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Abstract

Let X1, X2, . . . , Xn be independent random variables uniformly distributed on [0, 1].
We observe these sequentially and have to stop on exactly one of them. No recall of
preceding observations is permitted. What stopping rule minimizes the expected rank
of the selected observation? What is the value of the expected rank (as a function of n)
and what is the limit of this value when n goes to ∞? This full-information expected
selected-rank problem is known as Robbins’ problem of minimizing the expected rank,
and its general solution is unknown. In this paper we provide an alternative approach to
Robbins’ problem. Our model is similar to that of Gnedin (2007). For this, we consider a
continuous-time version of the problem in which the observations follow a Poisson arrival
process on R

+×[0, 1] of homogeneous rate 1. Translating the previous optimal selection
problem in this setting, we prove that, under reasonable assumptions, the corresponding
value function w(t) is bounded and Lipschitz continuous. Our main result is that the
limiting value of the Poisson embedded problem exists and is equal to that of Robbins’
problem. We prove that w(t) is differentiable and also derive a differential equation for
this function. Although we have not succeeded in using this equation to improve on
bounds on the optimal limiting value, we argue that it has this potential.
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1. Introduction

1.1. Robbins’ problem

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed (i.i.d.) obser-
vations, sampled from the uniform distribution on [0, 1]. A decision maker observes the Xks
sequentially and has to stop on exactly one of them. No recall of preceding observations is
permitted. What stopping rule minimizes the expected rank of the selected observation? What is
the value v(n) of the minimal obtainable expected rank and what is its limit, v = limn→∞ v(n)?

Throughout the paper, we will refer to this full-information expected selected-rank problem
as Robbins’ problem. This denomination was coined at the International Conference on
Sequential Search and Selection in Real Time (Amherst, 1990) when Herbert Robbins brought
the problem to public attention. Although the corresponding no-information expected-rank
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2 F. T. BRUSS AND Y. C. SWAN

problem was solved in 1964 (see Chow et al. (1964)), some fundamental questions related
to the full-information version are still open (see the survey paper Bruss (2005) and the
references therein). This lack of progress is mainly due to the optimal strategy being fully
history dependent, which means that the decision to stop on an arrival Xk depends on the full
set of values {X1, . . . , Xk−1}. The problem is therefore intrinsically infinite-dimensional, and
any hope for progress lies in finding an alternative approach that bypasses this complexity.

Recently, Gnedin (2007) proposed a limit model for optimal stopping problems with rank-
dependent loss, in which the process is chosen to be a homogeneous Poisson point process
in the strip [0, 1] × R

+ with intensity measure dtdx. Hence, in this model, time runs from
0 to 1, and there are infinitely many arrivals and a well-defined smallest arrival in any strip
[s, s +�s]×R

+. With this model, Gnedin obtained bounds on the stopping value for Robbins’
problem and, in particular, showed that the full history dependence of the optimal decision
process persists in the limit.

Our model is similar to Gnedin’s in that we also consider a version of Robbins’ problem
for a random number of arrivals occurring according to a Poisson process. Our model is not a
limit model, however. Our goal is different. We aim to construct an alternative approach which
allows for direct comparison with Robbins’ problem for finite n.

1.2. The Poisson embedded Robbins’ problem

The problem is as follows. A decision maker observes opportunities occurring according
to a planar Poisson process of homogeneous rate 1 on R

+ × [0, 1]. Here the first coordinate
stands for time and the second for the corresponding value. He inspects each arrival and has
to choose exactly one before a given time t > 0. Decisions are to be made immediately upon
inspection, and no recall of preceding observations is permitted. The loss incurred for selecting
an arrival of value X is defined as its absolute rank, that is, the number of observations in [0, t]
which are not larger than X. If no decision has been reached before the given time t then the
loss is equal to some nonnegative function of t , say �(t). At all times the decision maker has
the knowledge of the full history of the process, and his objective is to use a nonanticipating
strategy which minimizes his expected loss.

Let (T1, X1), (T2, X2), . . . denote the point arrival process. The random variables T1 ≤
T2 ≤ · · · are the arrival times of a homogeneous Poisson counting process (N(s))s≥0 of rate 1
with associated i.i.d. random values X1, X2, . . . . With this notation, the absolute rank of the
kth arrival Xk is defined with respect to t by

R
(t)
k =

N(t)∑
j=1

1{Xj ≤Xk},

where the sum is set to 0 if N(t) = 0. The loss incurred for selecting Xk at time Tk is then

R̃
(t)
k := R

(t)
k 1{Tk≤t} +�(t) 1{Tk>t}, (1.1)

and the objective of the decision maker is to use a stopping time τ which minimizes E(R̃
(t)
τ ).

Since we only allow stopping upon inspection, the set of adapted strategies is restricted to the
collection T of all random variables with values in the set {Tr}r≥1 of arrival times of the point
process, which satisfy {τ ≤ s} ∈ Fs , where

Fs = σ {(N(u))0≤u≤s , (T1, X1), . . . , (TN(s), XN(s))},
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and where it is understood that Fs = σ {(N(u))0≤u≤s} for all s for which N(s) = 0. Such
stopping rules are called ‘canonical stopping times’ in Kühne and Rüschendorf (2000) or
Gnedin (2007).

Remark 1.1. From now on we will always use the notation {τ = k} instead of {τ = Tk} to
denote the event that the decision maker selects the kth arrival. Hence, the notation Rτ , Xτ ,
and Tτ are well defined and will be used systematically throughout the paper.

Our Poisson embedded Robbins’ problem consists in studying the value function w(t)

defined by

w(t) = inf
τ

E(R̃(t)
τ ) = inf

τ
E(R(t)

τ 1{Tτ ≤t} +�(t) 1{Tτ >t}),

including its asymptotic value w = limt→∞ w(t), if it exists, as well as the stopping rule τ �
t

which achieves this value.

