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Abstract

The problem of an infinitely long rigid punch of uniform cross-section moving
across a viscoelastic half-space at constant velocity, large enough so that
inertial effects cannot be neglected, is examined and solved in various
approximations. Frictional shear is assumed to exist between the punch
and the half-space. The method, which is an extension of that developed
in previous papers [6, 7], is applicable for any form of viscoelastic behaviour
in the half-space. For the special case of discrete spectrum behaviour the
method is described in detail. For the case where the punch is cylindrical
and viscoelastic effects are small compared with elastic effects, explicit
expressions are given for all quantities of interest, in particular the coefficient
of hysteretic friction. A general Hilbert transform formula is derived in the
appendix.

1. Introduction

In two recent papers [6, 7] a method was developed for solving the problem of an
infinitely long punch of uniform cross-section moving on a viscoelastic half-spacef
without special assumptions about the nature of the viscoelastic behaviour. The
method applies both to the case where Coulomb frictional shear exists between
the punch and the half-plane [7] and to the completely lubricated case [6]. How-
ever, it was assumed in these papers that the velocity of motion was sufficiently
low to allow inertial effects to be neglected. The object of this paper is to extend
the method so that this assumption may be dropped.

In Section 2 a singular integral equation is derived relating displacement and
pressure, which is a generalization of similar equations given in [6, 7]. This is
achieved by virtue of the analogy between the Fourier transformed viscoelastic

t Often termed half-plane in this context.
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[2] Inertial viscoelastic contact problem 199

equations and the corresponding elastic equations, which makes it possible to take
over some results of Eason [1] almost without modification. In its exact form little
further progress can be made with this equation. However, it is shown that if
certain types of approximation are made then the methods of [6, 7] can be applied
here with little modification. Two distinct types of approximation are considered:
(a) an assumption that the velocity is sufficiently small so that a power series
expansion in terms of its ratio to the speeds of sound of the medium converges
rapidly, and (b) an assumption that viscoelastic effects are small compared with
elastic effects. In case (a) it is shown that the problem can be reduced to the
solution of a certain series of non-singular integral equations, rather than just one,
as was the case in previous work [6, 7]. As in previous papers, the resulting
expressions for quantities of interest are highly implicit, requiring considerable
numerical work to obtain final answers. An advantage of the second type of
approximation, which can be handled similarly though more simply, is that the
results are completely explicit and easy to evaluate numerically. Also, there is no
restriction to low velocities.

In the previous papers the assumption was made that the half-plane behaves
similarly in shear and bulk deformation so that a unique Poisson's ratio can be
defined. This assumption was not strictly necessary, but was made in the interests
of simplicity. The same assumption will be made here at a certain stage when
considering the approximation of type (a) but not when making the type (b)
approximation. The analysis is confined to smooth punch shapes not because the
method is not more generally applicable but because the resulting integrals are
difficult to handle, at least for spectrum models.

The approach under the type (a) assumption of small velocity is discussed in
general in Section 3 to first order in the velocity expansion. The results for the
special case where the half-space viscoelasticity is characterized by a discrete
spectrum is presented in detail in Section 4 while in Section 5 the assumption is
made that the punch has cylindrical shape and even more detailed formulae are
given. These two sections illustrate the use of the general method. The results
under the type (b) small viscoelasticity assumption are presented in Section 6, together
with numerical examples, and some concluding remarks in Section 7. A relevant
Hilbert transform, evaluated in [7], is discussed from a different angle in the
Appendix. It should be remarked that many of the results and even the presentation
closely parallel that of [7], the results of which are frequently used.

2. Derivation of basic equations

Partly to establish notational conventions certain basic relations will be written
down. The constitutive equations of a linear, homogeneous, isotropic, viscoelastic
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200 J. M. Golden [3]

material may be written as

ai3.(R,0 = 2 f" K'- ' 'K3(R, 'V' + Si3- P Kt-S)eklf&f)d?, (2.1)
J-oo J-<»

where cri3-(R, f), ei3(R, r) are the components of the stress and strain tensors
respectively at position R, denoting the vector (A', Y,Z), and time t. The summation
convention is in force in the second term. The functions /x(f), A(/) are closely
related to the shear and bulk relaxation functions [6].f They are both zero for
negative /. The inverse relation may be written as

J —
(2.2)

where y(t), ip(t) are similarly related to the creep functions and zero for negative

t. The Fourier transform (often abbreviated to F T henceforth), with respect to

t ime, of these equations reads

ai3(R, o>) = 2/Z(ftO ei3(R, iy ftfc

(2.3)

in the notation

The

The

quantities ix{oo),

relation (2.5) is

/(a>) = /(O cxp(-/«/)*•
J-00

A(a>) are closely related to y(u>), $(a/

p.(w) = l/y(oj),

2fi(ai) + 3A(a>) = (iy(w) + 3^(o>))-1.

the FT version of [61.

). Specifically

(2.4)

(2.5)

(2.6)

p
u(t—i

Jo
(2-7)

where 8(t) is the usual delta function.
Note the well-known correspondence between (2.3) and the constitutive equations

for a linear isotopic homogeneous elastic medium, or more precisely the FT of
these equations. The difference is that here the moduli are in general frequency
dependent and complex.

