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The effect of intermittency in wave forcing on the
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The Holton–Lindzen–Plumb (HLP) model of the quasi-biennial oscillation (QBO) is
investigated in order to assess the impact of introducing intermittency in the wave forcing.
Intermittency is introduced to HLP by allowing the amplitude of the waves which force the
QBO to evolve according to a stationary random process, driven by a stochastic differential
equation (SDE) with an associated time scale τ . Provided that τ is much shorter than
the QBO period, it is shown that the impact on the QBO of the intermittent forcing is
captured by a single intermittency parameter λ, and the value of λ is proportional to τ and
otherwise depends upon the details of the SDE. Numerical simulations, using a family of
mean-reverting Ornstein–Uhlenbeck processes as the choice of SDE, show that the effect
of increasing the intermittency parameter is invariably to decrease the QBO amplitude
and increase its period. Changes to the QBO amplitude and period are indeed found to
collapse onto a single curve controlled by λ, as predicted by the theory, provided that τ is
small enough for the approximations used to be valid. The extension to broadband forcing
is discussed in the context of stochastic gravity wave parameterisation, with the eventual
goal of developing a representation of source intermittency in the most general situation
with close fidelity to the physics.

Key words: atmospheric flows, internal waves

1. Introduction

The Holton–Lindzen–Plumb (HLP) model (Lindzen & Holton 1968; Holton & Lindzen
1972; Plumb 1977) is arguably the simplest system to capture the fundamental physics
behind the quasi-biennial oscillation (QBO; average period 28–29 months) observed in
the zonal winds of the equatorial stratosphere. In HLP, gravity waves are generated at
the oscillating lower boundary of a stratified fluid and are subsequently dissipated in the
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fluid interior, and the associated wave-driven transport of horizontal momentum drives an
emergent oscillation in the horizontal mean flow. In the stratosphere, it is firmly established
that an essentially analogous process leads to the observed QBO (e.g. Baldwin et al.
2001), for which equatorially trapped Rossby and Kelvin waves as well as inertia–gravity
waves on a range of scales each play a role in the momentum transport. The QBO
mechanism has been demonstrated in laboratory experiments (Plumb & McEwan 1978;
Otobe et al. 1998), and the same physics is likely behind QBO-like oscillations on other
planets (Read 2018) and in stars (e.g. Showman, Tan & Zhang 2019). Consequently HLP is
now recognised as a canonical model in the theory of wave–mean flow interaction (Vallis
2017; Renaud & Venaille 2020). The aim of the present work is to relax one of the key
assumptions of HLP, namely that the amplitude of the wave forcing driving the QBO-like
oscillations is steady in time, in order to increase our understanding of how a more realistic
intermittent wave source interacts with the QBO dynamics, not least because observed
non-orographic gravity wave sources in the upper troposphere are known to be highly
intermittent (e.g. Hertzog et al. 2008). (Throughout this work we use ‘intermittent’ and
‘intermittency’ according to their plain English meanings (e.g. ‘the fact of stopping and
starting repeatedly’), rather than any technical meaning related to the forcing statistics.)

A compelling study illustrating the intermittency effect is that of Couston et al.
(2018). They compared QBO evolution in a two-dimensional Boussinesq model with
a intermittent wave source due to a ‘tropospheric’ lower layer of active convection,
with a non-intermittent wave forcing with the same (time-averaged) energy spectrum
in a ‘stratosphere-only’ model forced at the bottom boundary. The results show a
dramatic difference in the emergent QBO between the simulations: the convectively
forced model (their M1) has a QBO with significantly smaller amplitude and around half
the period of that in the steadily forced model (their M2). The M1 QBO also exhibits
considerable variability not captured by M2. The results appear to reinforce the evidence
that temporal intermittency in wave forcing cannot be ignored when modelling the QBO.
However, other factors may be important in the study of Couston et al. (2018), such as
convective penetration into the stratosphere or wave nonlinearity, and additionally due to
computational expense their experiments do not cover a wide range of model parameter
space, indicating the need for an improved understanding of the effect of intermittency in a
simpler setting. A recent observed event, the QBO disruption of 2016 (e.g. Newman et al.
2016), dramatically illustrates the possible impact of source intermittency on the QBO
dynamics. An interesting question concerns the extent to which that event was caused by
variability in the wave forcing, as opposed to being due to the natural, possibly chaotic,
internal dynamics of the QBO system itself (Renaud, Nadeau & Venaille 2019).

The importance of understanding source intermittency in wave-mean flow interaction
problems has much deeper implications for atmospheric modelling. Presently, and for
the foreseeable future, accurate general circulation models (GCMs) of the stratospheric
circulation require the parameterisation of wave motions which have scales comparable to
or less than the model grid. Such parameterisations are necessary because the momentum
and temperature fluxes associated with unresolved waves make a significant contribution
to the momentum and temperature budgets of the stratosphere. In the case of the QBO, the
zonal momentum budget is driven by momentum flux convergence due to a broad spectrum
of both resolved and unresolved wave modes (Baldwin et al. 2001; Fritts & Alexander
2003) generated primarily in the troposphere. Improving the accuracy and fidelity to
the physics of parameterisations of unresolved waves, such as those developed by, e.g.
Warner & McIntyre (1996), Hines (1997a, b), Alexander & Dunkerton (1999), Garcia
et al. (2007) and Anstey, Scinocca & Keller (2016), remains an important component in
GCM development.
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Intermittent forcing of the QBO

Existing parameterisations, such as those listed above, tend to take as a starting point
a ‘launch spectrum’ of waves defined in horizontal wavenumber–frequency space (k, ω).
The scheme then propagates these waves upwards within each vertical column, and then
dissipates them according to (for example) a wave breaking model, the details of which
differ from scheme to scheme. The momentum and temperature fluxes associated with
the unresolved waves can then be calculated from the wave dissipation rates returned by
the scheme. If the waves source described by the launch spectrum is highly intermittent,
what is the resulting impact on the momentum and temperature fluxes? By design most
parameterisations are deterministic, and therefore have no explicit intermittency in the
launch spectrum, but do account for its effect. For example, the scheme of Alexander
& Dunkerton (1999) uses a constant efficiency factor as a tuning parameter, which
acts to reduce momentum fluxes in their treatment. Explicit intermittency in the launch
spectrum is intrinsic to stochastic gravity wave schemes (Piani, Norton & Stainforth
2004; Eckermann 2011; Lott, Guez & Maury 2012; Lott & Guez 2013), but it is not yet
known how to exploit the intermittency of these schemes to match the intermittency of
observed wave sources, for example. Supposing that the launch spectrum is reasonably
well constrained by observations, an interesting question which largely motivates the
present work, is whether the spectrum itself contains sufficient information to develop
an accurate parameterisation? For example, are there other statistics from the wave source
that could be used to improve schemes so that tuneable ‘efficiency factors’ are no longer
needed?

