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DIFFERENTIAL OPERATORS ON QUANTIZED FLAG
MANIFOLDS AT ROOTS OF UNITY, II

TOSHIYUKI TANISAKI

To Etsuro Date on his 60th birthday

Abstract. We formulate a Beilinson–Bernstein-type derived equivalence for a
quantized enveloping algebra at a root of 1 as a conjecture. It says that there
exists a derived equivalence between the category of modules over a quantized
enveloping algebra at a root of 1 with fixed regular Harish-Chandra central
character and the category of certain twisted D-modules on the corresponding
quantized flag manifold. We show that the proof is reduced to a statement
about the (derived) global sections of the ring of differential operators on the
quantized flag manifold. We also give a reformulation of the conjecture in terms
of the (derived) induction functor.

§0. Introduction

0.1.

Let G be a connected, simply connected simple algebraic group over C,

and let H be a maximal torus of G. We denote by g and h the Lie algebras

of G and H , respectively. Let Q and Λ be the root lattice and the weight

lattice, respectively. Let hG be the Coxeter number of G. We fix an odd

integer � > hG, which is prime to the order of Λ/Q and prime to 3 if g

is of type G2, F4, E6, E7, E8, and we consider the De Concini–Kac-type

quantized enveloping algebra Uζ at q = ζ = exp(2π
√
−1/�).

In [20], we started the investigation of the corresponding quantized flag

manifold Bζ , which is a noncommutative scheme, and the category of

D-modules on it. In view of a general philosophy saying that quantized

objects at roots of 1 resemble ordinary objects in positive characteristics, it
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2 T. TANISAKI

is natural to pursue an analogue of the theory of D-modules on the ordinary

flag manifolds in positive characteristics due to Bezrukavnikov, Mirković,

and Rumynin [6]. Along this line, we have established in [20] certain Azu-

maya properties of the ring of differential operators on the quantized flag

manifold. The aim of the present article is to investigate an analogue of

another main point of [6] about the Beilinson–Bernstein-type derived equiv-

alence.

0.2.

We denote by DBζ ,1 the sheaf of rings of differential operators on the quan-

tized flag manifold Bζ . More generally, for each t ∈H we have its twisted

analogue denoted by DBζ ,t. It is obtained as the specialization DBζ
⊗C[H] C

of the universally twisted sheaf DBζ
with respect to the ring homomorphism

C[H]→C corresponding to t ∈H .

Let B be the ordinary flag manifold for G. Then we have a Frobenius

morphism Fr : Bζ →B, which is a finite morphism from a noncommutative

scheme to an ordinary scheme. Taking the direct images, we obtain sheaves

Fr∗DBζ
,Fr∗DBζ ,t (t ∈H) of rings on B (in the ordinary sense). Denote by

Modcoh(Fr∗DBζ ,t) the category of coherent Fr∗DBζ ,t-modules. Let ZHar(Uζ)

be the Harish-Chandra center of Uζ , and let Ct be the corresponding 1-

dimensional ZHar(Uζ)-module. Denote by Modf (Uζ ⊗ZHar(Uζ) Ct) the cate-

gory of finitely generated Uζ ⊗ZHar(Uζ) Ct-modules. Then we have a functor

(0.1) RΓ(B,•) :Db
(
Modcoh(Fr∗DBζ ,t)

)
→Db

(
Modf (Uζ ⊗ZHar(Uζ) Ct)

)
between derived categories. It is natural in view of [6] to conjecture that

(0.1) gives an equivalence if t is regular. By imitating the argument of [6],

we can show that this is true if we have

(0.2) RΓ(B,Fr∗DBζ
)∼= Uζ ⊗ZHar(Uζ) C[Λ].

However, we do not know how to prove (0.2) at present; hence, we can only

state it as a conjecture. We have also a stronger conjecture,

(0.3) RΓ
(
B,Fr∗(DBζ

)f
)∼= Uζ,f ⊗ZHar(Uζ) C[Λ],

which is the analogue of (0.2) regarding the adjoint finite parts (DBζ
)f , Uζ,f

of DBζ
, Uζ , respectively. We will give a reformulation of (0.3) in terms of

the induction functor (see Conjecture 5.2 below). It turns out that (0.3) is
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QUANTIZED FLAG MANIFOLDS 3

equivalent to some assertions in Backelin and Kremnizer [2], [3] stated to

be true under certain conditions on � (see Remark 5.4 below).

It is also an interesting problem to find a formulation which works even in

the case when the parameter t ∈H is singular. In the case of Lie algebras in

positive characteristics, Bezrukavnikov, Mirković, and Rumynin in [5] have

succeeded in giving a more general framework, which works even for sin-

gular parameters, using partial flag manifolds (quotients of G by parabolic

subgroups). In their case, the parameter space is h∗, and one can associate

for each h ∈ h∗ a parabolic subgroup whose Levi subgroup is the centralizer

of h; however, in our case the centralizer of t ∈H is not necessarily a Levi

subgroup of a parabolic subgroup, and hence the method in [5] cannot be

directly applied to our case.

0.3.

This article has the following organization. In Section 1, we recall basic

facts on quantized enveloping algebras at roots of 1 and the correspond-

ing quantized flag manifolds. In Section 2, we investigate properties of the

category of D-modules. In particular, we show that (0.2) implies (0.1) for

regular t and that (0.3) implies (0.2). In Sections 3 and 4, we recall some

known results on the representations of quantized enveloping algebras and

the induction functor, respectively. Finally, in Section 5 we give a reformu-

lation of (0.3) in terms of the induction functor.