Remark 1.2. The function �(t) reflects the loss incurred for selecting no observation before
time t . We call it the penalty function. Although we keep this function unspecified throughout
the text, we suppose that �(0) = 0 and that �(·) is increasing and differentiable with bounded
derivative. Hence, this function is Lipschitz continuous and satisfies

lim
t→∞

�(t)

t
≤ κ for some κ ∈ (0, ∞). (1.2)

Remark 1.3. Note that, for all τ , the expected rank of an arrival selected by τ before the
horizon t satisfies

E(R(t)
τ ) = E(E(R(t)

τ | FTτ )) = E(rτ + (t − Tτ )Xτ ),

where rk = ∑k
j=1 1{Xj ≤Xk} is the relative rank of the kth observation. Hence, although the

absolute ranks R
(t)
k are not measurable with respect to FTk

, the problem of minimizing the loss
among all adapted stopping rules is well defined via that of minimizing E(rτ + (t − τ)Xτ ), as
already seen in Bruss and Ferguson (1993) and Assaf and Samuel-Cahn (1996).

2. Properties of the value function

In this section we prove that the Poisson embedded problem is well defined and that the
corresponding value function w(t) is bounded and Lipschitz continuous for sufficiently large t .

Let τ ∈ T , and let wτ (·) be the expected loss incurred for using τ , i.e. wτ (t) = E(R̃
(t)
τ ).

Some interesting results are already obtained by considering wτ (t) for specific choices of τ

and using the bounds

0 ≤ w(t) ≤ wτ (t).

Remark 2.1. Note that, for all t such that �(t) ≥ 1, the value function satisfies w(t) ≥ 1.

First consider the stopping rule τ that stops on the first arrival after time t . Clearly, wτ (t) =
�(t), and, thus, 0 ≤ lim supt→0+ w(t) ≤ lim supt→0+ �(0) = 0. Hence, although the problem
is meaningless for t = 0, we see that, by posing w(0) = 0, the value function w(t) can be
continuously prolonged at t = 0.
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2.1. Memoryless threshold rules

A memoryless threshold rule τ is defined as

τ = inf{i ≥ 1 such that Xi ≤ ϕ(Ti)} (2.1)

for some real-valued function ϕ(·) defined on R
+. Such rules are called memoryless because

decisions depend only on the values of the arrivals and not otherwise on the history of the
process. They have been studied in the discrete setting in Bruss and Ferguson (1993), (1996)
and Assaf and Samuel-Cahn (1996), and in a continuous-time limit model in Gnedin (2007).

Although we can work in all generality with definition (2.1), it is relevant at this point to
consider the threshold functions

ϕ(s) := ϕt,c(s) =
⎧⎨
⎩

c

t − s + c
if 0 ≤ s ≤ t,

1 otherwise.

For all c > 1, the corresponding memoryless threshold rule is well defined and satisfies P(Tτ <

∞) = 1. Also, since such a strategy does not stop before time s unless there has been an arrival
below the threshold before that time, we immediately obtain from the planar Poisson process
assumption

P(Tτ > s) = e−µ(s),

where µ(s) = ∫ s

0 ϕ(u) du, s ≤ t . This enables us to compute the associated value wτ (·)
explicitly.

Conditioning on the time of first acceptance, we obtain

wτ (t) =
∫ t

0
E(R(t)

τ | Tτ = s)ϕ(s)e−µ(s) ds + �(t)e−µ(t). (2.2)

Conditionally on the event {Tτ = s}, the value of the accepted arrival is uniformly distributed
on [0, ϕ(s)]. Hence,

E(R(t)
τ | Tτ = s) = 1

ϕ(s)

∫ ϕ(s)

0
E(R(t)

τ | Tτ = s, Xτ = x) dx.

Now consider the expected rank E(R
(t)
τ | Tτ = s, Xτ = x). The event {Tτ = s, Xτ = x}

implies that there have been no previous smaller arrivals that were under the threshold. There-
fore, the expected rank of the selected arrival will depend only on the expected number of
arrivals in A1 and A2, as illustrated in Figure 1.

Straightforward computations then yield

E(R(t)
τ | Tτ = s, Xτ = x)

=

⎧⎪⎨
⎪⎩

1 + x(t − s) if 0 ≤ x ≤ ϕ(0),

1 + x(t − s) +
∫ ϕ−1(x)

0

(
x − ϕ(u)

1 − ϕ(u)

)
du if ϕ(0) ≤ x ≤ ϕ(s),

(2.3)

where the second part of (2.3) holds because, conditionally on the event {Tτ = s}, the value
of an arrival occurring at some time 0 ≤ u ≤ ϕ−1(x) is uniformly distributed on [ϕ(u), 1].
Integrating (2.3) we obtain

E(R(t)
τ | Tτ = s) = 1 + 1

ϕ(s)

(∫ ϕ(s)

0
x(t − s) dx +

∫ ϕ(s)

ϕ(0)

∫ ϕ−1(x)

0

x − ϕ(u)

1 − ϕ(u)
du dx

)
,
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Figure 1: Conditionally on {Tτ = s, Xτ = x}, the expected rank of Xτ = x is 1 plus the expected
number of arrivals in A1 and A2.

and, thus, from (2.2),

wτ (t) = 1 + (�(t) − 1)e−µ(t) + 1

2

∫ t

0
ϕ(s)2(t − s)e−µ(s) ds

+ 1

2

∫ t

0

∫ s

0

(ϕ(s) − ϕ(u))2

1 − ϕ(u)
due−µ(s) ds.

Now choose c > 1. Computing the above expression explicitly with ϕ(s) = c/(t − s + c),
we easily see that

(�(t) − 1)e−µ(t) → 0 as t → ∞,

i.e. the effect of the penalty function vanishes for large t . We can also check that wτ (t) is
increasing for sufficiently large t and satisfies

lim
t→∞ wτ (t) = 1 + c

2
+ 1

c2 − 1
.

