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1. Introduction. A well-known problem in topology is the so-called 
metrization problem. This consists of asking for the topological conditions 
that are necessary and sufficient in order to guarantee that a topological space 
be metrizable. The first solution of this problem was given in 1923 by P. 
Alexandroff and P. Urysohn (1). Their proof relied heavily upon the result 
of Chittenden (4) that the notion of uniformly regular écart is equivalent to 
that of a metric distance function. In 1937 A. H. Frink (5) gave a simplified 
proof of Chittenden's theorem along with a modification of the Alexandroff-
Urysohn condition. Then in 1947 R. H. Bing (2) published a paper containing 
a proof of the Alexander-Urysohn condition which did not use the notion of 
uniformly regular écart. His method allowed him to prove another modifi
cation of the original condition for metrizability. 

The condition given by Alexandroff and Urysohn is in some ways not as 
satisfactory a solution of the topological metrization problem as some of the 
later ones, such as those given by Smirnov (9), Nagata (7), and Bing (3). 
However, a very interesting feature of the Alexandroff-Urysohn condition is 
that it can be viewed as a necessary and sufficient condition for the metrization 
of uniform spaces. This aspect of the result is developed in Weil (10) and 
Kelley (6). 

All the previously mentioned proofs of the Alexandroff-Urysohn theorem and 
of its modifications have been entirely topological. In this paper a certain 
combinatorial result concerning triangular arrays of real numbers is estab
lished, which serves to remove the major obstacle in proving the metrization 
theorems of this type. The remaining topological arguments are very brief 
and elementary. 

2. Definitions. Let A = (aly a2, . . . , an) be an ordered w-tuple of real 
numbers. From A we obtain an m-tuple, B = (bi, bi, . . . , bm), of real numbers 
which we call a reduction of A. The process of obtaining a reduction can be 
explained in the following way. We select bi to be either d\ or one less than 
the minimum of a\ and a^. If b\ is chosen to be au then we may choose b2 to 
be either #2 or one less than the minimum of a<i and a%. On the other hand 
if bi is chosen to be one less than the minimum of d\ and a^ then bi may be 
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chosen to be either a3 or one less than the minimum of a3 and a±. In this 
manner we proceed step-by-step along the w-tuple A. At each s tep we either 
select the first "unused" element of A or one less than the minimum of the 
first pair of elements in the "unused" portion of A. We continue until all of 
A has been used in producing elements of B. If a t each s tep, except possibly 
the last one, we use two elements of A, t h a t is, we select each te rm of B, 
except possibly the last one, t o be one less t han the minimum of the appro
priate pair in A, then we shall say t h a t the resulting w-tuple B is a standard 
reduction of A. In case n is even such a selection is possible a t each s tep and 
m = \n. If n is odd, then there is no such selection possible in the final s tep , 
and bm must be chosen equal to an, and m = \{n + 1). In either case we can 
write m = [\(n + 1)], where we use the notat ion [x] to denote the largest 
integer not greater than x. A precise definition of reduction can be s ta ted 
as follows. If (1) m < n, (2) there are k t e rms (0 < k < m), b^D, 6 i (2), . . . , &*(*), 

i(j) < i(j + 1)> °f B s u c n t n a t bai) = \m'm(ai(j)+j~u aUj)+j)} — 1> a n d (3) 
the remaining m — k terms of B are such t h a t bq = aq+j1 where i(j) < q 
< i(j + 1) and i(0) = 0, i(k + 1) = m + 1, then B is said to be a reduction 

of A. If k = m, or if k = m — 1 with bm = anj then B is a standard reduction 
of A. 

If A f is a reduction of At-i for i = 1, 2, . . . , r, then A0, Ai, . . . , Ar is a 
reduction sequence. T h e reduction sequence is said to be standard if 4̂ ̂  is a 
s tandard reduction of Ai-\ for i = 1, 2, . . . , r. T h e reduction sequence is 
said to be complete if AT = (ari) and At ?± Ar for i < r; we shall call a r i a 
residue of ^4o-

For 4̂ = (ai, a2, . . . , ap, . . . , aqj . . . , an) we shall use the notat ion A (p, q) 
to denote (ap, ap+i, . . . , aq). 