The present work investigates the above questions in as simple a model setting as
possible, namely the HLP model, with the aim of deepening our understanding of the
magnitude and parameter dependencies of intermittency effects. The plan of the paper is
as follows. In § 2 the stochastic Holton–Lindzen–Plumb (sHLP) model to be analysed is
introduced and its validity as an approximation to its parent model, a two-dimensional
stratified Boussinesq fluid forced at its lower boundary by waves with stochastically
evolving amplitudes, is established. In § 3, an analysis of sHLP is undertaken using the
method of homogenisation (e.g. Pavliotis & Stuart 2008), also known as ‘adiabatic removal
of fast variables’ (Gardiner 2009), which acts to average over the ‘fast’ variability of the
evolving wave amplitudes to gain insight into the impact of the intermittency on QBO
behaviour. The main result is the discovery that, when the forcing wave amplitudes in
sHLP are controlled by any of a wide class of stochastic processes, the leading-order
intermittency effect is controlled by a single intermittency parameter, the value of which is
derived from the details of the particular stochastic processes used. In § 4 the sHLP model
is integrated numerically in order to confirm the relevance of this (asymptotic) result, and
some practical restrictions on the time scale of the stochastic processes are found. The case
of broadband forcing is also discussed. Finally, conclusions are drawn in § 5.

2. The sHLP model

2.1. The deterministic HLP model
The HLP model is, arguably, the simplest system to capture the fundamental physics of
the QBO and has become a textbook example equation for the process of wave–mean flow
interaction (Vallis 2017). Its parent system is a stratified Boussinesq fluid, with constant
buoyancy frequency N and kinematic (eddy) viscosity ν (see, e.g. equations 2(a)–2(c)
of Renaud & Venaille 2020). Leftwards and rightwards propagating waves are forced
in the fluid by ‘standing wave’ oscillations of the bottom boundary with amplitude a∗,
horizontal wavenumbers ±k∗ and frequency ω∗. These waves propagate vertically and
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are subsequently dissipated in the fluid interior by thermal damping at rate α. Note
that, although the thermal damping mechanism in HLP is somewhat different to the
wave-breaking-induced dissipation which is believed to be dominant in the stratosphere,
waves tend to be dissipated by both mechanisms in locations where their phase speed
approaches the local flow velocity, so the essential physics of the wave–mean flow
interaction remains remarkably similar between the two mechanisms.

Using the Wentzel–Kramers–Brillouin method to approximate the momentum flux
convergence −(u′w′)z due to the waves, results in the following non-dimensional
integrodifferential HLP equation

∂tU = −
∑
±

±∂z

(
exp

(
−
∫ z

0

1
(±U(z′, t) − 1)2 dz′

))
+ 1

Re
∂2

z U (2.1)

describing the time evolution of the zonal mean zonal wind U(z, t). The sum over positive
and negative signs captures the momentum forcing from the rightward and leftward
travelling waves, respectively. The dimensional velocity, height and time scales in (2.1)
are U∗ = ω∗/k∗, Z∗ = ω2∗/αk∗N and T∗ = 2ω2∗/αN2k2∗a2∗, respectively. Here T∗ is known
as the streaming time scale and is the time scale on which the momentum deposited by
the dissipating waves acts to change the zonal mean flow. A comprehensive review of the
derivation of HLP, as well as a detailed discussion of the physical basis of the associated
approximations, is given by Renaud & Venaille (2020). Further, a dynamical systems
perspective on the role of the Reynolds number Re = ω2∗a2∗/(2αν) in the QBO dynamics
is presented in Renaud et al. (2019).

Equation (2.1) is straightforward to integrate numerically (for a quick demonstration a
Python code is provided in the supplementary material to Vallis 2017) and at moderately
high Reynolds number Re = O(10) produces a regular QBO-like oscillation with a period
of around 7–8 (the physical units being the streaming time scale T∗ defined above). Our
study is concerned with how this HLP QBO is altered when a stochastic component is
introduced to the wave forcing.

2.2. The sHLP model with stochastic wave amplitude evolution
Our key results below apply to a generalised stochastic Holton–Lindzen–Plumb (g-sHLP)
equation, given by

∂tU = −
∑
±

|A±
t |2F±[U, z] + 1

Re
∂2

z U, (2.2)

where F±[U, z] are functionals of U ≡ U(z, t) defined on the vertical domain D = [0, Zd],
and A±

t are continuous-in-time stochastic processes. For definiteness it will be taken that
A±

t are driven by independent realisations of the same stochastic differential equation
(SDE) with this SDE being arbitrary apart from satisfying certain basic conditions to be
detailed in the following subsection. Note that the HLP (2.1) is recovered from (2.2) when
the functionals F± are given by

F±[U, z] = ±∂z

(
exp

(
−
∫ z

0

1
(±U(z′, t) − 1)2 dz′

))
(2.3)

and A±
t = 1. The focus of our following numerical calculations will be the sHLP, i.e. (2.2)

with F± given by (2.3), however the fact that the main results are obtained in the more
general setting of g-sHLP makes it clear that they apply equally to different forms of wave
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forcing (such as the mixed Rossby–gravity waves considered by Holton & Lindzen 1972)
and different dissipation mechanisms (e.g. Rayleigh friction considered by Lindzen (1971)
or parameterised wave breaking), each case leading to a different form of F± from (2.3).

The physical interpretation of the A±
t is that they are the non-dimensional amplitudes

of the rightwards and leftwards waves on the lower boundary of the parent Boussinesq
model. Note that, even if the wave amplitudes A±

t themselves have Gaussian statistics, it
is the square of the wave amplitude that enters the g-sHLP, so the forcing in g-sHLP is
‘intermittent’ in the sense of having non-Gaussian statistics. If the treatment in Renaud &
Venaille (2020) is followed closely, equation (2.2) can be obtained by applying a kinematic
condition at the lower boundary z = h(x, t) of the parent model, with

h(x, t) = R {
A+

t exp(i(x − t/ε)) + A−
t exp(−i(x + t/ε))

}
. (2.4)

Here R denotes the real part and ε = ω∗T∗ � 1 is a non-dimensional parameter, which is
required to be small in the derivation of HLP. In fact, as described in detail in Renaud &
Venaille (2020), the generation, propagation and dissipation of waves in the parent model
must all take place on the fast O(ε) time scale for HLP to be valid. An additional condition
required for sHLP to be formally valid is the following:

(C1) The stochastic processes A±
t must evolve on a time scale τ satisfying τ � ε.

Condition (C1) ensures that, on the time scale that the momentum fluxes in the parent
model are established, the amplitudes A±

t of the forcing waves are effectively constant
in time, and the derivation of HLP in Renaud & Venaille (2020) is therefore formally
unchanged for sHLP. In practice, in the regime where τ approaches ε, physical effects
will be introduced into the parent model related to wave dispersion, such as Doppler
spreading. It remains to be established how significant these effects will be in practice:
for the purposes of this work it is assumed that sHLP is an accurate approximation to the
parent model subject to the kinematic lower boundary condition applied at (2.4).