This last expression is minimal for c = 1.9469 . . . and the corresponding limiting value is
2.331 82 . . . . Hence, since w(t) ≤ wτ (t) for all t , we obtain the following result.

Proposition 2.1. The value function of the Poisson embedded Robbins’problem is bounded on
R and satisfies

1 ≤ w(t) ≤ 2.331 83

for all sufficiently large t .

These values (the upper bound and the minimal c achieving this bound) are identical to those
obtained in Bruss and Ferguson (1993) and Assaf and Samuel-Cahn (1996) for the discrete
problem. They also coincide with those obtained in Gnedin (2007) for a Poisson embedded
limit version of Robbins’ problem. This is one of the common features of the original problem
and the Poisson version. However, with respect to monotonicity of the value function, our
result is much weaker.

2.2. Continuity of the value function

Lemma 2.1. For all sufficiently large t and all δ > 0,

w(t + δ) − w(t) ≥ −3δ(δ + 1). (2.4)
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Proof. Consider the Poisson embedded problem with horizon t +δ. Recall the notation R̃
(t)
k

from (1.1). By conditioning on the number N(δ) of arrivals in (0, δ) we obtain

w(t + δ) ≥ e−δ inf
τ

E(R̃(t+δ)
τ | N(δ) = 0) + δe−δ inf

τ
E(R̃(t+δ)

τ | N(δ) = 1), (2.5)

where we have neglected the case N(δ) ≥ 2.
We first consider the first term appearing on the right-hand side of (2.5). From the homo-

geneity assumptions on the arrival process, we see that solving the Poisson embedded Robbins’
problem on [0, t + δ] with no arrivals before time δ is equivalent to solving the same problem
on [0, t] with penalty �(t + δ). Since �(·) is increasing, this implies that

inf
τ

E(R̃(t+δ)
τ | N(δ) = 0) ≥ w(t). (2.6)

Next consider the second term of (2.5). By conditioning on the value X of the (only) arrival
in (0, δ) we obtain

inf
τ

E(R̃(t+δ)
τ | N(δ) = 1) = inf

τ

∫ 1

0
E(R̃(t+δ)

τ | N(δ) = 1, X = x) dx

≥
∫ 1

0
inf
τ

E(R̃(t+δ)
τ | N(δ) = 1, X = x) dx. (2.7)

From the optimality principle we know that an optimal action, given {X = x}, is to select this
arrival if and only if its expected rank is smaller than the optimal value obtainable by refusing
it. Selecting x yields an expected loss of 1 +xt and refusing it yields an expected loss given by

Et (x, δ) := inf
τ,Tτ >δ

{E(R̃(t+δ)
τ | N(δ) = 1, X = x)},

where the infimum is taken over all strategies for which Tτ > δ almost surely. Hence,

inf
τ

E(R̃(t+δ)
τ | N(δ) = 1, X = x) = min{1 + xt, Et (x, δ)}. (2.8)

As above, the homogeneity of the arrival process and the hypothesis on �(·) guarantee that
Et (x, δ) ≥ w(t), so that, from (2.7) and (2.8),

inf
τ

E(R̃(t+δ)
τ | N(δ) = 1) ≥

∫ 1

0
min{1 + xt, w(t)} dx. (2.9)

Combining (2.5), (2.6), and (2.9) then yields

w(t + δ) ≥ e−δw(t) + δe−δ

∫ 1

0
min{1 + xt, w(t)} dx. (2.10)

Now choose t sufficiently large to ensure that w(t) ≥ 1. Then there exists an x0 ∈ [0, 1) for
which 1 + x0t = w(t) and, thus,

∫ 1

0
min{1 + xt, w(t)} dx =

∫ x0

0
(1 + xt) dx + w(t)(1 − x0).

From (2.10), this then yields

w(t + δ) ≥ e−δw(t) + δe−δ

(
w(t) − (w(t) − 1)2

2t

)
.
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Now use e−δ ≥ 1 − δ to obtain

w(t + δ) ≥ w(t) − δ2w(t) − δe−δ (w(t) − 1)2

2t
.

Since w(t) ≤ 3 for sufficiently large t , this implies that

w(t + δ) ≥ w(t) − 3δ2 − 2δ
e−δ

t
,

and (2.4) follows.

Lemma 2.2. There exists a constant L > 0 such that, for all t and δ positive,

w(t + δ) − w(t) ≤ Lδ. (2.11)

Proof. Let Kt be the subset of T consisting of all strategies which disregard any event occur-
ring in (t, t + δ). Clearly, w(t + δ) = infT E(R̃

(t+δ)
τ ) ≤ infKt E(R̃

(t+δ)
τ ). Now take τ ∈ Kt .

Then 1{Tτ ≤t+δ} = 1{Tτ ≤t} almost surely. Since the rank of the selected arrival (evaluated with
respect to the number of observations in (0, t + δ)) cannot increase from t to t + δ by more
than the number of arrivals in (t, t + δ), this yields

E(R(t+δ)
τ 1{Tτ ≤t+δ}) ≤ E(R(t)

τ 1{Tτ ≤t}) + δ.

This inequality holds for all τ ∈ Kt and, thus,

w(t + δ) ≤ inf
Kt

{E(R(t)
τ 1{Tτ <t}) + �(t + δ) P(Tτ > t)} + δ.

Adding and subtracting infKt {(�(t)−�(t + δ)) P(Tτ > t)} to the right-hand side of the above
equation, and using the fact that the sum of infima is smaller than the infimum of a sum, we
obtain

w(t + δ) ≤ inf
Kt

{E(R(t)
τ 1{Tτ <t}) + �(t) P(Tτ > t)}

+ (�(t + δ) − �(t)) sup
Kt

P(Tτ > t) + δ

= inf
Kt

E(R̃(t)
τ ) + (�(t + δ) − �(t)) + δ.