§1. Quantized flag manifold

1.1. Quantized enveloping algebras

1.1.1. Let G be a connected simply connected simple algebraic group

over the complex number field C. We fix Borel subgroups B+ and B− such

that H = B+ ∩B− is a maximal torus of G. Set N+ = [B+,B+], and set

N− = [B−,B−]. We denote the Lie algebras of G, B+, B−, H , N+, N− by

g, b+, b−, h, n+, n−, respectively. Let Δ⊂ h∗ be the root system of (g,h).

We denote by Λ ⊂ h∗ and Q ⊂ h∗ the weight lattice and the root lattice,

respectively. For λ ∈ Λ we denote by θλ the corresponding character of H .

The coordinate algebra C[H] of H is naturally identified with the group

algebra C[Λ] =
⊕

λ∈ΛCe(λ) via the correspondence θλ ↔ e(λ) for λ ∈ Λ.

We take a system of positive roots Δ+ such that b+ is the sum of weight

spaces with weights in Δ+∪{0}. Let {αi}i∈I be the set of simple roots, and

let {�i}i∈I be the corresponding set of fundamental weights. We denote by

Λ+ the set of dominant integral weights. We set Q+ =
⊕

i∈I Z�0αi. Let W ⊂
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4 T. TANISAKI

GL(h∗) be the Weyl group. For i ∈ I we denote by si ∈W the corresponding

simple reflection. We take a W -invariant symmetric bilinear form

( , ) : h∗ × h∗ →C

such that (α,α) = 2 for short roots α. For α ∈Δ we set α∨ = 2α/(α,α). For

i ∈ I we fix ēi ∈ gαi , f̄i ∈ g−αi such that [ēi, f̄i] = α∨
i under the identification

h= h∗ induced by ( , ).

1.1.2. For n ∈ Z�0 we set

[n]t =
tn − t−n

t− t−1
∈ Z[t, t−1],

[n]t! = [n]t[n− 1]t · · · [2]t[1]t ∈ Z[t, t−1].

We denote by UF the quantized enveloping algebra over F=Q(q1/|Λ/Q|)
associated to g. Namely, UF is the associative algebra over F generated by

elements

kλ (λ ∈ Λ), ei, fi (i ∈ I)

satisfying the relations

k0 = 1, kλkμ = kλ+μ (λ,μ ∈ Λ),

kλeik
−1
λ = q(λ,αi)ei (λ ∈ Λ, i ∈ I),

kλfik
−1
λ = q−(λ,αi)fi (λ ∈ Λ, i ∈ I),

eifj − fjei = δij
ki − k−1

i

qi − q−1
i

(i, j ∈ I),

1−aij∑
n=0

(−1)ne
(1−aij−n)
i eje

(n)
i = 0 (i, j ∈ I, i �= j),

1−aij∑
n=0

(−1)nf
(1−aij−n)
i fjf

(n)
i = 0 (i, j ∈ I, i �= j),

where qi = q(αi,αi)/2, ki = kαi , aij = 2(αi, αj)/(αi, αi) for i, j ∈ I , and

e
(n)
i = eni /[n]qi !, f

(n)
i = fn

i /[n]qi !
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QUANTIZED FLAG MANIFOLDS 5

for i ∈ I and n ∈ Z�0. We will use the Hopf algebra structure of UF given by

Δ(kλ) = kλ ⊗ kλ (λ ∈ Λ),

Δ(ei) = ei ⊗ 1 + ki ⊗ ei, Δ(fi) = fi ⊗ k−1
i + 1⊗ fi (i ∈ I),

ε(kλ) = 1, ε(ei) = ε(fi) = 0 (λ ∈ Λ, i ∈ I),

S(kλ) = k−1
λ , S(ei) =−k−1

i ei, S(fi) =−fiki (λ ∈ Λ, i ∈ I).

Define subalgebras U0
F , U

+
F , U−

F , U
�0
F , U

�0
F of UF by

U0
F = 〈kλ | λ ∈ Λ〉, U+

F = 〈ei | i ∈ I〉, U−
F = 〈fi | i ∈ I〉,

U
�0
F = 〈kλ, ei | λ ∈ Λ, i ∈ I〉, U

�0
F = 〈kλ, fi | λ ∈ Λ, i ∈ I〉.

The multiplication of UF induces isomorphisms

UF
∼= U−

F ⊗U0
F ⊗U+

F
∼= U+

F ⊗U0
F ⊗U−

F ,(1.1)

U
�0
F

∼= U0
F ⊗U+

F
∼= U+

F ⊗U0
F ,(1.2)

U
�0
F

∼= U0
F ⊗U−

F
∼= U−

F ⊗U0
F ,(1.3)

of F-modules. The fact (1.1) is called the triangular decomposition of UF.

For γ ∈Q we set

U±
F,γ =

{
u ∈ U±

F

∣∣ kμuk−μ = q(γ,μ)u (μ ∈ Λ)
}
.

Then we have

U±
F =

⊕
γ∈Q+

U±
F,±γ .

For i ∈ I we denote by Ti the automorphism of the algebra UF given by

Ti(kμ) = ksiμ(μ ∈ Λ),

Ti(ej) =

{∑−aij
k=0 (−1)kq−k

i e
(−aij−k)
i eje

(k)
i (j ∈ I, j �= i),

−fiki (j = i),

Ti(fj) =

{∑−aij
k=0 (−1)kqki f

(k)
i fjf

(−aij−k)
i (j ∈ I, j �= i),

−k−1
i ei (j = i)
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6 T. TANISAKI

(see [15]). Let w0 be the longest element of W . We fix a reduced expression

w0 = si1 · · · siN

of w0, and we set

βk = si1 · · · sik−1
(αik) (1� k �N).

Then we have Δ+ = {βk | 1� k �N}. For 1� k �N we set

eβk
= Ti1 · · ·Tik−1

(eik), fβk
= Ti1 · · ·Tik−1

(fik).