2.3. The class of SDEs driving the forcing wave amplitude
In order to make progress, it is helpful to restrict the class of possible stochastic processes
for A±

t , by defining a suitable class of SDEs. Of course, other stochastic processes
(e.g. Bernoulli processes as used by Bühler 2003) are possible modelling choices, and
analogous results will exist for these, but in our opinion SDEs give the greatest flexibility
in reproducing the properties of observed time series from data. The SDE class, which
incorporates the time scale τ of the process in a natural way, is

dAt = f (At)

τ
dt +

(
2
τ

)1/2

g(At) dBt, (2.5)

where f (a) and g(a) are general functions of wave amplitude a, which must be chosen to
satisfy conditions (C2) and (C3) in the following, and Bt is a Brownian process. The first
condition which restricts the choice of f (a) and g(a) is as follows:

(C2) The process At governed by (2.5) must be stationary and ergodic, and have an
invariant density

ps(a) = p0

g(a)2 exp
(∫ a f (q)

g(q)2 dq
)

, (2.6)

where p0 is a normalising constant defined so that
∫

R
ps(a) da = 1.
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The invariant density ps(a) is the probability density of the process in the long-time limit.
By definition, ps(a) solves the steady Fokker–Planck equation ( fps)

′ = (g2ps)
′′ with decay

boundary conditions ps, p′
s → 0 as |a| → ∞ (primes here denote differentiation with

respect to a), and the formula given in (2.6) is simply the solution to this problem. Since
ps(a) must be integrable to be a probability density, this necessarily imposes restrictions on
the choice of f and g, e.g. most simple examples will have

∫ a f /g2 da → −∞ as |a| → ∞.
Ergodicity in this context means that the process can reach any point on the domain on
which it is defined (e.g. R) from any initial condition, and typically this will hold provided
that g is sign-definite everywhere (see, e.g. the discussion in chapter 6.4 of Pavliotis &
Stuart 2008).

A further condition on (2.5), which can be introduced without loss of generality because
it, in fact, defines the relevant value of the dimensional amplitude a∗ used in the derivation
of sHLP, is as follows:

(C3) The expectation of the square of the process is unity, i.e.

E(A2
t ) =

∫
R

a2 ps(a) da = 1. (2.7)

Condition (C3) ensures that the time-averaged Reynolds stress (or form drag or
Eliassen–Palm flux) due to the waves at the bottom boundary in sHLP is identical to that
in HLP, and means that the only difference between HLP and sHLP is the intermittency
of the wave forcing rather than its magnitude. In fact, when the limit τ � 1 is examined
in the following, we show that at leading order in τ the behaviour of sHLP and HLP is
identical, i.e. as τ → 0 the stochastic average of sHLP is HLP, in the sense of chapter 10
of Pavliotis & Stuart (2008).

2.4. Example: a family of mean-reverting Ornstein–Uhlenbeck processes
A concrete example of a specific family of suitable stochastic processes which satisfy
conditions (C2) and (C3) is obtained from the mean-reverting Ornstein–Uhlenbeck
(mrOU) process

dAt = −
(

At − μ(θ)

τ

)
dt +

(
2σ(θ)2

τ

)1/2

dBt. (2.8)

Provided that the mean μ and standard deviation σ of the process are given by

μ(θ) = cos θ, σ (θ) = sin θ, (2.9a,b)

then condition (C3) is satisfied, since the invariant density of the mrOU process (2.8)
is Gaussian with mean μ and standard deviation σ (e.g. Gardiner 2009) which leads to
E(A2

t ) = μ2 + σ 2 = 1.
Some realisations of the mrOU process for different values of the parameter

θ ∈ [0, π/2] are shown in figure 1. Note that θ = 0 corresponds to At = 1 which recovers
the deterministic HLP model, whereas θ = π/2 is a standard Ornstein–Uhlenbeck process
with zero mean and unit variance. The family (2.8) is therefore highly suitable for the
following numerical experiments, as it allows the QBO resulting from wave forcings with
different intermittency properties to be compared, simply by changing the parameters
(θ, τ ).
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Figure 1. Realisations of wave amplitude At for different values of the parameter θ in the mrOU process (2.8)
at equilibrium over a period 20τ . The labels LOW-θ , MID-θ , HIGH-θ , MAX-λ and MAX-θ correspond to
θ = {π/32, π/7, π/4, sin−1(

√
2/3), π/2}, respectively.

3. Analysis of g-sHLP and the intermittency parameter

Our main results depend upon an asymptotic expansion using the non-dimensional time
scale τ of the stochastic process (2.5) as a small parameter. Recalling condition (C1), this
means that the analysis is formally valid in the double limit

ε � τ � 1. (3.1)

Dimensionally, in the parent model, equation (3.1) requires the amplitude of the forcing
waves to evolve on a time scale that is significantly longer than a typical wave period
∼ ω−1∗ , but is significantly shorter than the streaming time scale T∗ which sets the
QBO period. In the atmospheric situation, this corresponds to being longer than a few
tens of minutes but shorter than O(100 days), which is plausible for the majority of
non-orographic tropospheric wave sources, e.g. mesoscale convective systems.

Our main result applies to the g-sHLP (2.2) when the wave amplitudes A±
t are driven by

the general SDE (2.5). The detailed mathematical derivation is presented in Appendix A.
The key idea is that when τ � 1, the amplitudes A±

t in g-sHLP are ‘fast’ variables, and
their leading-order effects on dynamics which takes place on longer time scales can be
uncovered using the method of homogenisation. Our treatment of the problem is standard
and closely follows the approach taken in Pavliotis & Stuart (2008, see Chap. 11), with the
one additional complicating feature that, because g-sHLP is a stochastic integro-partial
differential equation, as opposed to a regular SDE system, the backwards Kolmogorov
equation (BKE) used in the derivation requires the use of functional calculus. However,
this additional level of complexity does not change the essence of the derivation.

The main result of Appendix A is that the ‘slow dynamics’ of g-sHLP is governed by the
following stochastic partial integro-differential equation, which describes the evolution of
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U(z, t) on the order unity time scale,

dU =
(

−
∑
±

F±[U, z] + 1
Re

∂2
z U + λ

∑
±

Π±[U, z]

)
dt +

√
2λ

(∑
±

F±[U, z] dW±
t

)
.

(3.2)

Equation (3.2), hereafter referred to as the homogenised equation, consists of the
(generalised) deterministic HLP plus two correction terms due to the source intermittency,
the first of which is deterministic and the second of which is stochastic, because the latter
multiplies the increments of two independent Brownian processes W±

t . The functionals
Π± appearing in the deterministic correction term depend only on F± and are given by

Π±[V, z] =
∫
D

F±[V(z̄), z̄]
δF±
δV(z̄)

[V(z), z] dz̄, (3.3)

and can be evaluated for the specific example of sHLP, i.e. when F± is given by (2.3), to
be

Π±[U, z] = ±2F±[U(z, t), z]
(∫ z

0

F±[U(z′, t)]
(±U(z′, t) − 1)3 dz′ − F±[U(z, t)]

(±U(z, t) − 1)

)
. (3.4)

Note that Π± is derived from F±, and consequently depends only on the deterministic part
of the g-sHLP model. Crucially, it follows that there is just a single parameter λmultiplying
the correction terms in (3.2), the intermittency parameter

λ = τ

∫
R

a2q(a)ps(a) da = τE

(
A2

t q(At)
)

, (3.5)

where the function

q(a) =
∫ a

a0

1
g(x)2ps(x)

∫ x

−∞
(1 − y2)ps( y) dy dx, (3.6)

is obtained directly from the invariant density ps(a) and noise function g(a) of the process
(2.5). The constant a0 in (3.6) is chosen to satisfy

∫
R

q(a)ps(a) da = 0. Since F± and Π±
are properties of the deterministic part of the g-sHLP model, all of the stochastic behaviour
associated with the SDE (2.5) is captured by the single parameter λ.