A reduction sequence A0j Alf . . . , Ak is said to hold the a0j t e rm of A0 

stable provided t h a t for i — 1, 2, . . . , fe, there are terms a^j) such t h a t : 
(1) aH(j) = aoj] (2) Ai(l, i(j) — 1) is a s tandard reduction of Ai_1(l, i — l ( j ) 

— 1); (3) At(i(j) + 1, tii) is a s tandard reduction of ^4^_i(i — l ( j ) + 1, w*_i). 
A reduction sequence -4o, ^4i> • • • , Ak is said t o hold stable t e rms a0s(o,i), 

^os(o,2), • • • y 0os(o,o of A0 (where ^(0, i) < s(0, i -\- 1)) provided t h a t the 
0os(o,o te rm, for i = 1 , 2 , . . . , / , is held stable by the reduction sequence 
Aj(s(j, i - 1) + 1, s(j, i + 1) - 1), where s ( j , 0) + 1 = 0, and s(j, t + 1) 
— 1 = tij, for j = 0, 1, . . . , k. 

3. Examples. 

1. An example where B is a reduction of 4̂ is: 

A = (11, 5 , 2 , 13, 9 , 3 , 7 ) 
V I \ / I I 

B = ( 4, 2, 8, 3 ,7 ) 

2. An example where B is a s tandard reduction of A is: 
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A = (11, 5,2, 13,9, 3,7) 
\ / \ / \ / I 

B = ( 4, 1, 2, 7) 

3. An example of a complete reduction sequence is: 

A0 = (8, 10 ,4 ,6 ,11 , 9,6) 
\ / I I V I 

A1= ( 7, 4,6, 8, 6) 
\ / | \ / 

A* = ( 3, 6, 5 ) 
I \ / 

^ 3 = ( 3, 4 ) 
\ / 

A, = ( 2 ) 

In this example 2 is a residue of A0. 

4. An example of a standard, complete reduction sequence is: 

Ao = (8, 10,4, 6, 11, 9, 6) 
\ / \ / \ / | 

Ax = ( 7, 3, 8, 6) 
\ / \ / 

At = ( 2, 5 ) 
\ / 

4 , = ( 1 ) 

5. An example of a reduction sequence which holds the second and sixth 
terms of A0 stable is: 

Ao = (5 ,3 ,7 , 8, 5 ,6 ,3 , 8) 
I I \ / I I \ / 

Ax = (5,3, 6, 5,6, 2 ) 
I I \ / I I 

A2 = (5,3, 4, 6, 2 ) 

4. Lemmas. 

LEMMA 1. If At is an ordered nrtuple and A0, Ai, . . . , Ar is a standard 
reduction sequence, then nt = [(no + 2i — 1)2~*] for i = 0, 1, . . . , r. 

Proof. By an earlier remark nt = [(nt-i + 1)2_1] for i = 1, 2, . . . , r. The 
lemma follows by mathematical induction. 

LEMMA 2. If A0, Ai, . . . , Ak is a reduction sequence holding stable t terms, 
and At is an ordered nrtuple, then nk < [{n0 + (2* — l)(2t + 1)}2~*]. 

Proof. Let a0s(o>(?), where q = 1, 2, . . . , £, be the terms held stable, and 
consider At and Ai+i for some i, 0 < i < k. Let ra0 = s( '̂, 1) — 1, 
mt = nt — s(i, t), and mv = s{i, p + 1) — s(i, £) — 1 for p = 1, 2, . . . , t — 1. 
L e t W = s(i + 1,1) — 1, ml = ni+i — s(i + 1, t), and mp

f = s(i + 1, p + 1) 
- s(i + 1, p) - 1 for p = 1, 2, . . . ,t - 1. Then 
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tii = t + Yl,mP a n d rii+i = t + X l ^ . 

Since m / = [(mp + 1)2_1] for £ = 0, 1, . . . , t, we have 

ni+i = t + E [(tnp + 1)2_1] < / + E K + 1)2_1 = [{m + 2t + 1)2"1]. 

The lemma follows by mathematical induction. 

LEMMA 3. Let A0j Ai, . . . , Ar be a complete reduction sequence, and let 
v(Q), v(l), • • • » v{m) be a non-decreasing sequence of integers with v(0) = 0 and 
v(m) < r. If AV(t), Ava)+i, . . . ,AV(i+D is a reduction sequence holding stable 
kt terms for i = 0, 1, . . . , m — 1, and if Av{m), .4w(m)+i, . . . , Ar is a standard 
reduction sequence, then 

m 

2'-1 < «o + Z 2(2"Ci) - 2,('"1))ifet_1. 
i=l 

Proof. From Lemma 2 we have, for i = 1, 2, . . . , m, 

».«) < [ K « - D + (2'«>-<*-« _ l)(2* i_1 + l)}2'C*-i)--(0]. 

It follows, by finite induction, that we have 

nHm) < [|»o + Z (2c(i) - 2,((-1))(2*<_1 + l)}2-t(m)J. 