Then {emN
βN

· · · em1
β1

| m1, . . . ,mN � 0} (resp., {fmN
βN

· · ·fm1
β1

| m1, . . . ,mN �
0}) is an F-basis of U+

F (resp., U−
F ), called the PBW (Poincaré–Birkhoff–

Witt) basis (see [14]). We have eαi = ei and fαi = fi for any i ∈ I .

Denote by

(1.4) τ : U
�0
F ×U

�0
F → F

the Drinfeld pairing. It is characterized as the unique bilinear form satisfying

τ(x, y1y2) = (τ ⊗ τ)
(
Δ(x), y1 ⊗ y2

)
(x ∈ U

�0
F , y1, y2 ∈ U

�0
F ),

τ(x1x2, y) = (τ ⊗ τ)
(
x2 ⊗ x1,Δ(y)

)
(x1, x2 ∈ U

�0
F , y ∈ U

�0
F ),

τ(kλ, kμ) = q−(λ,μ) (λ,μ ∈ Λ),

τ(kλ, fi) = τ(ei, kλ) = 0 (λ ∈ Λ, i ∈ I),

τ(ei, fj) = δij/(q
−1
i − qi) (i, j ∈ I)

(see [15], [18]). It also satisfies the following.

Lemma 1.1 ([15, Section 1.2], [18, Proposition 2.1.1]). We have the fol-

lowing:

(i) τ(S(x), S(y)) = τ(x, y) for x ∈ U
�0
F , y ∈ U

�0
F ;

(ii) for x ∈ U
�0
F , y ∈ U

�0
F we have

yx=
∑

(x)2,(y)2

τ
(
x(0), S(y(0))

)
τ(x(2), y(2))x(1)y(1),

xy =
∑

(x)2,(y)2

τ(x(0), y(0))τ
(
x(2), S(y(2))

)
y(1)x(1);
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(iii) τ(xkλ, ykμ) = q−(λ,μ)τ(x, y) for λ,μ ∈ Λ, x ∈ U+
F , y ∈ U−

F ;

(iv) τ(U+
F,β,U

−
F,−γ) = {0} for β,γ ∈Q+ with β �= γ;

(v) for any β ∈Q+, the restriction τ |U+
F,β×U−

F,−β
is nondegenerate.

We define an algebra homomorphism

ad : UF → EndF(UF)

by

ad(u)(v) =
∑
(u)

u(0)v(Su(1)) (u, v ∈ UF).

1.1.3. We fix an integer � > 1 satisfying

(a) � is odd;

(b) � is prime to 3 if G is of type G2, F4, E6, E7, E8;

(c) � is prime to |Λ/Q|;
and a primitive �th root ζ ′ ∈C of 1. Define a subring A of F by

A=
{
f(q1/|Λ/Q|)

∣∣ f(x) ∈Q(x), f is regular at x= ζ ′
}
.

We set ζ = (ζ ′)|Λ/Q|. We note that ζ is also a primitive �th root of 1 by

condition (c).

We denote by UL
A , UA the A-forms of UF called the Lusztig form and the

De Concini–Kac form, respectively. Namely, we have

UL
A = 〈e(m)

i , f
(m)
i , kλ | i ∈ I,m ∈ Z�0, λ ∈ Λ〉A-alg ⊂ UF,

UA = 〈ei, fi, kλ | i ∈ I,λ ∈ Λ〉A-alg ⊂ UF.

We have obviously UA ⊂ UL
A . The Hopf algebra structure of UF induces Hopf

algebra structures over A of UL
A and UA. We set

UL,�
A = UL

A ∩U �
F, U �

A = UA ∩U �
F (�=+,−,0,� 0,� 0),

UL,±
A,±γ = UL

A ∩U±
F,±γ , U±

A,±γ = UA ∩U±
F,±γ (γ ∈Q+).

Then we have triangular decompositions

UL
A
∼= UL,−

A ⊗A UL,0
A ⊗A UL,+

A ,

UA
∼= U−

A ⊗A U0
A ⊗A U+

A .
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Moreover, we have

UL,±
A =

⊕
γ∈Q+

UL,±
A,±γ , U±

A =
⊕
γ∈Q+

U±
A,±γ .

The Drinfeld pairing (1.4) induces

(1.5) LτA : U
L,�0
A ×U

�0
A →A, τLA : U

�0
A ×U

L,�0
A →A.

Lemma 1.2. We have ad(UL
A )(UA)⊂ UA.

Proof. It is sufficient to show that

ad(kλ)(UA)⊂ UA (λ ∈ Λ),(1.6)

ad(e
(n)
i )(UA)⊂ UA (i ∈ I,n ∈ Z�0),(1.7)

ad(f
(n)
i )(UA)⊂ UA (i ∈ I,n ∈ Z�0).(1.8)

The proof of (1.6) is easy and omitted. By the formulas

ad(x)(uv) =
∑
(x)

ad(x(0))(u)ad(x(1))(v) (x ∈ UL
A , u, v ∈ UA),

Δ(e
(n)
i ) =

n∑
r=0

q
r(n−r)
i e

(n−r)
i kri ⊗ e

(r)
i (i ∈ I,n� 0),

Δ(f
(n)
i ) =

n∑
r=0

q
−r(n−r)
i f

(r)
i ⊗ k−r

i f
(n−r)
i (i ∈ I,n� 0),

we have only to show that

ad(e
(n)
i )(u) ∈ UA (i ∈ I,n ∈ Z�0, u= kλ, ej , fjkj),(1.9)

ad(f
(n)
i )(u) ∈ UA (i ∈ I,n ∈ Z�0, u= kλ, ej , fj).(1.10)

For λ ∈ Λ, i, j ∈ I with i �= j and n ∈ Z>0, we have

ad(e
(n)
i )(kλ) =

(−1)nq
n(n−1)
i

[n]qi !