It is not necessary to solve the homogenised equation (3.2) to deduce the key prediction
of our analysis:

(P) The corrections to the sHLP QBO due to source intermittency depend only on the
value of the intermittency parameter λ. This result applies to any process (2.5)
satisfying conditions (C1)–(C3) for which λ can be calculated.

There are several points to note about this result.

(i) It follows that, because intermittency induced changes to QBO properties such as
the typical amplitude A and period P depend only on λ, results for a wide range of
different processes (2.5) with different time scales τ should collapse onto a single
curve parameterised by λ.

(ii) That λ depends linearly on the small parameter τ is a standard feature of
homogenisation problems (see, e.g. Pavliotis & Stuart 2008), and is a direct
consequence of the asymptotic expansion. As τ is reduced so that the time scale
of the intermittency becomes short, the QBO experiences only the averaged wave
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Figure 2. Intermittency parameter λ scaled by τ for the sHLP model driven by the mrOU process (2.8) as a
function of the mrOU parameter θ .

forcing from the boundary, demonstrating that deviations from the average forcing
must be sustained in time in order to affect the QBO. As for all asymptotic theories,
the theory will become inaccurate and then break down as τ increases, and the
priority in the following is to determine when this occurs.

(iii) The dependence of λ on the details of the forcing process (2.5), which emerges from
the mathematics and is apparent in (3.5)–(3.6), is not easy to account for in full. It
is clear from (3.5) that λ is proportional to the second moment of the statistic q(At)
of the process At. What is less clear, however, is the interpretation of (3.6), i.e. what
aspects of the SDE behaviour determines q(a). Certainly q(a) must take account
of not only the distribution of forcing amplitudes, but also the typical residence
times of the process at those amplitudes, in particular the extent to which large
amplitude forcing is sustained by the process. Therefore, it is perhaps unsurprising
that the noise function g(a) appears in the denominator of the definition of q(a),
since low noise values are associated with longer residence times, and will lead to
larger magnitudes for q(a) and, thus, larger λ. However a complete understanding of
the consequences of formulae (3.5) and (3.6), which determine which processes are
more ‘intermittent’ than others, awaits further study.

It is straightforward to evaluate the intermittency parameter λ for the family of mrOU
processes described in § 2.4. In this case q(a) = a2 + 2a cos θ − 2 cos2 θ − 1 and it
follows that

λ = τ sin2 θ(4 − 3 sin2 θ), (3.7)

or, in terms of the standard deviation σ of the mrOU process, λ = τσ 2(4 − 3σ 2). In
figure 2, λ/τ is plotted against θ . Interestingly, the ‘most intermittent’ member of the
mrOU family (2.8) is not, as might be expected, the zero mean OU process (θ =
π/2, mean μ = 0, standard deviation σ = 1) for which λ/τ = 1 but, in fact, occurs at
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θ = sin−1(
√

2/3) when λ/τ = 4/3. The reason appears to be that having a non-zero mean
value allows the process to sustain larger amplitudes, despite it having smaller fluctuations.
The implications of this result are tested in the next section.

4. Evaluation of the theory: numerical solutions of sHLP and the homogenised
equation

The main objective in this section is to test the prediction (P), i.e. that the properties of the
QBO in sHLP depend only on the value of the intermittency parameter λ. An additional
objective is to solve the homogenised equation (3.2) to test the following secondary
prediction:

(P2) The QBO generated by the homogenised equation (3.2) matches those in sHLP at
the same value of λ.

A third objective is to test the limits of the theory and try to understand its breakdown,
bearing in mind that it requires the time scale τ � 1 and will inevitably break down as τ

approaches unity.

4.1. Evaluation of prediction (P): solutions of sHLP
The sHLP equation (2.2)–(2.3) with mrOU forcing (2.8) is solved using a numerical
algorithm based on that described in Renaud et al. (2019). Although the numerical
results here are for the mrOU family (2.8), it is important to emphasise that the theory
predicts the same behaviour for any SDE (2.5) satisfying conditions (C2) and (C3). Some
modifications have been made to the numerical algorithm, motivated primarily by the
need to improve the convergence properties of the integrals terms in (2.3), particularly
because accuracy is required when solving the homogenised model (3.2), as described
in the following. A description of the modifications, along with other numerical details
relating to integrating the mrOU equation, is given in Appendix B. All of the calculations
to be described used a domain with height Zd = 3.5, which is sufficiently high for the
upper boundary to have negligible impact, and compared with Renaud et al. (2019) a
high numerical resolution (grid spacing �z = 10−3) is used. High resolution was found
necessary to minimise the resolution-dependent behaviour reported in the supplementary
material of Renaud et al. (2019).

Results from the simulations of sHLP at a typical Reynolds number (Re = 10) within
the QBO generating regime are shown in figure 3. The upper left panel shows the QBO in
the deterministic HLP (equivalently λ = 0 in sHLP) which has a period P0 of 7.17 (units
T∗). To obtain the amplitude of the deterministic QBO the standard deviation of U(z, t)
is calculated at every model level and the maximum value is taken, to give A0 ≈ 0.70
(units U∗). The same definition is used to calculate the amplitude A of the noisy QBOs
generated by sHLP. To calculate the period P = 2π/ωp of the noisy QBOs in a consistent
way a time series of U(zm, t), where zm is the level of the maximum root-mean-square U,
is used. The time series has length 104T∗, equating to more than 103 QBO periods, and
data earlier than an initial spin-up period of 200T∗ is discarded. The Fourier transform of
this time series is then calculated, and the following weighted mean is used:

ωp =
∫ ω+

ω−
ω|F̂(ω)|2 dω

/∫ ω+

ω−
|F̂(ω)|2 dω. (4.1)
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Figure 3. Hovmöller diagram showing the mean wind U(z, t) in numerical solutions of the sHLP (2.2)
between times t = 200 and t = 230. (a–c) The mrOU time scale τ = 10−2 and θ is varied: (a) deterministic
HLP (θ = 0); (b) θ = π/8; (c) θ = π/5. (d– f ) The mrOU parameter θ = π/2 is fixed and: (d) τ = 10−3;
(e) τ = 10−2; and ( f ) τ = 10−1. In all cases Re = 10. The corresponding values of λ for (a– f ) are
λ = {0, 5.21 × 10−3, 1.02 × 10−2, 10−3, 10−2, 10−1}.

The low-pass and high-pass filters (ω−, ω+) = (0.2, 2) are used to minimise spurious
contributions due to the finite length of the time series at low frequencies and the mrOU
process itself at high frequencies, and the remaining range captures the QBO spectral peak
centred on ω ≈ 1.

The remaining left panels of figure 3 show the results for sHLP forced by the mrOU
process with τ = 10−2 and θ = π/8 and θ = π/5 show progressively more noisy QBOs.
In the right panels, θ = π/2 is fixed, and τ = {10−3, 10−2, 10−1} is varied. Note that
the principle of stochastic averaging is clearly demonstrated in figure 3(d), for which the
intermittency parameter λ = 10−3 (τ = 10−3, θ = π/2) is very small, with the result that
the sHLP QBO is almost indistinguishable from the deterministic HLP QBO shown in
figure 3(a). As τ is increased the QBO variability increases, and the most noisy QBO in
figure 3( f ) exhibits arguably a similar level of random variability to observations (compare
with, e.g. figure 1 of Newman et al. 2016).