Since, by definition, infKt E(R̃
(t)
τ ) = w(t), we obtain

w(t + δ) ≤ w(t) + (�(t + δ) − �(t)) + δ.

The hypothesis on �(·) gives (2.11).

Lemmas 2.1 and 2.2 immediately yield the following theorem.

Theorem 2.1. The value function w(t) is continuous on R and Lipschitz continuous on (t0, ∞)

for some sufficiently large t0.
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3. Existence of the asymptotic value

Although the Poisson embedded problem is interesting in its own right, we have developed
this model in order to study the original n-arrival Robbins’ problem. Our aim in this section is
to show that the Poisson embedded model is the right setting for this endeavor.

Recall the statement of the original Robbins’ problem from Section 1. For all n, its value is
defined as

v(n) = inf
τ

E(R(n)
τ ),

where the infimum is taken over all adapted strategies and R
(n)
k = ∑n

j=1 1{Xj ≤Xk}. Bruss and
Ferguson (1993), (1996) and Assaf and Samuel-Cahn (1996) proved that, for each n, there
exists an optimal strategy τ �

n for which E(R
(n)
τ�
n

) = v(n), that v(n) is increasing, and that v(n)

converges to a limit v satisfying 1.9 < v < 2.33.

Proposition 3.1. For all ε > 0, there exists a t� > 0 such that, for all t ≥ t�,

w(t) > v − ε.

Proof. Fix ε > 0, and consider the Poisson embedded problem with horizon t . Suppose
that the decision maker (say Q) is told in advance the number of arrivals which will occur in
[0, t]. Let wQ(t) be the corresponding expected optimal value. Since Q is facing our problem
with more information, he can only do better than us, so that

wQ(t) ≤ w(t). (3.1)

Conditioning on the number of arrivals in [0, t] yields

wQ(t) = inf
σ∈T̃

∞∑
k=0

P(N(t) = k) E(R̃(t)
σ | N(t) = k)

≥
∞∑

k=0

P(N(t) = k) inf
σ∈T̃

E(R̃(t)
σ | N(t) = k).

Now consider the minimal expected rank obtainable by Q conditionally on {N(t) = k}. On
the one hand, if k ≤ �(t), the best Q can do is apply τ �

k , the strategy that is optimal for exactly
k arrivals; hence, for all k ≤ �(t),

inf
σ∈T̃

E(R̃(t)
σ | N(t) = k) = v(k). (3.2)

On the other hand, if k > �(t), this equality does not hold since Q is solving Robbins’problem
for k arrivals with the knowledge that he can always obtain at the worst a penalty of �(t), i.e. he
is in a better position than a player in the discrete setting with k arrivals. However, we have

inf
σ∈T̃

E(R̃(t)
σ | N(t) = k) ≥ v(��(t)�) for all k > �(t). (3.3)

To see this, let vQ(k) = infσ∈T̃ E(R̃
(t)
σ | N(t) = k). The same half-prophet argument as that

used in Bruss and Ferguson (1993) to prove the monotonicity of v(n) applies in this setting,
and shows that vQ(k) must be an increasing function of k. Hence, for all k > �(t), vQ(k) ≥
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vQ(��(t)�), where �x� denotes the largest integer not greater than x. Thus, (3.3) holds.
Combining (3.1), (3.2), and (3.3), we obtain

w(t) ≥
��(t)�∑
k=0

P(N(t) = k)v(k) +
∞∑

k=��(t)�+1

P(N(t) = k)v(��(t)�). (3.4)

We know that v(k) increases to v. Hence, there exists an m0 = m0(ε) ∈ N such that
v(m) > v − ε for all m ≥ m0. The monotonicity of �(·) implies that there exists a t0 = t0(ε)

such that �(t) > m0 for all t ≥ t0. Therefore, from (3.4),

w(t) ≥ (v − ε)

∞∑
k=m0

P(N(t) = k) = (v − ε) P(N(t) ≥ m0) for all t ≥ t0.

Since P(N(t) ≥ m0) → 1 as t → ∞ for all m0, there exists a t1 such that, for all t ≥ t1,
P(N(t) ≥ m0) ≥ 1 − ε. Therefore, for all t ≥ max{t0, t1},

w(t) ≥ (v − ε)(1 − ε) = v + ε2 − (ε + vε),

and, thus, since v ≤ 3,
w(t) ≥ v − 4ε.

Corollary 3.1. If the limit w = limt→∞ w(t) exists then it satisfies w ≥ v.

To obtain an inequality in the other direction, we first need a preparatory lemma on the tail
probabilities for Poisson processes.

Lemma 3.1. Let N(n) be the number of arrivals of a Poisson process of rate 1 on [0, n]×[0, 1],
and let 1

2 < α < 1. Then
lim

n→∞(n P(N(n) < n − nα)) = 0. (3.5)

Proof. Here N(n) is a Poisson random variable of mean and variance n so that, by the central
limit theorem, (N(n) − n)/

√
n converges in law to a standard normal distributionN (0, 1). Now

choose some α between 1
2 and 2

3 , in order to ensure that nα−1/2 increases to ∞ as n → ∞
and that (nα−1/2)3/

√
n = n3α−2 decreases to 0 as n → ∞. Then we can apply a theorem on

normal approximation (see Feller (1968, p. 193)) to obtain

P

(
N(n) − n√

n
> nα−1/2

)
∼ 1√

2π

1

nα−1/2 exp

{
−1

2
(nα−1/2)2

}
. (3.6)

For sufficiently large n, we can then use the approximate symmetry of the distribution of
(N(n) − n)/

√
n to obtain, from (3.6),

P(N(n) < n − nα) = P

(
N(n) − n√

n
< −nα−1/2

)
∼ 1√

2π

1

nα−1/2 exp

{
−1

2
(nα−1/2)2

}
.