(n−1∏
j=0

(q
(λ,α∨

i )
i − q−2j

i )
)
eni kλ,

ad(e
(n)
i )(ei) = q

−n(n+1)/2
i (qi − q−1

i )nen+1
i ,
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ad(e
(n)
i )(ej) =

{∑n
r=0(−1)rq

r(n−1+aij)
i e

(n−r)
i eje

(r)
i (n< 1− aij),

0 (n� 1− aij),

ad(e
(n)
i )(fiki) =

{
(k2i − 1)/(qi − q−1

i ) (n= 1),

(−1)n−1q
(n−1)(n+2)/2
i (qi − q−1

i )n−2en−1
i k2i (n > 1),

ad(e
(n)
i )(fjkj) = 0,

and hence (1.9) holds. (Note that [r]qi ! is invertible in A for r �−aij .) The

proof of (1.10) is similar and omitted.

1.1.4. Let us consider the specialization

A→C (q1/|Λ/Q| �→ ζ ′).

Note that q is mapped to ζ = (ζ ′)|Λ/Q| ∈ C, which is also a primitive �th

root of 1. We set

UL
ζ =C⊗A UL

A , Uζ =C⊗A UA,

UL,�
ζ =C⊗A UL,�

A , U �
ζ =C⊗A U �

A (�=+,−,0,� 0,� 0),

UL,±
ζ,±γ =C⊗A UL,±

A,±γ , U±
ζ,±γ =C⊗A U±

A,±γ (γ ∈Q+).

Then UL
ζ and Uζ are Hopf algebras over C, and we have triangular decom-

positions

UL
ζ
∼= UL,−

ζ ⊗UL,0
ζ ⊗UL,+

ζ ,

Uζ
∼= U−

ζ ⊗U0
ζ ⊗U+

ζ .

Moreover, we have

UL,±
ζ =

⊕
γ∈Q+

UL,±
ζ,±γ , U±

ζ =
⊕
γ∈Q+

U±
ζ,±γ .

By De Concini and Kac [8, Proposition 1.7], we have the following.

Lemma 1.3.

(i) The set {emN
βN

· · · em1
β1

| m1, . . . ,mN � 0} (resp., {fmN
βN

· · ·fm1
β1

| m1, . . . ,

mN � 0}) forms a C-basis of U+
ζ (resp., U−

ζ ).

(ii) The set {kλ | λ ∈ Λ} forms a C-basis of U0
ζ .
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The Drinfeld pairings (1.5) induce

(1.11) Lτζ : U
L,�0
ζ ×U

�0
ζ →C, τLζ : U

�0
ζ ×U

L,�0
ζ →C.

Moreover, we have the following (see [20, Lemma 1.5]).

Proposition 1.4. For any γ ∈Q+, the restrictions of Lτζ and τLζ to

UL,+
ζ,γ ×U−

ζ,−γ →C, U−
ζ,γ ×UL,−

ζ,−γ →C,

respectively, are nondegenerate.

By Lemma 1.2 we have an algebra homomorphism

ad : UL
ζ → EndC(Uζ).

In general, for a Lie algebra s we denote its enveloping algebra by U(s).

We denote by

(1.12) π : UL
ζ → U(g)

Lusztig’s Frobenius homomorphism (see [14]). Namely, π is the C-algebra

homomorphism given by

π(e
(m)
i ) =

{
ē
(m/�)
i (�|m)

0 (�� |m),
π(f

(m)
i ) =

{
f̄
(m/�)
i (�|m)

0 (�� |m),
π(kλ) = 1

for i ∈ I , m ∈ Z�0, λ ∈ Λ. Here, ē
(n)
i = ēni /n!, f̄

(n)
i = f̄n

i /n! for i ∈ I and

n ∈ Z�0. Then π is a homomorphism of Hopf algebras.

We recall the description of the center Z(Uζ) of the algebra Uζ due to De

Concini and Kac [8, Section 3] and De Concini and Procesi [9, Section 21].

Denote by Z(UF) the center of UF, and define a subalgebra ZHar(Uζ) of

Z(Uζ) by

ZHar(Uζ) = Im
(
Z(UF)∩UA → Uζ

)
.

We define a shifted action of W on the group algebra C[Λ] =
⊕

λ∈ΛCe(λ)

of Λ by

(1.13) w ◦ e(λ) = ζ(wλ−λ,ρ)e(wλ) (w ∈W,λ ∈ Λ).

Let

(1.14) ι : ZHar(Uζ)→C[Λ]
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be the composite of

ZHar(Uζ) ↪→ Uζ
∼= U−

ζ ⊗U0
ζ ⊗U+

ζ
ε⊗1⊗ε−−−−→ U0

ζ
∼=C[Λ],

where U0
ζ
∼= C[Λ] is given by kλ ↔ e(λ). Then by [8, Lemma 3.9], ι is an

injective algebra homomorphism with image

C[2Λ]W◦ =
{
f ∈C[2Λ]

∣∣w ◦ f = f (∀w ∈W )
}
.

In particular, we have an isomorphism

(1.15) ZHar(Uζ)�C[2Λ]W◦

of C-algebras. By [8, Section 3.1] the elements

e�β, f �
β, k�λ (β ∈Δ+, λ ∈ Λ)

are central in Uζ . Let ZFr(Uζ) be the subalgebra of Uζ generated by them.