The equations of motion have the standard form

£ ), (2.8)

t The quantities /x(f), y(t) as defined here differ from those in [6] by factors of 2, £,
respectively. They agree with those in [7].
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[4] Inertial viscoelastic contact problem 201

where p is the density of the medium and L̂ CR, /) are the components of displace-
ment. The dots indicate time differentiation. The time FT of these equations reads

(2.9)

which once more has a form identical to the corresponding FT elastic equations.
This identity will form the basis of our method of attacking the problem.

Let the half-space occupy Z<0. Let a rigid punch be pressed into it and moving
across it in the negative X direction with speed V. Frictional shear between the
plane and the punch will act along the X direction. For the moment no assumption
will be made on the shape of the punch.

The elastic half-space problem has been tackled, using FT techniques, by
Eason [1], among others. In particular, he writes down equations relating the FT
of the displacements to the FT of the surface forces. The Z component of these
equations may be regarded as the FT of the Boussinesq-Cerruti equation [9]
generalized to include inertial effects. The difficulty is that it is in general not
possible to obtain an explicit inverse FT of this equation. However, it will be taken
over more or less intact and will form the basis for attacking the present problem,
for which progress is possible partly because of the assumption that the punch is
uniformly infinite in one direction, and partly as a result of certain approximations
which will be made.

Let the pressure and frictional shear due to the punch be denoted by P{X, Y, i),
S(X, Y, i). These will of course be non-zero only in the region of contact. Eason's
equations involve not only the time FT but also the space FT of these quantities
and of the displacements. To avoid excessive notational complications, the same
bar notation will be used to indicate the triple FT:

,o>)= r
j —

P(X, Y,t)exv[-i(kxX+kv Y+a>t)]dxdydt, (2.10)

where k denotes the two dimensional vector (kx, ky), and so on. One may distinguish
between this and the time FT by the arguments. The only displacement of interest
here is the Z displacement at the surface. This will be denoted by U(X, Y, t). Then,
Eason's equation reads, with the conventions of this paper,

2/lM F(k,«) OQL, co) = I -£- njHk, a,) F(k,«) - ikx S(k, to)
z cT\co)

(2.11)
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202 J. M. Golden [5]

where k is the magnitude of k, while

(2.12)

the quantities cr(o>), c^co) being the complex transverse and longitudinal frequency-
dependent wave speeds for the medium, given by

(2.13)

Finally, F(k, oi) is given by

F{k, a>) = I k2 - ^ -£-r-1 - n^k, u>) «2(/c, CJ) k2. (2.14)

For uniform motion, neglecting transients, the stresses and displacements will
depend on X+ Vt rather than on X, t separately. This leads to a factor 8(w—kx V)
on both sides of (2.11) giving

2/K Vkx) G(k) 0(k) = \k% 8 T(kx) mL(k) F(k) - ikx

x (mL(k)mT(k) - *|(1 - %8T(kx)) - k*), (2.15)

where

J/2
8T(kx) =

c\(Vkxy

(2.16)

K2

while
mL(k) = (kl(l-8L)+kl)K

(2.17)

G(k) = (kx(\-\

The final simplification is to restrict ourselves to plane problems. We let the rigid
punch be infinite with uniform cross-section in the Y direction. The Y dependence
of all quantities disappears, giving a factor 8(ky) in the FT quantities.Therefore,
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[6] Inertial viscoelastic contact problem 203

under this assumption, (2.15) simplifies to

2p.(Vkx)T1(kx)kxU(kx) = Tz(kx)P(kx)sgn(kx)-iYz{kx)S{kx\ (2.18)

where sgn (kx) is the usual sign function and

* i(*z) = A^ — A-LAZ,

r2(kx) = h8T(kx)A1, (2.19)

* z\kx) = ~ 3

the quantities At, i = 1,2,3, being denned by

(2.20)

where the explicit kx argument has been omitted. It remains to take the inverse
transform of (2.18). We divide across by T2(kx) so the relevant quantities are

(2.21)

The argument of these functions is of course time, and integrals involving these
functions are really integrals over past history. By arguments based on causality
therefore, one can see that K^t), K2(t) must be zero for negative t just as is the
case for the viscoelastic functions.

Using the result

± [°° sgn {kx) exp (ikx X) dkx = ~ (2.22)
—00

and the convolution theorem [10], one finally obtains

, Xe[a,b]

•A'
dY, X<a, (2.23)
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204 J. M. Golden [7]

where [a, b] is the contact region, the prime denotes differentiation, and (P) denotes
the principal value of the integral. This is the general result on which subsequent
considerations will be based. It is convenient to express it in terms of dimensionless
coordinates denned by

putting

p(x)=P(X), (2.25)

and also

klx)=aK4px), (2.26)

where

Instead of the viscoelastic functions yif), y{t) and so on, the quantities

liT[x)=a^ax),
(2.28)

yT(x)=ay(ax),

and so on, will often be used. The friction force between the punch and the half-
space will be taken to be given by Coulomb's Law, that is

s(y) = fp(y), (2.29)

where / is a constant, namely the coefficient of friction. Therefore, our final
equation reads