Hence, altogether,

n P(N(n) < n − nα) ∼ 1√
2π

n3/2−α exp

{
−1

2
(nα−1/2)2

}
<

1√
2π

n

exp{n2α−1/2} ,

which tends to 0 as n tends to ∞. This establishes (3.5) for all α ∈ ( 1
2 , 2

3 ), and the extension to
α ∈ ( 1

2 , 1) is immediate. Hence the result.
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Proposition 3.2. Let α ∈ ( 1
2 , 1) and t > 0. Define βt = �t − tα�, and let τ �

βt
be the optimal

stopping rule for the discrete problem with βt arrivals. Then, for all ε > 0 and all sufficiently
large t ,

w(t) ≤ v(βt ) + E(Xτ�
βt

)(tα + 1) + ε.

Proof. Any strategy for the discrete case with n arrivals can be extended in a natural way
to define a (suboptimal) strategy for the continuous case, so that we can consider τ �

βt
as a

stopping rule acting in continuous time on [0, t]. Let σβt denote this strategy, and let w̃(βt ) be
its corresponding value, i.e. w̃(βt ) is the expected rank obtained by using a strategy which is
optimal if and only if there are exactly βt arrivals before the horizon t . Conditioning on the
number of arrivals in [0, t], we obtain

w̃(βt ) = w̃(βt | N(t) < βt ) P(N(t) < βt ) + w̃(βt | N(t) ≥ βt ) P(N(t) ≥ βt ), (3.7)

where w̃(βt | E) denotes the expected loss under σβt conditioned on the event E.
First suppose that N(t) < βt . Since σβt acts on βt arrivals, there is a positive probability

that no arrival is selected within the given time. Hence, we must distinguish two cases. On the
one hand, if Tσβt

> t , the player loses the penalty. On the other hand, if Tσβt
≤ t , his loss is

given by some function E(R
(t)
σβt

| N(t) < βt ) ≤ v(βt ). This yields

w̃(βt | N(t) < βt ) ≤ v(βt ) P(Tσβt
≤ t) + �(t) P(Tσβt

> t),

and, thus, since v(·) is bounded,

w̃(βt | N(t) < βt ) ≤ �(t) + K

for some positive constant K . This last inequality, combined with the assumptions on �(·) (see
(1.2)) and Lemma 3.1, proves that

w̃(βt | N(t) < βt ) P(N(t) < βt ) <
ε

2
(3.8)

for sufficiently large t .
Next suppose that N(t) ≥ βt . Then, since the βt -optimal strategy stops almost surely not

later than the βt th arrival,

w̃(βt | N(t) ≥ βt ) = v(βt ) + E(Xσβt
(N(t) − βt ) | N(t) ≥ βt ). (3.9)

Now, given N(t) ≥ βt , Xσβt
is independent of N(t) and of Xβt+1, Xβt+2, . . .. Hence,

E(Xσβt
| N(t) ≥ βt ) = E(Xσβt

) = E(Xτ�
βt

),

and, thus, from (3.9),

w̃(βt | N(t) ≥ βt ) = v(βt ) + E(Xτ�
βt

)(E(N(t) | N(t) ≥ βt ) − βt ). (3.10)

Furthermore,

E(N(t) | N(t) ≥ βt ) =
∞∑

k=βt

k
P(N(t) = k)

P(N(t) ≥ βt )
≤ E(N(t))

1 − P(N(t) < βt )
.
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Now, since P(N(t) < βt ) → 0 as t → ∞, we know that

1

1 − P(N(t) < βt )
< 1 + 2 P(N(t) < βt )

for sufficiently large t . Therefore,

E(N(t) | N(t) ≥ βt ) ≤ E(N(t))(1 + 2 P(N(t) < βt )) = t + 2t P(N(t) < βt ),

and, from Lemma 3.1,

E(N(t) | N(t) ≥ βt ) ≤ t + ε

2

for all sufficiently large t . From (3.10), this yields

w̃(βt | N(t) ≥ βt ) ≤ v(βt ) + E(Xτ�
βt

)

(
t − βt + ε

2

)
,

and, thus, since t − βt ≤ tα + 1,

w(βt | N(t) ≥ βt ) ≤ v(βt ) + E(Xτ�
βt

)(tα + 1) + ε

2
(3.11)

for sufficiently large t .
Combining (3.7), (3.8), and (3.11), we obtain

w̃(βt ) ≤ v(βt ) + E(Xτ�
βt

)(tα + 1) + ε,

and, thus, since w(t) ≤ w̃(βt ),

w(t) ≤ v(βt ) + E(Xτ�
βt

)(tα + 1) + ε

for all sufficiently large t . This completes the proof.

From Corollary 3.1 and Proposition 3.2, we see that, in order to prove both the existence of
w and its equality with v, we need

lim
t→∞ tα E(Xτ�

βt
) = 0 for some α > 1

2 . (3.12)

For this, we will use the following theorem.

Theorem 3.1. Let τ �
n be the optimal strategy for the discrete n-arrival Robbins’problem. Then,

for all p > 1,

E(Xτ�
n
) ≤ E(Rτ�

n
)

( n∑
k=1

a
p
n,k

)1/p

, (3.13)

where

a
p
n,k = k2−p

(
n

k

) ∫ 1

0
xp+k−1(1 − x)n−k dx. (3.14)
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Proof. Conditioning on the ranks we obtain

E(Xτ�
n
) = E(E(Xτ�

n
| Rτ�

n
)) =

n∑
k=1

E(X(k)1{Rτ�
n
=k}),

where X(k) is the kth smallest order statistic of the sample X1, . . . , Xn. Note that the expectation
cannot be factorized. Applying Hölder’s inequality yields

E(Xτ�
n
) ≤

n∑
k=1

(E(X
p

(k)))
1/p(P(Rτ�

n
= k))1/q

for all p and q such that 1/p + 1/q = 1. Hence,

E(Xτ�
n
) ≤

n∑
k=1

k−1/q(E(X
p

(k)))
1/p(k P(Rτ�

n
= k))1/q .