It is a Hopf subalgebra of Uζ . Define an algebraic subgroup K of B+ ×B−

by

K =
{
(gh, g′h−1)

∣∣ h ∈H,g ∈N+, g′ ∈N−}.
By [9, Section 19.1] we have an isomorphism

(1.16) ZFr(Uζ)∼=C[K]

of Hopf algebras (see also [10, Theorem 7.4]). We refer the reader to [20, Sec-

tion 1.5] for the explicit description of the isomorphism (1.16). By [9], Z(Uζ)

is generated by ZFr(Uζ) and ZHar(Uζ). Moreover, we have an isomorphism

Z(Uζ)∼= ZHar(Uζ)⊗ZHar(Uζ)∩ZFr(Uζ) ZFr(Uζ) (z1z2 ↔ z1 ⊗ z2)

of algebras.

1.2. Sheaves on quantized flag manifolds

1.2.1. We denote by CF the subspace of U∗
F = HomF(UF,F) spanned by

the matrix coefficients of finite-dimensional UF-modules of type 1 in the

sense of Lusztig, and we denote by

(1.17) 〈 , 〉 :CF ×UF → F

the canonical pairing. Then CF is endowed with a Hopf algebra structure

dual to UF via (1.17). We have a UF-bimodule structure of CF given by

〈u1 ·ϕ · u2, u〉= 〈ϕ,u2uu1〉 (ϕ ∈CF, u, u1, u2 ∈ UF).
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Define a Λ-graded ring AF =
⊕

λ∈Λ+ AF(λ) by

AF =
{
ϕ ∈CF

∣∣ ϕ · fi = 0 (i ∈ I)
}
,

AF(λ) =
{
ϕ ∈AF

∣∣ ϕ · kμ = q(μ,λ)ϕ (μ ∈ Λ)
}
.

Note that AF is a left UF-submodule of CF. For λ ∈ Λ+ and ξ ∈ Λ, we set

AF(λ)ξ =
{
ϕ ∈AF(λ)

∣∣ kμ ·ϕ= q(ξ,μ)ϕ
}
.

Then we have

AF(λ) =
⊕

ξ∈λ−Q+

AF(λ)ξ.

We define A-forms CA, AA, AA(λ) (λ ∈ Λ+) of CF, AF, AF(λ), respec-

tively, by

CA =
{
ϕ ∈CF

∣∣ 〈ϕ,UL
A 〉 ⊂A

}
, AA =AF ∩CA, AA(λ) =AF(λ)∩CA.

Then CA is a Hopf algebra over A, and AA is its A-subalgebra. Moreover, CA

is a UL
A -bimodule, and AA is its left UL

A -submodule. We also set AA(λ)ξ =

AF(λ)ξ ∩AA for λ ∈ Λ+, ξ ∈ Λ.

We set

Cζ =C⊗A CA, Aζ =C⊗A AA, Aζ(λ) =C⊗A AA(λ) (λ ∈ Λ+).

Then Cζ is a Hopf algebra over C. Moreover, the UF-bimodule structure of

CF induces a UL
ζ -bimodule structure of Cζ . For λ ∈ Λ+ and ξ ∈ Λ, we set

Aζ(λ)ξ =C⊗A AA(λ)ξ. Then we have

Aζ(λ) =
⊕

ξ∈λ−Q+

Aζ(λ)ξ.

We have a natural pairing

(1.18) 〈 , 〉 :Cζ ×UL
ζ →C

induced by (1.17).
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1.2.2. For a ring (resp., Λ-graded ring) R we denote by Mod(R) (resp.,

ModΛ(R)) the category of R-modules (resp., Λ-graded left R-modules).

Assume that we are given a homomorphism j : A → B of Λ-graded rings

satisfying

(1.19) j
(
A(λ)

)
B(μ) =B(μ)j

(
A(λ)

)
(λ,μ ∈ Λ).

For M ∈ ModΛ(B), let Tor(M) be the subset of M consisting of m ∈ M

such that there exists λ ∈ Λ+ satisfying j(A(λ+μ))m= {0} for any μ ∈ Λ+.

Then Tor(M) is a subobject of M in ModΛ(B) by (1.19). We denote by

TorΛ+(A,B) the full subcategory of ModΛ(B) consisting of M ∈ModΛ(B)

such that Tor(M) =M . Note that TorΛ+(A,B) is closed under taking sub-

quotients and extensions in ModΛ(B). Let Σ(A,B) denote the collection

of morphisms f of ModΛ(B) such that its kernel Ker(f) and its coker-

nel Coker(f) belong to TorΛ+(A,B). Then we define an abelian category

C(A,B) =ModΛ(B)/TorΛ+(A,B) as the localization

C(A,B) = Σ(A,B)−1ModΛ(B)

of ModΛ(B) with respect to the multiplicative system Σ(A,B) (see, e.g.,

[16] for the notion of localization of categories). We denote by

(1.20) ω(A,B)∗ : ModΛ(B)→C(A,B)

the canonical exact functor. It admits a right adjoint

(1.21) ω(A,B)∗ : C(A,B)→ModΛ(B),

which is left exact. It is known that ω(A,B)∗ ◦ω(A,B)∗ ∼= Id. By taking the

degree 0 part of (1.21), we obtain a left exact functor

(1.22) Γ(A,B) : C(A,B)→Mod
(
B(0)

)
.

The abelian category C(A,B) has enough injectives, and we have the right

derived functors

(1.23) RiΓ(A,B) : C(A,B)→Mod
(
B(0)

)
(i ∈ Z)

of (1.22).