A clear trend is evident in figure 3 towards longer periods as λ increases. Less
immediately obvious is a trend towards lower QBO amplitudes. To assess these trends
more fully the QBO amplitudes (A/A0) and periods (P/P0), measured relative to those
of the deterministic HLP QBO (A0,P0), are plotted in figure 4 for a wide range of sHLP
simulations at different values of θ and τ . The simulation details are given in table 1,

988 A16-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.418


M. Ewetola and J.G. Esler

0.75

0.80

0.85

0.90

0.95

1.00

10–4 10–3
0.985

0.990

0.995

1.000

10–4 10–3

FIX-τ LOW-θ MID-θ HIGH-θ MAX-θ HOM

10–2

λ
10–1

10–4 10–3 10–2 10–1

1.00

1.05

1.10

1.15

1.20

10–4 10–3
1.000

1.002P ∗

A∗

1.004

1.006

(b)

(a)

Figure 4. QBO amplitudes A∗ = A/A0 and periods P∗ = P/P0 from the respective families of sHLP
simulations detailed in table 1, as a function of the intermittency parameter λ. Results from the simulations
of higher-order modes of the homogenised equation (3.2) (red pentagram) are also shown in the inset. Results
are scaled by the deterministic HLP amplitude A0 = 0.7 and period P0 = 7.17. Filled symbols correspond to
simulations with τ > 0.1.

and are grouped into sets in which one of the two parameters (θ, τ ) is held fixed and
the other is varied to sweep out a large range of values of the intermittency parameter
λ. The results clearly show that both the QBO amplitude A and period P collapse onto
a single curve consistent with the prediction (P), provided that simulations with τ > 0.1
(filled symbols) are discounted. The reason for the apparent breakdown of the theory once
τ � 0.1 is explored further in the following.

4.2. Evaluation of prediction (P2): solutions of the homogenised equation
Solving the homogenised equation (3.2) directly is an appealing alternative to the sHLP
for calculating the QBO properties for different values of λ. However, the numerical
solution of (3.2) has proved challenging. The main reason is that, given a typical wind
profile U(z, t), the functionals Π±[U, z] appearing in (3.2) generally feature a rapidly
changing thin boundary layer in the vicinity of the maxima of the jets (see the following).
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Parameter Parameter varied (2 significant figures)
Experiment set Fixed λ = {10−4, 5 × 10−4, 10−3, 3 × 10−3, 5 × 10−3,

7.5 × 10−3, 10−2, 5 × 10−2, 7.5 × 10−2, 10−1}
FIX-τ τ = 10−2 θ = {π/63, π/28, π/20, π/11, π/8, π/6, π/5}
LOW-θ θ = π/32 τ = {2.5 × 10−3, 1.3 × 10−2, 2.5 × 10−2, 7.6 × 10−2,

1.3 × 10−1, 1.9 × 10−1, 2.5 × 10−1, 1.3, 1.9, 2.5}
MID-θ θ = π/7 τ = {1.5 × 10−4, 7.4 × 10−4, 1.5 × 10−3, 4.4 × 10−3, 7.4 × 10−3,

1.1 × 10−2, 1.5 × 10−2, 7.4 × 10−2, 1.1 × 10−1, 1.5 × 10−1}
HIGH-θ θ = π/4 τ = {8 × 10−5, 4 × 10−4, 8 × 10−4, 2.4 × 10−3, 4 × 10−3,

6 × 10−3, 8 × 10−3, 4 × 10−2, 6 × 10−2, 8 × 10−2}
MAX-θ θ = π/2 τ = {10−4, 5 × 10−4, 10−3, 3 × 10−3, 5 × 10−3,

7.5 × 10−3, 10−2, 5 × 10−2, 7.5 × 10−2, 10−1}
Table 1. The sets of sHLP simulations at different values of the mrOU parameters (θ, τ ) used to generate the
data in figure 4. In the experiment set FIX-τ , τ is fixed and θ is varied, whereas in the remaining experiment sets
θ is fixed and τ is varied. Each experiment set corresponds to the given values of the intermittency parameter λ.

Moreover, the details of this boundary layer are highly sensitive to small changes in U close
to the maxima, meaning that high temporal and spatial resolution is required to accurately
resolve Π± as U evolves. Using the improved algorithm described in Appendix B to
evaluate the integrals required to calculate Π±, the numerical cost of solving (3.2) at larger
values of λ exceeds that of sHLP by two orders of magnitude, with the cost increasing as
λ is increased. In the absence of a more bespoke algorithm for (3.2), numerical solutions
at only the lowest values of λ = {10−4, 5 × 10−4} have been found to be computationally
tractable.

The QBO amplitude A and period P calculated from the solutions to (3.2) have been
plotted in figure 4 (cyan triangles; see the insets in particular). The results are consistent
with the sHLP calculations, at least within the statistical error of our calculations, showing
that the homogenised equation (3.2) does indeed reproduce the behaviour of the sHLP as
predicted. More broadly, however, it is a disappointing outcome of our analysis that the
equation (3.2) is difficult to use in practice, although it remains possible that an improved
numerical algorithm could rectify this problem.

4.3. Assessment of the breakdown of the theory as τ increases
Analysis of the terms in the homogenised equation (3.2) allows some insight into why the
theory appears to break down at relatively low values of the mrOU time scale τ . In figure 4
results from simulations with τ � 0.1 (solid points) deviate significantly from the curves
traced out by the remaining sHLP solutions. Physically, in the atmospheric situation, if the
streaming time scale T∗ is taken to be 100 days this corresponds to around 10 days, which
is greater than the time scale generally associated with gravity wave packets in the upper
troposphere.

Figure 5 plots the height profile of F+[U, z] and Π+[U, z] for the sHLP (given by (2.3)
and (3.4), respectively) for a representative flow profile U(z) shown in the left panel.
These plots give some insight into why the theory breaks down at what might appear
to be a comparatively low value of τ . The key point is the large factor (approximately
150) between the absolute value of the magnitude of Π+[U, z] compared with that of
F+[U, z]. Formally, because τ � 1 in the asymptotic theory, the contribution from the
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Figure 5. (a) Analytic solution (B5) of Renaud et al. (2019) and (b) computation of F+ (B6) and (c) Π+ (B7)
for Re = 10.

deterministic correction λΠ+[U, z] is infinitesimal compared with that from F+[U, z].
However, in practice, at finite τ , the correction term λΠ+[U, z] becomes comparable in
magnitude to F+[U, z] at relatively low values of τ , thus bringing the predictions of the
theory into question.

5. Discussion and conclusions

5.1. Extension to broadband forcing
The HLP model is, by design, an idealised system with the aim of demonstrating QBO-like
behaviour in as simple a setting as possible. It is clear, however, that since our main
results were obtained in the generalised setting of g-sHLP they apply equally to more
sophisticated gravity wave parameterisation schemes, since changing the nature of the
waves and the details of the wave dissipation will result in only changes to F±, and our
main results apply to any F±.