I f1
 D(V) CX

E^ y)p{y)dy,
I f1

 D(V) CX

k1(x-y)uXy)dy = -(?)] E^-dy+f \ Ux-

d X<_L ( 2 3 0 )

In the limit ST or 8L tending to zero k2(x) reduces to a delta function if the material
behaves similarly in shear and bulk; in other words, if a unique, constant Poisson's
ratio v exists

+ -mAK), (2.31)
V
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[8] Inertial viscoelastic contact problem 205

where

« £} 1 * L (2.32)
ST c\ 2(1-v)

(which is not the sense in which it is used in [1]), and TJ is a factor introduced for
later convenience, given by

i) = \-v. (2.33)

Note that if the material does not behave similarly in shear and bulk then, even
in the non-inertial limit, the rightmost term of (2.30) remains an integral. As will
be seen below, this means that the method of [7] does not trivially generalize to
this case. In the absence of friction, however, there is no problem in principle if
the constant Poisson's ratio assumption is dropped.

The function m2{x) contains specifically inertial effects and is proportional to
8T. Equation (2.31) also holds in the limit of small viscoelasticity but in this case
no assumption on similar behaviour in bulk and shear is necessary. This follows
from (2.21). It is convenient to separate out the delta function explicitly from
k2{x) and write (2.30) in a form similar to the corresponding equation in [7]:

(2.34)

_ v f1 P(y)dy x< .
— — > x< — l,

TTJ_I y-x

where
ik-v)f\ (2.35)

(2.36)

W(x)= \Xm1{x-y)u\y)dy+f\Xm2{x-y)p{y)dy,
J-00 J - l

= m1(x-y)u'(y)dy, x<-\,
J-ao

where

m1(x) = -nk1(x). (2.37)

There are two interconnected obstacles to handling (2.34) in a manner similar to
that used in [7]. In the first place there is in general no question of obtaining exact
explicit expressions for m^x), i= 1,2, except perhaps for very special forms of
the viscoelastic functions. Any such specific forms will not be sought. Instead, two
distinct types of approximation will be investigated which enable one to calculate
r^i(x), i = 1,2, and solve (2.34) for general classes of viscoelastic functions. These
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approximations are (a) to take V sufficiently small so that an expansion of
i= 1,2, in powers of V converges rapidly, or (b) to assume that viscoelastic
effects are much smaller than elastic effects and solve (2.33) to first order in visco-
elastic effects. Either of these assumptions allows progress to be made, though the
latter will allow far more explicit final results to be derived than the former. In
fact the solution of the problem under the type (a) assumption is analogous to,
though more complicated than, the exact treatment of the problem in [6, 7], while
the solution under type (b) is very similar to the small viscoelasticity solution also
presented in those papers.

The other problem is the second term on the right of the first equation of (2.36),
which at first sight makes it impossible to apply the methods of [7]. However, this
problem is avoided by the fact that it is anyway necessary to seek approximate
solutions of the type mentioned in the previous paragraph, that is power series in
an expansion parameter <x, which can be either a velocity variable, ST for example,
or some number characterizing the order of magnitude of the viscoelastic
coefficients. Then, if pn(x), u'n(x) are approximations to p(x), u'(x) of order a™,
the nth approximation to

Wn(x)= \" m1(x-y)u'n(y)dy+f T m2(x-y)Pn_1(y)dy, \x\<l, (2.38)
J-00 J-l

where the m^x), i= 1,2, are approximated to an order of a appropriate to the
term in u'n(y), />n_i0>) multiplying them. It is />n-i(>0 rather than pn(y) that occurs
in this equation because of the fact that, for both types of approximation, m2(x)
is proportional to a. If the problem has been solved to order n — 1 then pn-.i(y)
will be known and the second term on the right of (2.38) is known. Since, to order
zero the problem reduces to that of [7] and can be solved, it is clearly possible to
solve (2.34) provided one can handle equations of such a form with W(x) given by

W{x)= [' m1(x-y)u'(y)dy+<f>(x), (2.39)
J-oo

where (f>(x) is a known function. In this paper we will consider only up to first
order so that, given the solution of the problem considered in [7], the only new
situation that must be considered is the case where

(2-40)

where m^ipc) is m2(x) to order a while po(y) is the limit of p(y) given in [7], but
with the contact interval occurring in this more general problem. This means
that the dimensionless coordinates in po(y) will be just those defined by (2.24).
Any error introduced by this procedure will be of higher order in <x, and so may
be neglected. The use of any other contact interval might introduce branch points
into the region of integration.
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[10] Inertial viscoelastic contact problem 207

As in [6, 7], the non-trivial part of the quantity W{x) will be shown to obey a
non-singular integral equation. Let the punch shape be given by a polynomial of
degree m +1 so that u'(x) in the interval [ -1 ,1] is given by

m

u'(x) = d(x)= ~Zdrx
r. (2.41)

r=O

Let

W(x) = A(x) + q (x) + <f>(x), (2.42)

where

A(JC)= rim1(x-y)(.u'(y)-d(y))dy, (2.43)
J-00

and

q(x)= m1(x-y)d(y)dy
J-co

= rmi(y)d(x-y)dy, (2.44)
Jo

which will also be a polynomial and of the same order as d(x). In order to substitute
u\y), expressed in terms of W(y), back into (2.43) we must be able to solve the
second equation of (2.34) for u'(y) in terms of p(x). For this we need a function
li(x) such that (compare with (2.7))

l1(x-y)m1(y-z)dy=S(x-z). (2.45)
o

Since kx(x) is zero for negative x the lower limit of the integral is z. The function
may in principle be found by defining (see (2.21), (2.37))