We apply the above arguments to the case A=B =Aζ . Then Tor(M) for

M ∈ModΛ(Aζ) consists of m ∈M such that there exists λ ∈ Λ+ satisfying

Aζ(λ)m= {0} (see [20, Lemma 3.4]). We set

(1.24) Mod(OBζ
) = C(Aζ ,Aζ).
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In this case, the natural functors (1.20), (1.21), (1.22) are simply denoted

as

ω∗ : ModΛ(Aζ)→Mod(OBζ
),(1.25)

ω∗ : Mod(OBζ
)→ModΛ(Aζ),(1.26)

Γ : Mod(OBζ
)→Mod(C).(1.27)

Remark 1.5. In the terminology of noncommutative algebraic geometry,

Mod(OBζ
) is the category of quasicoherent sheaves on the quantized flag

manifold Bζ , which is a noncommutative projective scheme. The notations

Bζ , OBζ
have only symbolical meaning.

1.2.3. Using Lusztig’s Frobenius homomorphism (1.12), we will relate the

quantized flag manifold Bζ with the ordinary flag manifold B =B−\G. Tak-

ing the dual Hopf algebras in (1.12), we obtain an injective homomorphism

C[G]→Cζ of Hopf algebras. Moreover, its image is contained in the center

of Cζ (see [14]). We will regard C[G] as a central Hopf subalgebra of Cζ in

the following. Setting

A1 =
{
ϕ ∈C[G]

∣∣ ϕ(ng) = ϕ(g) (n ∈N−, g ∈G)
}
,

A1(λ) =
{
ϕ ∈A1

∣∣ ϕ(tg) = θλ(t)ϕ(g) (t ∈H,g ∈G)
}

(λ ∈ Λ+),

we have a Λ-graded algebra

A1 =
⊕
λ∈Λ+

A1(λ).

We have a left G-module structure of A1 given by

(xϕ)(g) = ϕ(gx) (ϕ ∈A1, x, g ∈G).

In particular, A1 is a U(g)-module. Moreover, for each λ ∈ Λ+, A1(λ) is a

U(g)-submodule of A1 which is an irreducible highest-weight module with

highest-weight λ. Regarding C[G] as a subalgebra of Cζ , we have

A1 =Aζ ∩C[G], A1(λ) =Aζ(�λ)∩C[G].

Since the Λ-graded algebra A1 is the homogeneous coordinate algebra of

the projective variety B =B−\G, we have an identification

(1.28) Mod(OB) = C(A1,A1)
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of abelian categories, where Mod(OB) denotes the category of quasicoherent

OB-modules on the ordinary flag manifold B. We set

(1.29) ωB∗ = ω(A1,A1)∗ : Mod(OB)→ModΛ(A1).

For λ ∈ Λ, we denote by OB(λ) ∈ Mod(OB) the invertible G-equivariant

OB-module corresponding to λ. Then under identification (1.28), we have

ωB∗M =
⊕
λ∈Λ

Γ
(
B,M ⊗OB OB(λ)

) (
M ∈Mod(OB)

)
,

where Γ(B, ) : Mod(OB)→ C is the global section functor for the algebraic

variety B. In particular, the functor Γ(A1,A1) : Mod(OB)→Mod(C) is iden-

tified with Γ(B, ).
For a Λ-graded C-algebra B, we define a new Λ-graded C-algebra B(�)

by

B(�)(λ) =B(�λ) (λ ∈ Λ).

Let

(1.30) ( )(�) : ModΛ(B)→ModΛ(B
(�))

be the exact functor given by

M (�)(λ) =M(�λ) (λ ∈ Λ)

for M ∈ModΛ(B).

We have the following results (see [20, Lemma 3.9]).

Lemma 1.6. Let B be a Λ-graded C-algebra. Assume that we are given a

homomorphism j :Aζ →B of Λ-graded C-algebras. We denote by j′ :A1 →
B(�) the induced homomorphism of Λ-graded C-algebras. Assume that

j
(
Aζ(λ)

)
B(μ) =B(μ)j

(
Aζ(λ)

)
(λ,μ ∈ Λ),

j′
(
A1(λ)

)
B(�)(μ) =B(�)(μ)j′

(
A1(λ)

)
(λ,μ ∈ Λ).

Then the exact functor

( )(�) : ModΛ(B)→ModΛ(B
(�))

induces an equivalence

(1.31) Fr∗ : C(Aζ ,B)→C(A1,B
(�))

of abelian categories. Moreover, we have

(1.32) ω(A1,B
(�))∗ ◦Fr∗ = ()(�) ◦ ω(Aζ ,B)∗.
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Lemma 1.7. Let F be a Λ-graded C-algebra, and let A1 → F be a homo-

morphism of Λ-graded C-algebras. Assume that Im(A1 → F ) is central in F .

Regard F as an object of ModΛ(A1), and consider ω∗
BF ∈Mod(OB). Then

the multiplication of F induces an OB-algebra structure of ω∗
BF , and we

have an identification

(1.33) C(A1, F ) =Mod(ω∗
BF )

of abelian categories, where Mod(ω∗
BF ) denotes the category of quasicoherent

ω∗
BF -modules. Moreover, under identification (1.33) we have

Γ(A1,F )(M) = Γ(B,M) ∈Mod
(
F (0)

) (
M ∈Mod(ω∗

BF )
)
.

We define an OB-algebra Fr∗OBζ
by

Fr∗OBζ
= ω∗

B(A
(�)
ζ ).

We denote by Mod(Fr∗OBζ
) the category of quasicoherent Fr∗OBζ

-modules.

By Lemmas 1.6 and 1.7, we have the following.

Lemma 1.8. We have an equivalence

Fr∗ : Mod(OBζ
)→Mod(Fr∗OBζ

)

of abelian categories. Moreover, for M ∈Mod(OBζ
) we have

RiΓ(M)�RiΓ
(
B,Fr∗(M)

)
,

where Γ(B, ) : Mod(OB)→Mod(C) on the right-hand side is the global sec-

tion functor for B.