This establishes the lemma if v(m) = r, and the lemma is trivially true if 
r = 0. Therefore, suppose r > 0 and z;(ra) < r, then let q = r — 1 — z/(m). 
Since AV(m), AV(m)+i, . . . , AT-i is a standard reduction sequence we have, by 
Lemma 1, nr-i = [(w»(OT) + 2Ç — 1)2_<Z]. Therefore, 

{^0 + E (2v{i) - 2v{i-1)){2ki.l + 1) + 2 r"x - 2 ^ m ) | 2 - ( r - 1 ) 

( Ï 
Uo + Z 2(2^u) - 2cC<"1))*^i + 2 ' - 1 - l p " ^ " " 

Since r > 0, wr_i = 2, and the lemma's inequality follows immediately. 

LEMMA 4. If A0 = (aoi, ^02, . . . , aon) ^wd M is the supremum of the set of all 
residues of A 0, then 

Ê 2-ao i > 2-(-w+2). 

Proof. Let £ be an integer such that 2{p — 1) < n < 2£. Define 
£0 = {#0* :a0î 6 i o and a0i < Af}, and, for j = 1,2, . . . , £, define 
-By = {#<H -^02 G Ao and a0i = ikf + 7}. Let bj be the number of elements 
in Bj, for j = 0, 1, . . . , py and assume that: 

(1) Z&,2- ( M +*<2- ( M + 2 > . 

Wr-l < 
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This implies that bo = bi = b2 = 0. Now assume that p < 3, and let A0, 
Ai, . . . , AT be a standard, complete reduction sequence. Since n < 2p < 4, 
we have r < 2. No term of ^40 is less than M + 3, so arl > M + 1, contra
dicting that ilf is the supremum of the residues of A0. Thus p > 3. 

If g is an integer such that 0 < q < p — 3, and if we multiply both sides 
of (1) by 2M+p-«+1, jwe]get 

]£ &-*-»% < 2p-q-\ 

Thus, 

Summing over g, we obtain 

g g22,_,_i+1^ < 2, _ ^ 
<Z=0 j = 3 

Changing the order of the summation and simplifying, we find 

jt (2p-j+2 - 2)bj < 2P - 2£. 

Since n < 2/) we have: 

(2) n + E (2p~j+2 - 2)6 i < 2P. 

Let ^4o, ̂ 4i, • • • , Ar be a reduction sequence such that: (a) r > £, (&) if, for 
i and j integers (0 < i < r, 0 < j < p), we define Ĉy = {aik : aik £ ^4* and 
dit K M + p — j}, then ^4*, ^4*+i holds stable all the terms in tCi for i = 0, 
1, . . . , p — 1 and (c) Ap, Ap+1, . . . , AT is a standard, complete reduction 
sequence. Next, we define tdj to be the number of elements in tCj and, from 
the preceding, we know i+idj = tdj if i + 1 < 7 < p. By induction it is easy 
to see that for all integers t (1 < t < p), odj = tdj if £ < j < £. Since 0^P = 0, 
it follows that tdp = 0 for all i K p> So, if 0 < i < /?, 4̂ ^ does not consist 
of only a single term. This means that AQ, AI, . . . , Ar satisfies our definition 
of a complete reduction sequence, and also that r > p. 

Obviously, 
p—j P—3 

oCj = S Bu so odj = ^2 bi and Ẑ- = odv-3- — odp-j+i-
i = 0 i=0 

Using this in (2), along with the fact that odp~2 = 0, we obtain: 

(3) n+ Y,2(2i+1-2i)odi<2p. 

However, A0} Au . . . , A r is a complete reduction sequence and from Lemma 3 
we have: 
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(4) 27-1 < n + E 2(2i+1 - 2') „<*,. 

So, since dp_2 = dp-i = dv = 0, we have 2 r _ 1 < 2P, contradicting r > p, which 
was obtained earlier. Therefore, inequality (1) is false, and the lemma is 
proved. 

It may be noted that the inequality we actually established is a good deal 
stronger than the one stated in Lemma 4, as one can see by comparing the 
negation of (1) with the stated inequality. However, the form in the lemma 
is the more convenient form when using it in proving certain metrization 
theorems. Also, the above proof is somewhat constructive in that, given M, 
the supremum of the set of all the residues of a certain w-tuple, the proof 
displays a complete reduction sequence resulting in M as the residue. 

5. Alexandroff-Urysohn metrization theorem. 

THEOREM. A topological space S is metrizable if and only if S is a TV space 
such that there exists a sequence Gi, G2, . . . , having the following properties: 
(1) for each natural number i, Gt is an open covering of 5, (2) if gi and g2 are 
intersecting elements of Gi+i, then gi + gi is a subset of some element of Gi} and 
(3) if p is a point of an open set R, then there is a natural number i such that 
tf 3 > i anà £ contains p and belongs to Gjy then g is contained in R. 