= - T— exp {iu> i) ' p da), (2.46)

and putting (see (2.26))

Ijfx) = oL^ox). (2.47)

In fact li(x) is also zero for negative x. This may be seen by expanding the
integrand of (2.46) in terms of the viscoelastic functions and using the Faltung
theorem [10]. Noting that one is really dealing with continuous matrix
multiplication, this statement corresponds to the fact that the inverse of a triangular
matrix is also triangular. So (2.45) becomes

ei1(x-y)m1(y-z)dy=8(x-z), (2.48)
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208 J. M. Golden [11]

and from (2.34), (2.36)

«'O0 = - ~ fV k(y-*) f* — dzdx, y<-\. (2.49)

Therefore, using the definition of A(x) as given by (2.43), one has

A(x) = -1 f '^{pcy) P ^-dzdy- \~X
 m^x-y)d{y)dy, (2.50)

where [7]

n*.y)= f ' W ^ - ^ / i ^ ' - ^ ) ^ ' , |JC|<1, y<-\. (2.51)

By using a similar argument to that given in [7] one transforms (2.50) into

A(x) = f1 K(x,x') W{.x')dx'- [~1m1(x-y)d(j)dy, (2.52)
J - 1 J -CO

where

-inx,y)f(x')
* ( 2 5 3 )

the quantities f(x) and g(j) being given by

(1 +X\9

(2.54)

and

6 = - tan"12 (evaluated in [0,77]). (2.55)
7T C

Continuing along identical lines to [7] one finally obtains the integral equation
for A(x),

A(x) = P K(x, x') A(x') dx'+n(x), (2.56)

where

f"1 T(x v)B(v) C1

n(x) = - \ ", dy+ K(x,x')<f>(x')dx', (2.57)

where ^(x) is given by (2.40) and B(y) is a polynomial of degree m given by (A. 14).
Once (2.56) is solved then A(x), and therefore W(x), is known, apart from the
dependence on the contact length parameters. Two subsidiary conditions are
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required to determine these, namely the condition that p{x) be bounded [7]:

1) = 0> ( 2 . 5 8 )

(Z59)

sin^p^OO

and the definitions of the load per unit length L, which is assumed to be specified
[7]:

T]L _ sin 77-0

7 7 0 ( 6 - a ) ~ 2TT0

(2.61)

where

(2.62)

(2.63)

The quantities Viy It, i= 1,2, will prove convenient later. The relations (2.56),
(2.58), (2.61) fully determine the system, allowing the various quantities of interest
to be calculated. In particular, the pressure distribution is given by

Bjx)
/(*)

(P) I . „ Uv. (2-64)
- l

which follows by solving (2.34) (see [11, 4]). Clearly this is bounded by virtue of
(2.58). As in the non-inertial case with friction, p (± 1) are not in general zero in
the presence of viscoelasticity. The coefficient of friction due to deformation,
fD, is given by

j | OO W(y) dy (2.65)

where R(y) is a polynomial defined in [7]. It is essentially B{y) with d(x) replacing
q{x) and (—0) replacing 6.
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210 J. M. Golden [13]

3. Small velocity approximation

The quantities m^x), i = 1,2, will first be expanded in power series in V. It will
be assumed that j8 defined by (2.32) is a constant. One can show from (2.19), (2.20)
that

2/I(a>) T^/K) , , a 2 ,•> x

r2V/V) ; = " o / ^ ) + * 1 + ^ + . . . , (3-D
where

ao = 208-1),

-4/3 + 3) K2, (3.2)

and

p 3 , ,y, = bo + =r^-+ . 2y.2 + ---, (3.3)

where

(3.4)

Only terms up to order V2 will be considered from here on. Taking inverse FTs
and recalling (2.28), (2.31), (2.37) one has

(3.5)

to order V2\c\. The second relation allows us to evaluate <f>(x) defined by (2.40).
Note that it is of order V2\c\. From the first relation and (2.48) we can deduce
l^x). In fact, it is better to work with FT quantities initially. From (2.48)

--qa^ = 1, (3.6)

so that, to order 8T,

k(fi>) = 7 T M + Wi 7\<»)- (3-7)

Inverting the FT gives
r
\
Jo

(3.8)

and T(x, y) defined by (2.51) has the form

<*i f W * - * ' ) r~VyT(x'-y-z)yT(.z)dzdx', (3.9)
Jv Jo
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[14] Inertial viscoelastic contact problem 211

where T0(x,y) is the non-inertial limit given by [6,7]:

\~\T{x-xl)yT{x'-y)dx'. (3.10)= \
Jv
\
v

These relations allow us to write down (2.56), (2.58), (2.60) more explicitly and
consider their solution. This will be done in the next section under the assumption
that the viscoelastic functions are characterized by a discrete spectrum.