§2. The category of D-modules

2.1. Ring of differential operators

2.1.1. We define a subalgebra DF of EndF(AF) by

DF = 〈�ϕ, rϕ, ∂u, σλ | ϕ ∈AF, u ∈ UF, λ ∈ Λ〉,

where

�ϕ(ψ) = ϕψ, rϕ(ψ) = ψϕ, ∂u(ψ) = u ·ψ, σλ(ψ) = q(λ,μ)ψ
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for ψ ∈AF(μ). In fact, we have

DF = 〈�ϕ, ∂u, σλ | ϕ ∈AF, u ∈ UF, λ ∈ Λ〉

by [20, Lemma 4.1].

We have a natural grading

DF =
⊕
λ∈Λ+

DF(λ),

DF(λ) =
{
Φ ∈DF

∣∣Φ(AF(μ)
)
⊂AF(λ+ μ) (μ ∈ Λ)

}
(λ ∈ Λ)

of DF. It is easily checked that

∂u�ϕ =
∑
(u)

�u(0)·ϕ∂u(1)
(u ∈ UF,ϕ ∈AF),

∂uσλ = σλ∂u (u ∈ UF, λ ∈ Λ),

σλ�ϕ = q(λ,μ)�ϕσλ
(
λ ∈ Λ,ϕ ∈AF(μ)

)
.

Set

EF =AF ⊗UF ⊗ F[Λ].

We have a natural F-algebra structure of EF such that AF⊗1⊗1, 1⊗UF⊗1,

1 ⊗ 1 ⊗ F[Λ] are subalgebras of EF naturally isomorphic to AF, UF, F[Λ],

respectively, and such that we have the relations

uϕ=
∑
(u)

(u(0) ·ϕ)u(1) (u ∈ UF,ϕ ∈AF),

ue(λ) = e(λ)u (u ∈ UF, λ ∈ Λ),

e(λ)ϕ= q(λ,μ)ϕe(λ)
(
λ ∈ Λ,ϕ ∈AF(μ)

)
in EF. Here, we identify AF ⊗ 1⊗ 1, 1⊗ UF ⊗ 1, 1⊗ 1⊗ F[Λ] with AF, UF,

F[Λ], respectively. Then we have a surjective algebra homomorphism

(2.1) EF →DF

sending ϕ ∈AF, u ∈ UF, e(λ) ∈ F[Λ] (λ ∈ Λ) to �ϕ, ∂u, σλ, respectively. More-

over, EF has an obvious Λ-grading so that (2.1) preserves the Λ-grading.
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2.1.2. Set

DA = 〈�ϕ, rϕ, ∂u, σλ | ϕ ∈AA, u ∈ UA, λ ∈ Λ〉A-alg ⊂DF,

EA =AA ⊗UA ⊗A[Λ]⊂EA.

They are Λ-graded A-subalgebras of DF and EF, respectively. Again, we

have

DA = 〈�ϕ, ∂u, σλ | ϕ ∈AA, u ∈ UA, λ ∈ Λ〉A-alg

by [20]. In particular, we have a surjective homomorphism

EA →DA

of Λ-graded algebras. Note that there is a canonical embedding

DA → EndA(AA).

2.1.3. We set

Dζ =C⊗A DA, Eζ =C⊗A EA =Aζ ⊗Uζ ⊗C[Λ].

Dζ is a Λ-graded C-algebra generated by elements of the form

�ϕ, ∂u, σλ (ϕ ∈Aζ , u ∈ Uζ , λ ∈ Λ).

We have a surjective homomorphism

Eζ →Dζ

of Λ-graded C-algebras.

Lemma 2.1. Let z ∈ ZHar(Uζ), and write ι(z) =
∑

λ∈Λ cλk2λ (cλ ∈ C).

Then we have

∂z =
∑
λ∈Λ

cλσ2λ.

Proof. This follows from the corresponding statement over F, which is

given in [19, Section 5.1].

Remark 2.2. The natural algebra homomorphism Dζ → EndC(Aζ) is not

injective.

https://doi.org/10.1215/00277630-2402198 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2402198


QUANTIZED FLAG MANIFOLDS 19

2.1.4. Define an OB-algebra Fr∗DBζ
by

Fr∗DBζ
= ω∗

BD
(�)
ζ .

We define ZD
(�)
ζ to be the central subalgebra of D

(�)
ζ generated by the

elements of the form

�ϕ, ∂u, σλ
(
ϕ ∈A1, u ∈ ZFr(Uζ), λ ∈ Λ

)
,

and we set

Zζ = ω∗
BZD

(�)
ζ .

It is a central subalgebra of Fr∗DBζ
. Define a subvariety V of B×K×H by

V =
{
(B−g, k, t) ∈ B ×K ×H

∣∣ gκ(k)g−1 ∈ t2�N−},
where κ :K →G is given by κ(k1, k2) = k1k

−1
2 . We denote by

pV : V →B

the projection. Now we can state the main results of [20].

Theorem 2.3 ([20, Theorem 5.2]). The OB-algebra Zζ is naturally

isomorphic to pV∗OV .

Define an OV -algebra D̃Bζ
by

D̃Bζ
= p−1

V Fr∗DBζ
⊗p−1

V pV∗OV
OV .

Theorem 2.4 ([20, Theorem 6.1]). Here D̃Bζ
is an Azumaya algebra of

rank �2|Δ
+|.

Define

δ : V →K ×H/W H

by δ(B−g, k, t) = (k, t), where K →H/W is given by k �→ [h], where h is an

element of H conjugate to the semisimple part of κ(k), and H →H/W is

given by t �→ [t2�].