The remaining key simplification of our study is, however, the restriction to
near-monochromatic wave forcing in the wave source (2.4), and that this forcing is confined
to the lower boundary. The forcing in sHLP is best described as ‘near-monochromatic’
here, because, due to the formal time scale separation between the fast evolution of the
waves, which evolve on an O(ε) time scale and the forcing Ornstein–Uhlenbeck process,
which evolves on a time scale O(τ ) the spectral broadening due to the time dependence of
the stochastic forcing in sHLP is infinitesimal. It is important to note that this would not
be the case in the parent Boussinesq model in which both ε and τ are finite. In reality, the
QBO is forced by a spectrum of different types of waves due to many physical processes,
some of which (e.g. convective forcing; see Lecoanet et al. 2015) are best represented as a
bulk forcing which is distributed in the vertical rather than as a localised boundary forcing.
Our view is that a clear next step in building towards greater realism is to consider HLP
with a broad source spectrum (e.g. K(k, ω) for kinetic energy) in wavenumber–frequency
space. It is known (e.g. Léard, Lecoanet & Le Bars 2020) that broadening the source
spectrum does not change the essential nature of the QBO, except to make the periodic
signal more robust, and tends to lead to longer QBO periods and increased amplitudes.
Extending the current work to the most general broadband forcing situation is a significant
undertaking, not least because the class of available random processes [e.g. stochastic
partial differential equations (SPDEs)] which could drive a randomly evolving bottom
boundary h(x, t) is very large. Some questions which arise naturally are as follows.
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A. If a class of SPDEs is specified to drive a randomly evolving broadband forcing
h(x, t), can results analogous to the intermittency parameter be obtained?

B. In the broadband case, does the intermittency parameter λ determining the QBO
in the monochromatic case generalise to an intermittency spectrum Λ(k, ω)? This
seems a reasonable hypothesis, and it seems necessary to have to consider the
spectral dependence of the intermittency, given that observed sources of different
types are likely to have different intermittency properties.

C. Assuming B, can stochastic parameterisations, of the type introduced by Eckermann
(2011), Lott et al. (2012) and Lott & Guez (2013) be developed to match not only the
source spectrum K(k, ω) but also the intermittency spectrum Λ(k, ω)? In addition
to being computationally efficient, such parameterisations would have the potential
allow GCMs to capture the QBO response to changes in the nature of the wave
forcing which go beyond changes to the launch spectrum.

D. Again assuming B, given a randomly evolving lower boundary h(x, t), driven by an
unknown process, what basic statistics of h can be used to estimate Λ(k, ω)? This
question is crucial because it is clearly a difficult and underconstrained problem to
choose an SPDE model for the wave forcing in practice.

5.2. Summary and outlook
Here a random component has been added to the wave forcing in the HLP model of the
QBO in order to assess the impact of an intermittent wave source. Remarkably, it was
found that the impact on the QBO when the forcing wave amplitude is controlled by any
of a wide class of stochastic processes (2.5), can be captured by a single intermittency
parameter λ given by (3.5). The result exploits the fact that the QBO time scale is much
longer than the time scale on which the source amplitudes will vary, a time scale separation
which will hold for most wave sources in the tropical atmosphere, arguably with the partial
exception of longer lived intraseasonal variability, such as the Madden–Julian oscillation.

The results raise the prospect of designing new stochastic parameterisations for
unresolved gravity waves in GCMs which rely less on artificial tuning parameters (e.g. the
efficiency factor in the scheme of Alexander & Dunkerton 1999), and display a generally
greater fidelity to the physics. In a climate model, such a scheme could better capture the
response of the circulation to changes in wave forcing which go beyond changes to the
source kinetic energy spectrum. A possible programme to develop such a scheme could be
based on answering questions A–D above, although care will be necessary in ensuring that
each member of the hierarchy of models (i.e. HLP to parent Boussinesq model to GCM)
remains qualitatively relevant and captures the essential physical processes taking place.
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Appendix A. Derivation of the homogenised equation (3.2)

Here the homogenised equation (3.2) is derived from the g-sHLP (2.2) when the fast
variables A±

t are driven by an SDE process (2.5) satisfying conditions (C1)–(C3), in
addition to the scaling (3.1) which is necessary in order that τ can be treated as a small
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parameter. The derivation follows the approach taken in chapter 11 of Pavliotis & Stuart
(2008).

First, consider the following conditional expectation, which is evaluated from the
solution U(z, t) of the g-sHLP (2.2) at a fixed constant final time t

Γ [V, a+, a−, s] = E
(
Φ[U(z, t), A+

t , A−
t ] | U(z, s) = V(z), A±

s = a±
)
. (A1)

Here Γ and Φ are scalar functionals. The functional Γ has dependencies based upon the
initial conditions for the g-sHLP, e.g. U(z, s) = V(z) which are applied at a time s < t, as
well as corresponding initial conditions a± for the respective wave amplitudes. It is not
necessary for the following to specify a particular form for Φ. As detailed in Pavliotis
& Stuart (2008), it is known that expressions of the type Γ satisfy the BKE, which for
g-sHLP is

∂sΓ + 1
τ

∑
±

L±
0 Γ + L1Γ = 0, (A2)

where the linear operators L±
0 and L1 are defined according to

L±
0 Γ ≡ f (a±)∂a±Γ + g(a±)2∂2

a±Γ (A3)

and L1Γ ≡
∫
D

QV [V(z), z, a+, a−]
δΓ

δV(z)
dz (A4)

≡ lim
ε→0

d
dε

(Γ [V(z) + εQV [V(z), z, a+, a−], a+, a−, s]) (A5)

where QV [V, z, a+, a−] = −
∑
±

(a±)2F±[V, z] + 1
Re

∂2
z V, (A6)

and where F± are the functionals defined in (2.2).
The homogenised equation is obtained by seeking a solution to the BKE in the form of

an asymptotic expansion in the small parameter τ ,

Γ = Γ0 + τΓ1 + τ 2Γ2 + · · · . (A7)

At leading order in τ

L±
0 Γ0 = 0, (A8)

from which we conclude that Γ0 is independent of a±, i.e.

Γ0 = Γ̄0[V(z), s]. (A9)

This conclusion is justified by the fact that the relevant null space of L±
0 is spanned by

the identity function, which is a property of all SDEs satisfying the ergodic property (C2)
(see, e.g. chapter 6 of Pavliotis & Stuart 2008).