Proof. The necessity of the condition is easily established. We shall use the 
notation U{p, 2~l) to represent the 2~'-neighbourhood of p, that is the set 
{x\x Ç S, d(p, x) < 2~l). Assuming the space 5 to be metric, we define Gt to 
be the set of all 2~*-neighbourhoods. Since each such neighbourhood is open, 
condition (1) is satisfied. If gi and g2 belong to Gi+i and p G gi-g2, then 
U(p, 2~l) belongs to Gt and contains gi + g2. Consequently, condition (2) is 
true. If p is a point of an open set R, there is a natural number i such that 
\J(p, 2~i) C R- Then, if j > i + 1 it is clear that each element of Gj which 
contains p must lie within U(p, 2~l) and hence in R. 

To prove the sufficiency of the condition we begin defining Ht = Gi if 
i > 1, Hi = Gi + {5}, and Hi = {S} if i < 0. Obviously, the sequence 
H\, H2, . . . will satisfy the conditions stated in the hypothesis of the theorem. 
If x and y are points in S, let N be the largest integer i such that there is an 
element of Ht containing x and y. Define D to be the set of all positive num
bers d such that there are open sets gu g2j . . . , gk, where x is in gi, y in gk, 
gi'gi+i ^ 0 (i = 1, 2, . . . , k — 1), gi belongs to Ha{i) (i = 1, 2, . . . , k), and 

E 2~a(i) = d. 

From condition (2) of the hypothesis we see that for every reduction of 
(a(l), a(2), . . . , a(k)) there is a corresponding coherent collection containing 
x and y of open sets from the sequence of iJ 's. Hence, N is an upper bound 
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for the residues of this &-tuple, and by Lemma 4, d > 2~ ( iV+2). So, the set D 
is bounded below, and we proceed to define d(x,y) as the infimum of D if 
x ^ j , and for x = y we define d(x, y) = 0. We now prove t ha t this distance 
function satisfies the requirements of a metric. From our definition it follows 
t h a t d(x, y) = 0 if and only if x = y. And it also follows t h a t d(x, y) = d(y, x). 
T o establish the triangle inequality for the function, we let x, y, and z be points 
of 5 and assume d{x, z) — d(x, y) — d(y, z) = e > 0. From the definition of 
the distance function it follows t ha t there is a coherent collection containing 
x and y such t h a t the corresponding sum of dyadic fractions is less than 
d(x, y) + Je. Likewise, there is a coherent collection containing y and z whose 
corresponding sum of dyadic fractions is less than d(y, z) + Je. The union of 
these two coherent collections gives us a coherent collection containing x and 
z such t h a t the corresponding sum of dyadic fractions is less than d(x, y) + 
d(y, z) + e = d(x, z). This contradicts the definition of d(x, z) as the infimum 
of the set of all such sums; hence the triangle inequality is t rue. Finally we 
must show t h a t the limit point relation defined by the original topology is 
equivalent to t h a t given by the distance function. Let p be a point of an 
open set R. By par t (3) of the given condition on the G's, there is a na tura l 
number k such t h a t if q is not in R, then no element of Gk contains p and 
q. Thus , d(p, q) > 2~* - 1 and so U(p, 2~k~l) is contained in R. On the other 
hand, for any p in S and natura l number j , consider the union of all elements 
of Gj+i which contains p. This set is usually called a s tar of p and will be 
denoted by st(p,j + 1). If q is in st(p,j + 1) then d(p, q) < 2~i~l < 2~j. 
Hence, st(p,j + 1) is contained in U(p,2~j). This completes the argument 
proving t h a t the distance function defined above preserves the limit point 
relation and, in fact, is a metric for S. 

6. C o n c l u d i n g r e m a r k s . The manner in which the inequality obtained 
in Lemma 4 can be applied in proving certain other metrization theorems is 
almost identical with the way in which it was used above. Several o ther 
metrization theorems, such as Frink 's and Bing's, are s ta ted in terms of con
ditions similar to the condition (3) in the Alexandroff-Urysohn theorem. When
ever such a condition is present, the inequality in Lemma 4 can be used to 
establish a positive lower bound for a set of certain dyadic fractions, and then 
the distance between points can be defined by means of the infimum of th is 
set. The same method can also be applied to obtain a simple proof of a theorem 
of H. Ribeiro (4) giving a necessary and sufficient condition for a topological 
space to be weakly metric. 
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