Now let an,k = k−1/q(E(X
p

(k)))
1/p. Applying Hölder’s inequality this time to the sum on the

right-hand side of the above inequality for the same choice of p and q gives

E(Xτ�
n
) ≤

( n∑
k=1

a
p
n,k

)1/p( n∑
k=1

k P(Rτ�
n

= k)

)1/q

=
( n∑

k=1

a
p
n,k

)1/p

E(Rτ�
n
)1/q .

Since E(Rτ�
n
) ≥ 1 for all n, we obtain

E(Xτ�
n
) ≤

( n∑
k=1

a
p
n,k

)1/p

E(Rτ�
n
).

The known expressions for the moments of the kth order statistics then yield (3.14).

Now choose p to be an integer greater than 1. Computing the a
p
n,k explicitly, we obtain

a
p
n,k = k1−p n!

(n + p)!
(k + p − 1)!

(k − 1)! .

Applying Stirling’s approximation,

√
2πn

(
n

e

)n

e1/(12n+1) ≤ n! ≤ √
2πn

(
n

e

)n

e1/(12n),

we obtain
n∑

k=1

a
p
n,k = A(n, p)B(n, p),

where

A(n, p) =
√

n

n + p

(
n

n + p

)n

ep

(
1

n + p

)p

f1(n, p)

with f1(n, p) ≈ 1 for all p when n is large and

B(n, p) = p! + e−p
n∑

k=2

k

√
1 + p

k − 1

(
1 + p

k − 1

)k−1(
1 + p − 1

k

)p

f2(k, p)

with f2(k, p) ≤ 1 for all k and p.
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It is easy to check that, for large n,

A(n, p) ≈
(

1

n + p

)p

. (3.15)

Also, since (1 + p/(k − 1))k−1 ≤ ep, we obtain

B(n, p) ≤ p! + √
1 + p

n∑
k=2

k

(
1 + p − 1

k

)p

,

so that, using Newton’s binomial formula on (1 + (p − 1)/k)p, we obtain

B(n, p) ≤ p! + √
1 + p

( n∑
k=2

k +
p∑

l=1

(
p

l

)
(p − 1)l

n∑
k=2

1

kl−1

)
.

For fixed p > 1, this last function is in the order of n2, and, hence, from (3.15),

( n∑
k=1

a
p
k

)1/p

= A(n, p)B(n, p) ≈ Kpn2/p−1 (3.16)

for some positive constant Kp.
Equation (3.16) suffices to prove (3.12) for all α ∈ (0, 1). Indeed, we know that E(Rτ�

βt
) ≤ v

for all t . Thus, from Theorem 3.1,

tα E(Xτ�
βt

) ≤ E(Rτ�
βt

)tα
( βt∑

k=1

a
p
k

)1/p

≤ vtα
( βt∑

k=1

a
p
k

)1/p

for all p > 1.

Estimate (3.16) then yields

tα E(Xτ�
βt

) ≈ Kptαβ
2/p−1
t

for some positive constant Kp, and it is easy to check that, for all p > 2 and all α < (p−2)/p,
tαβ

2/p−1
t → 0 for t → ∞. Since there are no upper bounds on the choice of p, we obtain the

following theorem.

Theorem 3.2. Let 0 ≤ α < 1, and let βt = �t − tα�. The optimal stopping rule τ �
βt

satisfies

lim
t→∞ tα E(Xτ�

βt
) = 0 for all 1

2 < α < 1.

Corollary 3.2. If the limit w = limt→∞ w(t) exists then it satisfies w ≤ v.

Corollaries 3.1 and 3.2 immediately yield the following theorem.

Theorem 3.3. The limiting value for the Poisson embedded Robbins’ problem exists and
satisfies

w = lim
t→∞ w(t) = v.
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Note that Theorem 3.2 implies, in particular, that the n-optimal stopping rule τ �
n satisfies

lim
t→∞ nα E(Xτ�

n
) = 0 for all 0 ≤ α < 1.

This fails for α = 1. In fact, estimate (3.13) does not even suffice to prove that n E(Xτ�
n
)

is bounded. Now a natural parallel has been drawn between Robbins’ problem and Moser’s
problem (see Moser (1956)), in which the objective of the decision maker is to minimize the
expected value of the selected observation. Since ranks and values have limiting correlation 1 as
n → ∞ (see Bruss and Ferguson (1993)), it is then natural to believe that the optimal strategies
in both problems should have similar behaviors—at least asymptotically. The optimal strategy
τ̂n for Moser’s problem satisfies limn→∞(n E(Xτ̂n

)) = 2. It therefore seems intuitive that
n E(Xτ�

n
) should be bounded. Assaf and Samuel-Cahn (1996) assumed that the optimal rule

satisfies this condition. We therefore call it the Assaf and Samuel-Cahn hypothesis. This
hypothesis implies statement (3.12). We have found no rigorous proof of the hypothesis, and
this interesting question remains open.

4. A differential equation on the value function

In this final section we prove that w(·) is a differentiable function which satisfies the equation

w′(t) + w(t) =
∫ 1

0
min{1 + xt, w(t) + h(t, x)} dx + χ(t), (4.1)

where χ(t) tends to 0 as t tends to ∞ and h(t, x) is a continuous function depending on the
value of an arrival selected before time t . Although this is not a differential equation in the usual
sense, it is a capsule that contains an infinite-dimensional problem in a closed form. Moreover,
our results from the previous section show that a solution to this equation is tantamount to a
solution to Robbins’ problem. Of course, the presence of two unknown functions in (4.1) does
not allow for obtaining explicit solutions. This equation, however, does open the way for a
numerical study of the behavior of w(t) in terms of the function h(t, x).