It is clear from (3.1)-(3A) that this type of expansion will be valid provided the
quantity pF2//I(co) is fairly small. The quantity /x(w) is generally smallest at the
low frequency (large time) limit so that a convenient criterion of the validity of
the velocity expansion is that pV2jp.(fS) be small.

4. Discrete spectrum

While the method described in the last section requires no special assumption
on the nature of the viscoelastic behaviour it is convenient to work it out in detail
for the standard discrete spectrum model. We let (AT(X), yT(x) have the form
[6,7]

N

— go %x) + 9(x) 2 gi e xP ( ~ a i *)>

(4.1)
N

y T(x) = h0 8(x) + 6(x) 2 ht exp (—^x),

where 6(x) is the unit step-function, zero for negative x, while the ai; fit are related
to the time constants for creep and relaxation as specified in [6, 7]. Also certain
relations exist between these and the constants giy ht which are consequences of
(2.5). These are explicitly given in [6]. The quantity T0(x,y) of (3.10) has the form
[6,7]

T0(x,y)= S -^F^pcy), (4.2)

where

Fi}{x, y) = exp ( - *lx + 1)+ft(j +1)), (4.3)

while the second term on the right of (3.9), which we denote by T^x,^), can be
shown to be given by

Ux,y) = 2 gi(TW + (y+ l)TW)Ft£x,y), (4.4)
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where

The relationships between the {git <x}) and the {hit jS,-} mentioned above have been
used in the derivation of (4.2). One finally has

where

T{x,y) = | &(/§> + /#' ̂ \Fi}(x,y), (4.6)

(4.7)

The quantity A(x) of (2.43) has the form

N

A(x)= S^&Cftexp(-aix), (4.8)

as in [7], where

r-i
Ck= exp (ak y) (« (y) — d(y)) dy, (4.9)

J-00

since the delta function in m^x) given by (3.5) does not contribute for | * | < 1 .
The polynomial q(x) has the form

N
(4.10)

where [6]

m d(x)
di(x)= S C - I ) * - ^ , (4.11)

fc=0 a

the bracketed superscript indicating differentiation.
It follows from (2.53) that

K(x,x') =

where

dy, (4.13)
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an integral which is evaluated in Appendix 1 of [7] to be

f1 (A(y+l) + B)
E(x', Pj) = — Pj exp (jS3oc) exp( — p3-y)—'— ———f(y)dy + Ajf(x), (4.14)

where

(4.15)

the functions W^_i0(2j3^) and so on being confluent hypergeometric functions.
Note that K(x, x') given by (4.12) is of the standard separable form, that is consists
of a sum of products of functions kW, &|2) of x,x' individually. When the kernel
has this property a linear integral equation may be transformed into algebraic
form provided that the inhomogeneous term is expressible as a sum of the k^K
This is assured in our context if T(x,y) has the separable form. By following a
line of argument essentially identical to that in [7], one can show that (2.56)
becomes

where

(4.17)

508, a) = T(l - 6) {-ji- WM(2/3) M9_i>0(2a) - ^ j

the functions Mfl t(2a) and so on being the other confluent hypergeometric functions
and

jys^M^^e ^ (418)

where £(x,]83) is given by (4.14). The relation (4.16) is not as simple as the corre-
sponding one in [7] because the second term on the left prevents cancellation of the
factor operating on N^, N^K From a relation given in Appendix 1 of [7] one can
show that

J j 5(/3, a) = - SOS, a) + SJHP, a), (4.19)
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where

tf, a) = T(l - 9) 6 [ ^ w lj ^ p , i M

(4.20)
so that (4.16) becomes

fc,J=lafc-/

3 = 1

where

, (4.21)

Note that the fact that <j>{x) is a first order quantity has been used in writing (4.22).
Also t\f may be replaced by its zeroth order term when multiplying the term
containing </>(*) in N^2). One may achieve slight simplication of these equations
by decomposing the Q into a non-inertial part and a first order inertial correction.

It remains to express the last term on the left of (4.21) more explicitly. This
involves evaluation of <f>(x) defined by (2.40) and given here by

(4.23)
t

The quantity po(x) may be deduced from results in [7] to be:

where B(x) is given by (A. 14) and where the Q may be replaced by those obtained
when inertial effects are neglected, while

F _
i SiSin 77

6Meii(2a,)
a,, sin TT8

It is not possible to evaluate the integrals occurring in these expressions explicitly.

https://doi.org/10.1017/S0334270000002034 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002034


[18] Inertial viscoelastic contact problem 215

However, <f>(x) can be evaluated numerically from (4.23), (4.24) as can E(x,fij)
given by (4.14), allowing numerical evaluation of the second integral in (4.18).

The equations (4.21) together with the two conditions (2.58), (2.61) constitute a
system of equations for the Q and the contact length parameters a, b. These can in
general only be solved numerically.

More explicitly Vls V2 of (2.59), (2.62) are given by

V2=

(4.26)
N

The quantities Jx, I2 can be evaluated numerically. They, along with the extra
terms in (4.21), constitute the inertial corrections to the results of [7]. Once the Q
and a, b are known, the quantity fD of (2.65) may be evaluated as can the pressure
given by (2.64).