At next order, ∑
±

L±
0 Γ1 = −∂sΓ̄0 − L1Γ̄0. (A10)

First, this equation has a solvability condition∫
R

∫
R

(
∂sΓ̄0 + L1Γ̄0

)
ps(a+)ps(a−) da+ da− = 0. (A11)

This result follows because the invariant density ps(a) spans the null space of L∗
0, the

adjoint of L0. Since E((A±
t )2) = 1 the integrals in the solvability condition can be
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evaluated to give

∂sΓ̄0 +
∫
D

Q0
V [V, z]

δΓ̄0

δV
dz = 0, where

Q0
V [V, z] = −

∑
±

F±[V, z] + 1
Re

∂2
z V.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A12)

This equation for Γ̄0 can be interpreted as the (deterministic) BKE associated with the
standard HLP model (A±

t = 1 in the sHLP above). To find more interesting behaviour, we
need to go to the next order, which requires the full solution for Γ1, which is obtained from

∑
±

L±
0 Γ1 =

∫
D

(
Q0

V [V, z] − QV [V, z, a+, a−]
) δΓ̄0

δV
dz

= −
∑
±

(1 − a2
±)

∫
D

F±[V, z]
δΓ̄0

δV
dz. (A13)

To solve this system we need a particular integral q(a) for the ordinary differential equation

f (a)q′(a) + g(a)2q′′(a) = 1 − a2, (A14)

which is

q(a) =
∫ a

a0

h(x)
g(x)2ps(x)

dx, where h(a) =
∫ a

−∞
(1 − x2)ps(x) dx. (A15)

The lower limit a0 in the integral is chosen for convenience (without loss of generality as it
can be shown not to affect the value of the constant γ defined in the following), to satisfy
E(q(A±

t )) = ∫
R

q(a)ps(a) da = 0. The solution is then

Γ1 = Γ̄1[V] −
∑
±

q(a±)

∫
D

F±[V, z]
δΓ̄0

δV
dz. (A16)

To find the slow dynamics equation, the next order equation must be considered∑
±

L±
0 Γ2 = −∂sΓ1 − L1Γ1. (A17)

The solvability condition for (A17) is∫
R

∫
R

(∂sΓ1 + L1Γ1) ps(a+)ps(a−) da+ da− = 0, (A18)

which can be evaluated to be

∂sΓ̄1 +
∫
D

Q0
V [V, z]

δΓ̄1

δV
dz + γ

∑
±

∫
D

∫
D

F±[V(z̄), z̄]
δF±
δV(z̄)

δΓ̄0

δV(z)
dz dz̄

+ γ
∑
±

∫
D

∫
D

F±[V(z)]F±[V(z̄)]
δ2Γ̄0

δV(z)δV(z̄)
dz dz̄ = 0, (A19)
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where

γ =
∫

R

a2q(a)ps(a) da = E

(
A2

t q(At)
)

. (A20)

Combining (A12) + τ (A19) gives the following equation for Γ̄ = Γ̄0 + τ Γ̄1, correct up to
O(τ ):

∂sΓ̄ +
∫
D

Q0
V [V(z)]

δΓ̄

δV
dz + τγ

∑
±

∫
D

∫
D

F±[V(z̄), z̄]
δF±
δV(z̄)

δΓ̄

δV(z)
dz dz̄

+ τγ
∑
±

∫
D

∫
D

F±[V(z), z]F±[V(z̄), z̄]
δ2Γ̄

δV(z)δV(z̄)
dz dz̄ = 0. (A21)

This equation for Γ̄ can be recognised as the BKE corresponding to the following ‘slow
dynamics’ equation:

dU =
(

Q0
V [U, z] + τγ

∑
±

∫
D

F±[U(z̄, t), z̄]
δF±
δV(z̄)

[U(z, t), z] dz̄

)
dt

+
√

2γ τ

(∑
±

F±[U(z, t), z] dW±
t

)
, (A22)

where W±
t are two independent Brownian processes. Substituting for Q0

V recovers the
homogenised model (3.2) on defining the intermittency parameter to be λ = γ τ .

Appendix B. Details of the numerical algorithms for (2.2) and (3.2)

The algorithm used to solve sHLP is adapted from the finite-difference scheme described
in the supplemental material of Renaud et al. (2019). The most significant alteration is an
improved scheme for evaluating the integrals

I±(z) =
∫ z

0

1
(±U(z′) − 1)2 dz′, (B1)

which appear in the exponential terms in (2.2). The reason an improved scheme is
necessary is that to obtain accurate solutions of (3.2) it is essential that the behaviour
of the calculated I±(zi) at a grid point z = zi varies smoothly as the relative position of a
nearby critical line at z = zc, defined to be where ±U(zc) − 1 = 0, is varied. Following
Renaud et al. (2019), the value of I± is set to +∞ for all grid points above z = zc,
corresponding to setting to zero the exponential in (2.2). However, if I± is evaluated
using a grid-based quadrature as in Renaud et al. (2019), then I±(zi) exhibits considerable
grid-based sensitivity to the relative position of zc and the grid points immediately
below zi.

To alleviate the above issue, I± is evaluated in our scheme for the piecewise linear
interpolant of U(z), i.e.

UP(z) = U(zi) + (U(zi+1) − U(zi))
z − zi

Δz
, for z ∈ [zi, zi+1]. (B2)

The advantage of this approach is that I± can be evaluated exactly for UP as

I±(zi) =
∑
j�i

�z
(±U(zj) − 1)(±U(zj−1) − 1)

(B3)
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10–1 10–2 10–3 10–4

�z
10–5

10–5

100

EF
EΠ

Figure 6. Errors EF and EΠ in the L2-norm of F+ (2.3) and Π+ (3.4) for the analytic solution (B5) of
Renaud et al. (2019). In each case Re = 10.

and (B3) gives smoother behaviour compared with more basic quadratures. Higher-order
approximations based on cubic interpolation or splines naturally suggest themselves as
further improvements, although these are not necessary for a robust scheme.

To assess the appropriate choice of the appropriate grid size �z, the absolute errors
EF and EΠ of F+ and Π+, measured in the L2 norm, are calculated for the exact test
case profile of Renaud & Venaille (2020), which is the steady solution of the following
‘single-wave’ version of HLP:

1
Re

∂2
z U = ∂z

(
exp

(
−
∫ z

0

1
(U(z′) − 1)2 dz′

))
. (B4)

The exact solution is written in terms of the Lambert-W function W(·), as

U(z) = Re − L(z)
1 + Re

, where L(z) = W
(

Re exp
(

Re − z (Re + 1)2
))

, (B5)

and the errors EF and EΠ can be calculated using the analytical results

F+(z) = L(z)
Re

(
Re + 1

L(z) + 1

)3

, (B6)

Π+(z) = 1
2Re2

(
Re + 1

L(z) + 1

)7

L(z)

[(
L(z) + 1
Re + 1

)4

+ 4L(z) − 1

]
. (B7)

Figure 6 shows EF and EΠ as a function of grid size �z. Quadratic convergence is evident
for F+ and linear convergence for Π+. This can be verified by comparison with analytic
expressions for F and Π which are independent of grid size, obtained by using (B5).

Timestepping of the mrOU process follows the algorithm of Gillespie (1996) with
timestep �t = 10−4, chosen so that �t/τ is small in all circumstances, in order to resolve
the process adequately. For timestepping of (2.2) for stability the implicit backward
difference scheme is used. This scheme is unconditionally stable and avoids spurious
oscillations.

988 A16-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.418


M. Ewetola and J.G. Esler

REFERENCES

ALEXANDER, M.J. & DUNKERTON, T.J. 1999 A spectral parameterization of mean-flow forcing due to
breaking gravity waves. J. Atmos. Sci. 56 (24), 4167–4182.

ANSTEY, J.A., SCINOCCA, J.F. & KELLER, M. 2016 Simulating the QBO in an atmospheric general
circulation model: sensitivity to resolved and parameterized forcing. J. Atmos. Sci. 73, 1649–1665.