Before proceeding to the proof of (4.1), we need, for all t , the existence of a stopping rule
τ �
t such that

w(t) = wτ�
t
(t),

i.e. we need the existence—for every horizon—of an optimal strategy. This follows from the
optimality principle and the continuity of w(t).

To see this, fix t ∈ R
+, and suppose that there is an arrival of value Xi at time 0 ≤ Ti ≤ t

for some i ≥ 1. Let ri be the relative rank of Xi , and let Fi be shorthand for the history of
the process up to time Ti . Then, from the optimality principle we know that it is optimal to
select (Ti, Xi) if and only if the expected loss incurred for selecting (Ti, Xi) is smaller than the
expected loss incurred by refusing it. The former is given by

E(R̃
(t)
i | Fi ) = ri + Xi(t − Ti)

and the latter is given by
inf

τ∈T , τ>i
E(R̃(t)

τ | Fi ) =: E(i, t),

where the infimum is taken over the set of all stopping rules τ ∈ T such that P(Tτ > Ti) = 1.
The function E(i, t) is well defined for all i ≥ 1, every history Fi , and all horizons t . Also,
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for all i and fixed history Fi , the same arguments as for Theorem 2.1 prove that E(i, t) is
continuous in t . Hence, the stopping rule τ �

t given by

τ �
t = i if ri + Xi(t − Ti) ≤ E(i, t)

and τ �
t > i if ri + Xi(t − Ti) > E(i, t)

is well defined at all stages of the process and is optimal for each horizon t .

Proposition 4.1. For all t > 0,

P(Tτ�
t

≥ t) = lim
δ→0

P(Tτ�
t−δ

≥ t − δ).

Proof. The probability of there being no arrivals in (t − δ, t) tends to 1 as δ → 0 indepen-
dently of preceding arrivals. Hence, as δ → 0, a decision maker using either τ �

t−δ or τ �
t will be

almost surely confronted with the same set of arrivals before t . The continuity of �(t) implies
that, as δ tends to 0, there exists almost surely a unique optimal limiting rule, and the statement
follows.

Remark 4.1. Note that, since w(t) is bounded, P(Tτ�
t

≥ t) → 0 as t → ∞.

Theorem 4.1. Let τ �
t be the optimal stopping rule with respect to the horizon t . The value

function w(t) is differentiable and satisfies

w′(t) + w(t) =
∫ 1

0
min{1 + xt, w(t | x)} dx + χ(t), (4.2)

where χ(t) = �′(t) P(Tτ�
t

> t) and w(t | x) is the optimal value conditioned on a first arrival
at time 0 of value x which cannot be selected, i.e.

w(t | x) = inf
τ∈T

{E(R(t)
τ 1{Tτ ≤t} +�(t) 1{Tτ >t} + 1{Xτ ≥x} 1{Tτ ≤t})}. (4.3)

4.1. Proof of Theorem 4.1

Fix δ > 0. Conditioning on N(δ), the number of arrivals in (0, δ), we obtain

w(t) = P(N(δ) = 0) E(R̃
(t)

τ �
t

| N(δ) = 0) + P(N(δ) = 1) E(R̃
(t)

τ �
t

| N(δ) = 1)

+ P(N(δ) ≥ 2) E(R̃
(t)

τ �
t

| N(δ) ≥ 2).

Since w(t) is bounded, so must be E(R̃
(t)

τ �
t
|N(δ) ≥ 2) and, thus, for sufficiently small δ,

w(t) = (1 − δ) E(R̃
(t)

τ �
t

| N(δ) = 0) + δ E(R̃
(t)

τ �
t

| N(δ) = 1) + o(δ). (4.4)

We now need to study the behavior of E(R̃
(t)

τ �
t

| N(δ) = 0) and E(R̃
(t)

τ �
t

| N(δ) = 1) for δ → 0.
For the sake of clarity, we will separate these results in two preparatory lemmas.

Lemma 4.1. Set
χ(t, δ) = E(R̃

(t)

τ �
t

| N(δ) = 0) − w(t − δ).

Then χ(t, δ) ≥ 0 for all t > 0 and all δ > 0, and

lim
δ→0+

χ(t, δ)

δ
= �′(t) P(Tτ�

t
> t).
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Proof. Set ��(t, δ) = �(t) − �(t − δ). First consider the Poisson embedded Robbins’
problem with horizon t − δ, and let τ̃ be a strategy acting on (0, t − δ) as τ �

t would act on (δ, t)

under the condition that N(δ) = 0. We have

wτ̃ (t − δ) = E(R
(t)

τ �
t

1{Tτ�
t
≤t} | N(δ) = 0) + �(t − δ) P(Tτ�

t
> t | N(δ) = 0)

= E(R̃
(t)

τ �
t

| N(δ) = 0) − ��(t, δ) P(Tτ�
t

> t | N(δ) = 0).

Hence, since w(t − δ) ≤ wτ̃ (t − δ),

E(R̃
(t)

τ �
t

| N(δ) = 0) − w(t − δ) ≥ ��(t, δ) P(Tτ�
t

> t | N(δ) = 0). (4.5)

Next consider the Poisson embedded problem with respect to the horizon t , and let σ̃ be a
strategy that ignores every arrival, if any, in (0, δ) and applies τ �

t−δ on (δ, t). We have

E(R̃
(t)

σ̃
| N(δ) = 0) = E(R

(t−δ)

τ �
t−δ

1{τ�
t−δ≤t−δ}) + �(t) P(Tτ�

t−δ
> t − δ)

= w(t − δ) + ��(t, δ) P(Tτ�
t−δ

> t − δ).

Now we can easily check, from the definitions, that

E(R̃
(t)

τ �
t

| N(δ) = 0) ≤ E(R̃
(t)

σ̃
| N(δ) = 0) + o(δ).