5. Cylindrical punch

This section deals with the case where the punch shape is cylindrical or parabolic.
The steps and results are closely analogous in many respects to those of the corre-
sponding section in [7]. Initially, no assumption will be made about viscoelastic
behaviour. Ultimately, however, the discrete spectrum model will be used for
illustration. This punch shape corresponds to m = 1 in (2.41) so that

U'(x) = d(x) = d0+d1x, \x\<l, (5.1)

where, in terms of R, the cylinder radius

_b+a

(5.2)
b-a

The polynomial q(x) of (2.44) has the form

, (5.3)
where

<7o = 4 > ( 2 o - W - W * ) S i ,
(5.4)
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the quantities So, Sx being given by

C 00

0 J o li"F X

1 Jo Jo

where a is defined by (2.27) while G^t) is the relaxation function for shear, closely
related to n(t) [6]. The polynomial B(y) of (A. 14) has the form

B(y) = <lo- kq± +? i ( j +1), (5.6)

where

£=1-20. (5.7)

The subsidiary conditions (2.58), (2.61) become in this case

Vi = -qo+qik, (5.8)
and

•y,T

(5.9)

The relation (5.9) may be written as

go d~ = V2+qo+<li 8> (5-10)

where d1Q is the quantity dx in the limit of zero viscoelasticity and neglect of inertial
effects, defined by

Ty (5-n)

while g0 is the short-time limit of the shear modulus.
Little further can be said about (2.56) without specific assumptions about

viscoelastic behaviour. The expression (2.65) forfD becomes [7]

/D = ~do — dlk + —[-p-\ (V3+q0 — \q±k), (5.12)

where

sin7T#

2n6(l-&)]_.
(5.13)
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In the case of a discrete spectrum (5.8) and (5.9) become, by virtue of (4.26),

^ (5.15)

= * c ^ M (2 )+/2+%+?iff> (516)

while (2.56) takes the form (4.21) with

(5.17)

where E(x,Pj) is defined by (4.14). These relationships may then be solved
numerically for the Q,a,Z>, so that/j, given by (5.12) with

| (5.19)

may be calculated, as also may p(x) given by (2.64), though the latter task is
rendered more subtle by the singular kernel and the fact that the terms involving
<f>(x) have to be handled numerically. Building in the boundary condition (5.15)
gets rid of explicit singularities apart from that occurring in the kernel.

Note that po(x) given by (4.24) becomes with the help of (5.6)

Also So, Sx defined by (5.5) become in the discrete spectrum case

2 ,t=i <H
(5.21)

N

i = i

Equations (4.16), (5.15), (5.16) may be solved numerically for the Cita,b with-
out any difficulties in principle. However, the details are extremely complex, far
more so than in the non-inertial case. It would be somewhat easier though less
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interesting to solve an inverse problem as was done in [7]. However, the details
here are again far more complex and involve nothing new. By making a different
kind of approximation much simpler solutions will be derived in the next section
which allow parameters of interest to be evaluated numerically with considerably
less effort.

The results of this section will not find much application to the building of
general models of frictional processes because of their complexity and of course
because of the idealized nature of the problem. It is more in specific engineering
situations where the input parameters are largely specified that they may be of
interest.

It is possible that the formalism described in Section 3 might prove simpler for
a parametrization of viscoelastic behaviour different to (4.1). This point will not
be examined further here.

6. Small viscoelasticity approximation

The second type of approximation considered is to let fi(t), A(?) have the form

(6.1)
«),

where e^t), e2(t) are assumed small. Then it follows that

A H = fo(1+«i(w))>
(6.2)

AH = /o(l+£2(a0).
Recalling (2.21) we have

Ao (6.3)

where
Ao = *iMla-*-o.

(6.4)

These coefficients are independent of OJ. More explicitly, they have the following
form (see (2.19)):
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where (see (2.13), (2.16))

5 = ^

(6.6)

and (see (2.20))

-^03 = 1 ~ 2"0
Also

where

Similarly,

A2

^03

where

T^ &y y x i *^-m ^*ft^^^^*n

(6.8)

g2° ,. (6.9)

(6.13)
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Therefore we write k^x), i = 1,2, of (2.26) in the form

kl(x)=D^S(X) + ri(x)), (6.14)
where

^iDiie}(ax), (6.15)

the parameter a being given by (2.27). It is straightforward if lengthy to check
from (6.14) that in the limit of zero viscoelasticity (2.30) reduces to the equation
given by Galin [4] in the form expressed in terms of Lame constants, though not
in the form in terms of Young's modulus and Poisson's ratio, due to an error of
sign in his equation (9.45). Clearly also from (6.14), k2(x) has the form of (2.31)
and the analysis subsequent to that equation goes through. In particular one has
(2.34) but with c replaced by

c^~fDw, (6.16)

and 7] replaced by unity since that parameter was introduced in order to make the
treatment of the small velocity approximation correspond closely to the results
of [7]; it would serve no purpose here. Therefore one has the correspondence

m1(x) = -k1(x),
(6.17)

m2(x) =

The quantity lx(x) of (2.48) has the form

li(x) = —±-(8(x)-ri(xy), (6.18)
•^10

so that T(x,y) of (2.51) has the form

T(x,y) = rx(x-y), (6.19)

which is first order in viscoelasticity. Therefore the first term on the right of (2.56)
may be neglected. Also, from (6.17), (2.40)

