] .
$$

For $R=2$ the preceding lemma yields the result.
Now assume inductively that if $R<s, s>2$, the lemma is true. Let $e, f, c, d \in L$ satisfy the hypotheses of the lemma; $R=s$. Suppose that no $g \in L$ exists such that $e \geqslant g \geqslant c$ and $f \geqslant g \geqslant d$ (Assumption A). We may assume the vertices have been named such that

$$
\Delta(e, c)=\min \{\Delta(e, c), \Delta(e, d), \Delta(f, c), \Delta(f, d)\}
$$

and we may assume $\Delta(e, c)$ is minimal for c, d, e, and f satisfying Assumption A.
Case I, $\Delta(e, c)=\Delta(e, d)=m$. A calculation based on Lemma 6 shows that $\Delta(f, c)=\Delta(f, d)$, and the preceding lemma shows that $m>1$. Let

$$
P_{00}\left(c_{00}, c_{01}, \ldots, c_{0 m}\right) \quad \text { and } \quad P_{10}\left(d_{00}, d_{01}, \ldots, d_{0 m}\right),
$$

$c_{00}=e=d_{00}, c_{0 m}=c, d_{0 m}=d$ be any two maximal chains from e to c and e to d respectively. By Lemma 6, Assumption A, and the inductive hypothesis, it follows that $c_{0 k} \neq d_{0 n}$ for every $k, n=1,2, \ldots, m$. Thus there exists $c_{10}=d_{10} \in L$ covered by c_{01} and d_{01}. If $c_{10} \geqslant c$ or d, then Lemma 6 and the inductive hypothesis yield a contradiction to Assumption A. A sequence of similar arguments gives rise to two maximal chains,

$$
P_{01}\left(c_{10}, c_{11}, \ldots, c_{1, m-1}\right) \quad \text { and } \quad P_{11}\left(d_{10}, d_{11}, \ldots, d_{1, m-1}\right)
$$

such that $c_{0 k}$ covers $c_{1, k-1}$ and $d_{0 k}$ covers $d_{1, k-1}$ for each $k=1,2, \ldots, m$, and neither $c_{1 k} \geqslant c$ or d nor $d_{1 k} \geqslant c$ or d holds for any $k=0,1, \ldots, m-1$.

If $c_{1, m-1}=d_{1, m-1}$, then Lemmas 7 and 9 show that there is some $g \in L$ which covers $c_{0 m}$ and $d_{0 m}$ such that $e \geqslant g \geqslant c_{0 m}$ and $f \geqslant g \geqslant d_{0 m}$, which contradicts Assumption A. Thus since $c_{1, m-1} \neq d_{1, m-1}$ and $\Delta(e, c)$ is minimal, there is some $g^{\prime} \in L$ such that $c_{10} \geqslant g^{\prime} \geqslant c_{1, m-1}$ and $f \geqslant g^{\prime} \geqslant d_{1, m-1}$; cf. Figure 2. If $g^{\prime}=c_{0 m}$, then $d_{01}, c_{0 m}, d_{0 m}$, and f satisfy the inductive hypothesis. This gives some $g \in L$ such that $e>d_{01} \geqslant g \geqslant c_{0 m}=c$ and $f \geqslant g \geqslant d_{0 m}=d$, which contradicts Assumption A.

If $g^{\prime}=c_{1, m-1}$, then by Lemma $6, g^{\prime}=d_{1, m-1}$, contrary to the fact that

Figure 2
$c_{1, m-1} \neq d_{1, m-1}$. Now a calculation based on Lemma 6 and this observation shows that $c_{01}, f, c_{0 m}$, and g^{\prime} satisfy the inductive hypothesis. Hence there is some $g^{\prime \prime} \in L$ such that $c_{01} \geqslant g^{\prime \prime} \geqslant c_{0 m}$ and $f \geqslant g^{\prime \prime} \geqslant g^{\prime}$. Now if $g^{\prime \prime}=c_{0 m}$, then

$$
\Delta\left(g^{\prime \prime}, c_{1, m-1}\right)=1=\Delta\left(g^{\prime \prime}, g^{\prime}\right)+\Delta\left(g^{\prime}, c_{1, m-1}\right)
$$

hence $g^{\prime}=g^{\prime \prime}=c_{0 m}$, which is impossible. This means that

$$
\Delta\left(c_{00}, g^{\prime \prime}\right)+\Delta\left(f, g^{\prime \prime}\right)+\Delta\left(c_{00}, d\right)+\Delta(f, d)<s
$$

If $g^{\prime \prime}=d$, there is nothing more to prove. If not, the inductive hypothesis applies, and we have some $g \in L$ such that $e=c_{00} \geqslant g \geqslant g^{\prime \prime} \geqslant c$ and $f \geqslant g \geqslant d$, contradicting Assumption A. This concludes the proof of case I.