Hence

E(R̃
(t)

τ �
t

| N(δ) = 0) − w(t − δ) ≤ ��(t, δ) P(Tτ�
t−δ

> t − δ) + o(δ). (4.6)

Combining (4.5) and (4.6), we then obtain

��(t, δ) P(Tτ�
t

> t | N(δ) = 0) ≤ χ(t, δ) ≤ ��(t, δ) P(Tτ�
t−δ

> t − δ) + o(δ),

and, thus, from Proposition 4.1,

lim
δ→0+

χ(t, δ)

δ
= �′(t) P(Tτ�

t
> t).

Recall the definition of w(t | x) from (4.3). For fixed x ∈ [0, 1], the same arguments as
those used to prove the continuity of w(t) apply to w(t | x). Hence, for each x, w(t | x) is
continuous in t . Also, for fixed t , we can check that w(t | x) is monotone decreasing in x on
[0, 1] with

w(t) + 1 ≥ w(t | 0) ≥ w(t | x) ≥ w(t | 1) = w(t) for all 0 ≤ x ≤ 1.

The following result holds.

Lemma 4.2. For all t > 0,

lim
δ→0+ E(R̃

(t)

τ �
t

| N(δ) = 1) =
∫ 1

0
min{1 + xt, w(t | x)} dx.
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Proof. Fix δ > 0, and let X denote the value of the (unique) arrival in (0, δ). Conditioning
on X yields

E(R̃
(t)

τ �
t

| N(δ) = 1) =
∫ 1

0
E(R̃

(t)

τ �
t

| N(δ) = 1, X = x) dx, (4.7)

where, by the definition of τ �
t ,

E(R̃
(t)

τ �
t

| N(δ) = 1, X = x)

= min
{

1 + x(t − δ), inf
τ∈T ,Tτ >δ

E(R̃(t)
τ | N(δ) = 1, X = x)

}
.

We can check that, for all t ,

w(t − δ | x) ≤ inf
τ∈T ,Tτ >δ

E(R̃(t)
τ | N(δ) = 1, X = x) ≤ w(t − δ | x) + ��(t, δ).

Hence, from the continuity of w(t | x),

lim
δ→0

(
inf

τ∈T ,Tτ >δ
E(R̃

(t)

τ �
t

| N(δ) = 1, X = x)
)

= w(t | x)

and

lim
δ→0+ E(R̃

(t)

τ �
t

| N(δ) = 1) = lim
δ→0+

∫ 1

0
E(R̃

(t)

τ �
t

| N(δ) = 1, X = x) dx

=
∫ 1

0
lim

δ→0+ E(R̃
(t)

τ �
t

| N(δ) = 1, X = x) dx

=
∫ 1

0
min{1 + xt, w(t | x)} dx.

We are now in a position to continue the proof of Theorem 4.1.
From Lemma 4.1 we know that E(R̃

(t)

τ �
t

| N(δ) = 0) = w(t − δ) + χ(t, δ), so that, after
straightforward rearrangements, (4.4) yields

w(t) − w(t − δ)

δ
− χ(t, δ)

δ
= −w(t − δ) + E(R̃

(t)

τ �
t

| N(δ) = 1) + o(δ)

δ
. (4.8)

Now let δ go to 0 on both sides of (4.8). We know, from the continuity of w(t) and Lemma 4.2,
that the limit of the right-hand side exists. Therefore, the limit of the left-hand side must also
exist. Also, from Lemma 4.1 we know that χ(t) := limδ→0 χ(t, δ)/δ exists and is finite for all t .
Hence, limδ→0(w(t) − w(t − δ))/δ also exists and, thus, w(·) must be differentiable on R. This
completes the proof of Theorem 4.1.

Remark 4.2. Set h(t, x) = w(t | x) − w(t). Equation (4.2) can be rewritten as

w′(t) + w(t) =
∫ 1

0
min{1 + xt, w(t) + h(t, x)} dx + χ(t)

with χ(t) = �′(t) P(Tτ�
t

> t). This yields (4.1). Also, note that our assumptions on �(·)
imply that �′(t) is positive and uniformly bounded on R. Hence, χ(t) ≤ K P(Tτ�

t
> t) for

some K > 0 and, thus, from Remark 4.1, χ(t) → 0 as t → ∞. For all strategies we can think
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of as being close to optimal, χ(t) proves to decrease exponentially fast to 0. Hence, we suggest
focusing interest on the simpler equation

w′(t) + w(t) =
∫ 1

0
min{1 + xt, w(t) + h(t, x)} dx. (4.9)

This is still an equation in two unknown functions, and the challenge is to find a good estimate
for h(t, x).

5. Conclusion and outlook

We have introduced an alternative version of Robbins’ problem in continuous time which
we have proved to be well defined. It is shown that this version bears important common
features with the original problem, but that it also has specific characteristics of its own. Our
main result—and this was our motivation—is that this new problem is asymptotically ‘value-
equivalent’ with the discrete n-arrival problem, i.e. limn→∞ v(n) = limt→∞ w(t). We have
also established a differential equation which describes w(t) exactly, and suggested a simplified
form of this equation to study the value.

Although we cannot solve the latter explicitly, we hope that it will prove to be a starting
point for a numerical analysis of the behavior of w(t), and, hence, of v(n). Indeed, (4.9)
bypasses the full history dependence which lies at the heart of Robbins’ problem. The idea
is to substitute estimates of h(t, x) into (4.9) and to study the corresponding solutions. To
facilitate this approach, we have, throughout the paper, avoided specifying the penalty function
�(t) in order to leave room for the choice of initial conditions on ‘candidate’ solutions. The
key to success for improvements on the known bounds on v should therefore be a sufficiently
close estimate of h(t, x). Unfortunately, the estimates we have obtained so far are not precise
enough. The problem remains a challenge, but, as we see it, with a new focus.
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