(6.20)

where po(y) is now the pressure distribution in the elastic limit which may be
seen, for example from (4.23), to be

where B0(x) is given by (A. 14) but with q(x) replaced in (A.I) by

o (6.22)

The quantity 6 is given by (2.55) but with cx replacing c\r\.
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Clearly <f>(x) is first order in viscoelasticity so that the second term on the right
of (2.57) may also be neglected. One therefore has from (2.56)

—n*
This explicit expression may be substituted into (2.58), (2.61) which may be solved
to first order for a, b thus completing the solution. Formally the equations and
results are precisely analogous to the small viscoelasticity results of [7] and so
need not be repeated in detail here. The only difference of any consequence is
that Vit i= 1,2,3, of (2.59), (2.62) and (5.13) have the extra terms It, i= 1,2,3.
Only the expression forfD in the case of a cylindrical punch will be quoted here:

/z> = -3^+^3-^X1], (6.24)

where (see (5.5), (5.11))

r (6-25)
./o

\ (6.26)

while Vz is given by (5.13) with

f ~ 1 ( 6 . 2 8 )f
and <f> is given by (6.20). Note that (—Z>10) has been replaced by Xo m (6.28). This
results only in second order errors. A similar substitution is also made below.
In the case of a discrete spectrum

N

rlx) = £ rtj exp ( - a, x), 1= 1,2. (6.29)

The summation is presumed to include both the time constants for shear and bulk
if these are different. For this case V3 in (6.24) becomes

»^Q(a,, 0)1 (6.30)

where
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In writing (6.30) the relations

l (6.32)

have been used. The quantity Xi in (6.26) has the form

N r .
^ (6-34)

i-l ai

to first order. Therefore the viscoelastic part of fD is characterized completely
by the two functions

A(a> e) = I ( , _

which was already isolated in [7], and Q(a, 6) defined by (6.31).
Explicitly, the expression for/p in the case of a discrete spectrum is

fo = -idiek+di£ - ( / »»»««(«* . 0)-/yA(«,, 6)). (6.36)

It may be shown with the help of (6.5)-(6.15) that in the non-inertial limit, when
ex(x) and e2(x) are equal, (6.36) reduces to the corresponding result in [7]. Note
that unless e^x), e2(x) are equal then, even in the non-inertial limit, the quantities
r2j are not zero so that the first term of the summation in (6.36) still contributes.
Equivalently, the last term in (2.30) is an integral rather than simply proportional
to pressure. This integral was the origin of much of the extra complexity in the
present paper.

The summation term in (6.36) does not however contain only hysteresis contri-
butions. This may be deduced from the fact that

limn(a,g) = | ^ i
2 ^ ) , (6.37)

and the observation that the large a limit corresponds to the zero velocity limit.
This implies that in the zero velocity limit the summation term in (6.36) does not
vanish as one would expect for the hysteretic contribution. One can, however,
reorganize the expression in such a way that the summation term does vanish at
large a. This can be done by means of a redefinition of 9, replacing that based on
(6.16), (6.32). Effectively this amounts to adding a term proportional to p(x) to
both sides of (2.34). Specifically, let D20 be replaced by

AL= [\{x)dx,!\(x)dx, (6.38)
Jo
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which is the large time limit of the combination of derivatives of viscoelastic
functions contained in k2(x). Let

1

One must replace <f>(x) in the analysis by

<k(.x) = <f>(x)-fD2Op0(y) \ r2{x)dx. (6.40)
Jo

The final result for the general case is given again by (6.24) but with <f>(x) in V3

replaced by ^(x), and du, k replaced by

(6.41)

For the case of a discrete spectrum one obtains

fn = -UlVK-dg L -(rwA(a,, 0J)+/A»rwn(oV, 6j), (6.42)
3 j = l OCj

where

This is plotted on Fig. 1 for various values of 0. Note that in contrast to A(a, 6)
it does not tend to zero at small a, that is at large velocities. One may check that
(6.42) is identical to (6.36) by Taylor expansion of the viscoelastic terms in the
factors involving 6X in d\£.

It is of interest to compare this present discussion with a similar one in the
final paragraphs of the corresponding section of [7].

From the relationship between the coefficients of the exponentials in e-^x),
ez(x) and the physical viscoelastic coefficients [6] it may be deduced that the
quantities ri3-/a3-, i,j = 1,2, are negative. This relies upon the fact that the ratios
Aj/Ao' U= 1»2» a r e either positive or small enough not to influence the sign
(that is proportional to K defined by (6.9)), which follows from (6.8), (6.12), (6.13),
at least in various limiting cases. However, the quantity D20 is negative, while
n(a, 6) is positive. This means that the first term in the summation on the right of
(6.42) is positive while the second term is negative. If, in fact, the summation
term in (6.42) is due to hysteresis loss it is presumably true that the sum is always
positive since on physical grounds the hysteretic component of friction must be
positive. However, the present author has not been able to prove this in general.
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8
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LOG(a)

Fig. 1. Plot of the function IT (a, 0) for various values of 0.