Case II, $\Delta(e, c) \neq \Delta(e, d)$. Thus $\Delta(e, c)<\Delta(e, d)$. Let

$$
P_{00}\left(c_{00}, \ldots, c_{0 m}\right) \quad \text { and } \quad P_{10}\left(d_{00}, \ldots, d_{0 m}\right)
$$

$c_{\mathrm{c} 0}=e=d_{00}, c_{0 m}=c, d_{0 n}=d$ be any two maximal chains from e to c and e to d respectively. As in the preceding we can find a maximal chain $P_{01}\left(c_{10}, \ldots, c_{1, m-1}\right)$ such that $c_{0 k}$ covers $c_{1, k-1}$ and $c_{1, k-1}$ is not greater than or equal to c or d for each $k=1,2, \ldots, m$.

Suppose there is a $g^{\prime} \in L$ such that $d_{01} \geqslant g^{\prime} \geqslant d_{0 n}=d$ and $f \geqslant g^{\prime} \geqslant c_{1, m-1}$. Then g^{\prime} is not greater than or equal to c and either $\Delta\left(g^{\prime}, d\right)=0$ or $\Delta\left(g^{\prime}, d\right)>0$. $\Delta\left(g^{\prime}, d\right)=0$ would imply that $g^{\prime}=d=\dot{d}_{0 n}$. Thus Lemma 6 and the fact that $c_{1, m-1} \neq d$ imply that

$$
\Delta\left(d_{01}, c_{1, m-1}\right)=m>\Delta\left(d_{01}, g^{\prime}\right)=n-1
$$

and that $m \geqslant n$, which is impossible. If $\Delta\left(g^{\prime}, d\right)>0$, then we may apply the inductive hypothesis to $e=c_{00}, g^{\prime}, c=c_{0 m}$, and f to obtain a $g \in L$ such that $e \geqslant g \geqslant c$ and $f \geqslant g \geqslant g^{\prime} \geqslant d$, contrary to Assumption A.

We now have $d_{01}, c_{1, m-1}, d$, and f satisfying the same hypothesis as c, d, e, and f, but now $\Delta\left(d_{01}, c_{1, m-1}\right)=m$ and $\Delta\left(d_{01}, d\right)=n-1$. By repeating the above argument $p=n-m$ times, we can find $d_{0 p}, c_{p, m-1}, d$, and f contradicting case I. Since this is impossible, our Assumption A must be false for case II also, and the proof of the lemma is complete.

Lemma 11. (L, \geqslant) is a modular lattice of finite length whose graph is G.
Proof. Let $c, d \in L$ be arbitrary. By Lemma 10 there can be only one minimal element of $\{e \mid e \geqslant c$ and $e \geqslant d\}$. This is $c \cup d$. Since $e \geqslant b$ for all $e \in L$ and $c \cup d$ is defined for all $c, d \in L,(L, \geqslant)$ is a lattice. It is of finite length and its graph is G by Lemma 6. By Lemma $7(L, \geqslant)$ satisfies the two covering conditions, so it is modular.

The proof of the following theorem is now complete.
Theorem 2. G_{u} can be realized as the graph of a finite modular lattice if and only if G_{u} satisfies Conditions I, II, and III.

Theorem 3. G_{u} can be realized as the graph of a finite distributive lattice if and only if G_{u} satisfies Conditions I, II, III, and:
IV. If G_{u} contains the rectangle of edges, $u(c, d), u(d, e), u(e, f), u(f, c)$, there is no vertex g such that $u(c, g)$ and $u(g, e) \in G_{u}$.

Proof. The proof is immediate from Theorem 2 above and (2, p. 134, corollary 2). (Two misprints should be noted in that corollary. The figure which is referred to is the figure of the first edition (1) and ($x^{*} \cap v$) $\cup u$ should read $\left(x^{*} \cup v\right) \cap u$.)

Using Theorems 1 and 3 , it can be shown that for G_{u} satisfying I, II, III, and IV, it does not matter which diametrically opposite vertices are chosen. Any choice results in a distributive lattice.

The author would like to express his sincere thanks to Professor Oystein Ore who guided and encouraged the work on the thesis of which these results are a part. He would also like to thank the referee for his helpful suggestions.

References

1. G. Birkhoff, Lattice theory, 1st ed. (Providence, R.I., 1940).
2. - Lattice theory, rev. ed. (Providence, R.I., 1961).
3. O. Ore, Theory of graphs (Providence, R.I., 1962).

University of the South, Sewanee, Tennessee

[^0]: Received June 22, 1964. This work was partially supported by the National Science Foundation grant 18995.