BALDWIN, M.P., et al.2001 The quasi-biennial oscillation. Rev. Geophys. 39, 179–229.
BÜHLER, O. 2003 Equatorward propagation of inertia–gravity waves due to steady and intermittent wave

sources. J. Atmos. Sci. 60 (11), 1410–1419.
COUSTON, L.-A., LECOANET, D., FAVIER, B. & LE BARS, M. 2018 Order out of chaos: slowly reversing

mean flows emerge from turbulently generated internal waves. Phys. Rev. Lett. 120, 244505.
ECKERMANN, S.D. 2011 Explicitly stochastic parameterization of nonorographic gravity wave. J. Atmos. Sci.

68, 1749-–1765.
FRITTS, D.C. & ALEXANDER, M.J. 2003 Gravity wave dynamics and effects in the middle atmosphere. Rev.

Geophys. 41.
GARCIA, R.R., MARSH, D.R., KINNISON, D.E., BOVILLE, B.A. & SASSI, F. 2007 Simulation of secular

trends in the middle atmosphere, 1950–2003. J. Geophys. Res.: Atmos. 112, D09301. doi:10.1029/
2006JD007485.

GARDINER, C.W. 2009 Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th edn, p. 447.
Springer.

GILLESPIE, D.T. 1996 Exact numerical simulation of the Ornstein–Uhlenbeck process and its integral. Phys.
Rev. E 54, 2084–2091.

HERTZOG, A., BOCCARA, G., VINCENT, R.A., VIAL, F. & COCQUEREZ, P. 2008 Estimation of gravity
wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: results
from the Vorcore campaign in Antarctica. J. Atmos. Sci. 65 (10), 3056–3070.

HINES, C.O. 1997a Doppler-spread parameterization of gravity-wave momentum deposition in the middle
atmosphere. Part 1: basic formulation. J. Atmos. Solar-Terr. Phys. 59, 371–386.

HINES, C.O. 1997b Doppler-spread parameterization of gravity-wave momentum deposition in the middle
atmosphere. Part 2: broad and quasi monochromatic spectra, and implementation. J. Atmos. Solar-Terr.
Phys. 59, 387–400.

HOLTON, J.R. & LINDZEN, R.S. 1972 An updated theory for the quasi-biennial cycle of the tropical
stratosphere. J. Atmos. Sci. 29, 1076–1080.

LÉARD, P., LECOANET, D. & LE BARS, M. 2020 Multimodal excitation to model the quasibiennial
oscillation. Phys. Rev. Lett. 125, 234501.

LECOANET, D., LE BARS, M., BURNS, K.J., VASIL, G.M., BROWN, B.P., QUATAERT, E. & OISHI, J.S.
2015 Numerical simulations of internal wave generation by convection in water. Phys. Rev. E 91, 063016.

LINDZEN, R.S. 1971 Equatorial planetary waves in shear. Part I. J. Atmos. Sci. 28 (4), 609–622.
LINDZEN, R.S. & HOLTON, J.R. 1968 A theory of the quasi-biennial oscillation. J. Atmos. Sci. 25, 1095–1107.
LOTT, F. & GUEZ, L. 2013 A stochastic parameterization of the gravity waves due to convection and its impact

on the equatorial stratosphere. J. Geophys. Res.: Atmos. 118, 8897–8909.
LOTT, F., GUEZ, L. & MAURY, P. 2012 A stochastic parameterization of non-orographic gravity waves:

formalism and impact on the equatorial stratosphere. Geophys. Res. Lett. 39, L06807. doi:10.1029/
2012GL051001.

NEWMAN, P.A., COY, L., PAWSON, S. & LAIT, L.R. 2016 The anomalous change in the QBO in 2015–2016.
Geophys. Res. Lett. 43, 8791–8797.

OTOBE, N., SAKAI, S., YODEN, S. & SHIOTANI, M. 1998 Visualization and WKB analysis of
the internal gravity wave in the QBO experiment. Japan Soc. Fluid Mech. 17. Available at:
http://www.nagare.or.jp/mm/98/otobe/index.htm.

PAVLIOTIS, G.A. & STUART, A.M. 2008 Homogenization for ODEs and SDEs, pp. 157–182. Springer.
PIANI, C., NORTON, W.A. & STAINFORTH, D.A. 2004 Equatorial stratospheric response to variations

in deterministic and stochastic gravity wave parameterizations. J. Geophys. Res.: Atmos. 109, D14101.
doi:10.1029/2004JD004656.

PLUMB, R.A. 1977 The interaction of two internal waves with the mean flow: implications for the theory of
the quasi-biennial oscillation. J. Atmos. Sci. 34, 1847–1858.

PLUMB, R.A. & MCEWAN, A.D. 1978 The instability of a forced standing wave in a viscous stratified fluid:
a laboratory analogue of.the quasi-biennial oscillation. J. Atmos. Sci. 35 (10), 1827–1839.

READ, P.L. 2018 A chorus of the winds—on Saturn!. J. Geophys. Res.: Planet 123 (5), 1007–1011.
RENAUD, A., NADEAU, L. & VENAILLE, A. 2019 Periodicity disruption of a model quasibiennial oscillation

of equatorial winds. Phys. Rev. Lett. 122, 214504.

988 A16-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

doi:10.1029/2006JD007485
doi:10.1029/2006JD007485
doi:10.1029/2012GL051001
doi:10.1029/2012GL051001
http://www.nagare.or.jp/mm/98/otobe/index.htm
doi:10.1029/2004JD004656
https://doi.org/10.1017/jfm.2024.418


Intermittent forcing of the QBO

RENAUD, A. & VENAILLE, A. 2020 On the Holton–Lindzen–Plumb model for mean flow reversals in stratified
fluids. Q. J. R. Meteorol. Soc. 146 (732), 2981–2997.

SHOWMAN, A.P., TAN, X. & ZHANG, X. 2019 Atmospheric circulation of brown dwarfs and Jupiter- and
Saturn-like planets: zonal jets, long-term variability, and QBO-type oscillations. Astrophys. J. 883 (1), 4.

VALLIS, G.K. 2017 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation,
2nd edn. Cambridge University Press.

WARNER, C.D. & MCINTYRE, M.E. 1996 On the propagation and dissipation of gravity wave spectra through
a realistic middle atmosphere. J. Atmos. Sci. 53, 3213–3235.

988 A16-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.418

	1 Introduction
	2 The sHLP model
	2.1 The deterministic HLP model
	2.2 The sHLP model with stochastic wave amplitude evolution
	2.3 The class of SDEs driving the forcing wave amplitude
	2.4 Example: a family of mean-reverting Ornstein--Uhlenbeck processes

	3 Analysis of g-sHLP and the intermittency parameter
	4 Evaluation of the theory: numerical solutions of sHLP and the homogenised equation
	4.1 Evaluation of prediction (P): solutions of sHLP
	4.2 Evaluation of prediction (P2): solutions of the homogenised equation
	4.3 Assessment of the breakdown of the theory as  increases

	5 Discussion and conclusions
	5.1 Extension to broadband forcing
	5.2 Summary and outlook

	Appendix A. Derivation of the homogenised equation ([eqn11]3.2)
	Appendix B. Details of the numerical algorithms for ([eqn2]2.2) and ([eqn11]3.2)
	References