It may be that a separation into hysteretic terms and others is simply not possible
to achieve in general. From this viewpoint the summation term in (6.42) would
represent the specifically hysteretic contribution only at very low velocities. Also
the negative contribution in that term would present no problem in principle.

Note that the last term in (6.36) is definitely positive.
In Fig. 2, fD/dle is plotted for various values of 0, together with the corre-

sponding curves neglecting inertial effects. The independent variable is the ratio
of velocity to the speed of transverse waves in the elastic limit. The input friction
values range from 0.1 to 5.0 while Poisson's ratio in the elastic limit was taken to
be 0.4. The corresponding values of 6 are shown. Only one term in the summation
is included with the ratio of elastic to viscoelastic coefficient in /x(f), A(<) respectively
taken to be 0.1, 0.05. The two time constants are taken to be equal while the
dimensionless combination (b — a)/(2c! '̂) T), where r is the common time constant,
is given a value 0.1. The agreement between the non-inertial approximations and
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Fig. 2. Plot of the quantity fi>/du given by (6.36) for a range of input friction values. See text
for details of input parameters. Broken lines give non-inertial behaviour.

the more exact curves is good up to velocities of about Jc^". Above this the
non-inertial curves decrease slowly while the inertial curves increase and in fact
become infinite at V = c^K This singularity is, however, probably an aberration
resulting from the approximation made rather than a reflection of a real physical
breakdown in the system. More specifically, it is clearly invalid to expand about
the elastic limits of, for example, A2 given by (2.20), as V/c%l)-+l. One would
perhaps expect a peak in the curves in this limit but with an actual singularity
avoided by the presence of small imaginary terms in cT(a>) due to viscoelasticity.
There is no singularity in the first term on the right of (6.42) which is consistent
with the above discussion. This term is negative, which, as pointed out in [7],
can cause fD as a whole to be negative.

The formulae given in this section and indeed in the paper as a whole are valid
for velocities below c^" and break down as this value is approached. The question
of how they must be modified to apply to the supersonic case will not be examined
here.

H

https://doi.org/10.1017/S0334270000002034 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002034


226 J. M. Golden [29]

7. Conclusions

It has been shown that the method developed in [6, 7] can be extended to include
inertial effects at least in an approximate sense. The formalism has been worked
out in detail to first order in inertial terms with viscoelastic terms fully included,
but where bulk and shear viscoelastic functions are assumed to be proportional.
The resulting equations are substantially more complex than the corresponding
ones in [7]. For the case of a discrete spectrum and a smooth punch, the detailed
equations are given by (4.21), (4.26), the latter referring to (2.58), (2.61). For a
cylindrical punch the important relations are (5.15)-(5.18).

As in previous papers, an approximate formalism is also worked out based on
the assumption that viscoelastic effects are small compared with elastic effects.
As before, this makes it possible to give explicit expressions for all quantities of
interest. Inertial effects are incorporated exactly in these results. In particular the
deformation coefficient of friction is given by (6.24) in the general case and (6.36),
(6.41) for a discrete spectrum.
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Appendix

In Appendix 2 of [7] integrals of the type

x-y
were evaluated, where q(x) is a polynomial of degree m and/(x) is given by (2.54).
In Appendix 2 of [6] an integral closely related to H{y,^) was evaluated. An
alternative and more elegant method of handling this special case is to expand
q(x) in terms of Chebyshev polynomials and use the results of, for example [5].f
This approach will be generalized here to handle H(y, 0). The orthogonal
polynomials corresponding to the weight function/(x) are the Jacobi polynomials

x) (see [2]). The polynomial q(x) may be expanded in terms of these:

m
q(x)= 2<

| I wish to thank A. H. England for drawing my attention to this point.

https://doi.org/10.1017/S0334270000002034 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002034


[30] Inertial viscoelastic contact problem 227

where [8]

This may easily be evaluated in general if g(x) is expressed in the form

<7(*)=2>r(l+*)•-, (A.4)

and the integral [2]

is used. Note that this is zero if r < n. Using the integral [3]

(A.6)

where g(y) is given by (2.54) and Q{~e-6)(y) is a Jacobi function of the second kind
[2], one has that

H(y, 0) = - - S cB^)GJr^>CF), b|> 1
IT n -0

(A.7)

The function PJ^^^'CJC) is given explicitly by [2]:

so that, for example,

pjre-e\x) = i,
(A.9)

and so on. The function Q{~m(x) is given explicitly by [2]:

- n . l + e.Kl-*)) , | x |> l , (A.10)
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where F{a,b,c,z) is the standard hypergeometric function. However, also from
[2] one has

,_i,,l + 0,Kl-*)), (A.11)

giving

It follows from (A.7) that

1

where

B(y) = S ( - \)ncnPi-°-<>X-x). (A.14)

One deduces that

y\<\. (A.15)

These results are in some respects more explicit and convenient than those of
Appendix 2 of [7].
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