Theorem 2.5 ([20, Theorem 6.10]). For any (k, t) ∈ K ×H/W H, the

restriction of D̃Bζ
to δ−1(k, t) is a split Azumaya algebra.
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2.2. Category of D-modules

We define an abelian category Mod(DBζ
) by

Mod(DBζ
) = C(Aζ ,Dζ).

By Lemmas 1.6 and 1.7, we have an equivalence

Fr∗ : Mod(DBζ
)→Mod(Fr∗DBζ

)(2.2)

of abelian categories, where Mod(Fr∗DBζ
) denotes the category of quasico-

herent Fr∗DBζ
-modules. Moreover, for M ∈Mod(DBζ

) we have

(2.3) RiΓ(Aζ ,Dζ)(M) =RiΓ
(
B,Fr∗(M)

)
∈Mod

(
Dζ(0)

)
,

where Γ(B, ) on the right-hand side is the global section functor for the

ordinary flag variety B.
For t ∈H we define an abelian category Mod(DBζ ,t) by

Mod(DBζ ,t) =ModΛ,t(Dζ)/
(
ModΛ,t(Dζ)∩TorΛ+(Aζ ,Dζ)

)
,

where ModΛ,t(Dζ) is the full subcategory of ModΛ(Dζ) consisting of M ∈
ModΛ(Dζ) so that σλ|M(μ) = θλ(t)ζ

(λ,μ) id for any λ,μ ∈ Λ. Then we can

regard Mod(DBζ ,t) as a full subcategory of Mod(DBζ
) (see [19, Lemma 4.6]).

Set

Fr∗DBζ ,t =Fr∗DBζ
⊗C[Λ] Ct,

where Ct denotes the 1-dimensional C[Λ]-module given by e(λ) �→ θλ(t) for

λ ∈ Λ. The equivalence (2.2) induces the equivalence

(2.4) Fr∗ : Mod(DBζ ,t)→Mod(Fr∗DBζ ,t),

whereMod(Fr∗DBζ ,t)denotesthecategoryofquasicoherentFr∗DBζ ,t-modules.

In particular, for M ∈Mod(DBζ ,t) we have

RiΓ(Aζ ,Dζ)(M) =RiΓ(B,Fr∗M) ∈Mod
(
Dζ,t(0)

)
,

where Dζ,t(0) =Dζ(0)/
∑

λ∈ΛDζ(0)(σλ − θλ(t)).
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2.3. Conjecture

By Lemma 2.1, the natural algebra homomorphism

Uζ ⊗C C[Λ]→Dζ(0)

factors through

Uζ ⊗ZHar(Uζ) C[Λ]→Dζ(0),

where ZHar(Uζ) is identified with C[2Λ]W◦ by (1.15). Hence, we have a

natural algebra homomorphism

(2.5) Uζ ⊗ZHar(Uζ) C[Λ]→ Γ(B,Fr∗DBζ
).

For t ∈H we denote by Ct the 1-dimensional C[Λ]-module given by e(λ)v =

θλ(t)v (v ∈Ct). Then (2.5) induces an algebra homomorphism

(2.6) Uζ ⊗ZHar(Uζ) Ct → Γ(B,Fr∗DBζ ,t),

where Ct is regarded as a ZHar(Uζ)-module by ZHar(Uζ)∼=C[2Λ]W◦ ⊂C[Λ].

Denote by hG the Coxeter number for G.

Conjecture 2.6. Assume that � > hG. The algebra homomorphism (2.5)

is an isomorphism, and we have

RiΓ(B,Fr∗DBζ
) = 0

for i �= 0.

Proposition 2.7. Let � > hG, and assume that Conjecture 2.6 is valid.

Then for t ∈H we have

Γ(B,Fr∗DBζ ,t)
∼= Uζ ⊗ZHar(Uζ) Ct

and

RiΓ(B,Fr∗DBζ ,t) = 0 (i �= 0).

Proof. Define f : V →H to be the composite of the embedding V →B ×
K×H and the projection B×K×H →H onto the third factor. Since pV is

an affine morphism, we have RpV∗D̃Bζ
= pV∗D̃Bζ

=Fr∗DBζ
. Hence, we have

Uζ ⊗L
ZHar(Uζ)

C[Λ] = Uζ ⊗ZHar(Uζ) C[Λ]
∼=RΓ(B,Fr∗DBζ

) =RΓ(V, D̃Bζ
).
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Here we use the fact that C[Λ] is a free ZHar(Uζ)-module (see [17]). Denote

by Ot the OH -module corresponding to the C[Λ]-module Ct. Similarly, we

have

Fr∗DBζ ,t = pV∗(D̃Bζ
⊗C[Λ] Ct) =RpV∗(D̃Bζ

⊗C[Λ] Ct).

Since f is flat, we have Lf∗Ot = f∗Ot. Hence, by Theorem 2.4 we have

D̃Bζ
⊗L

OV Lf∗Ot = D̃Bζ
⊗L

OV f∗Ot = D̃Bζ
⊗OV f∗Ot.

It follows that

Fr∗DBζ ,t =RpV∗(D̃Bζ
⊗L

OV Lf∗Ot) =RpV∗(D̃Bζ
)⊗L

OH
Ot.

Hence we have

RΓ(B,Fr∗DBζ ,t) =RΓ
(
H,Rf∗(D̃Bζ

⊗L
OV Lf∗Ot)

)
=RΓ(H,Rf∗D̃Bζ

⊗L
OH

Ot) =RΓ(H,Rf∗D̃Bζ
)⊗L

C[Λ] Ct

=RΓ(V, D̃Bζ
)⊗L

C[Λ] Ct = Uζ ⊗L
ZHar(Uζ)

C[Λ]⊗L
C[Λ] Ct

= Uζ ⊗L
ZHar(Uζ)

Ct.

2.4. Derived Beilinson–Bernstein equivalence

We show that Conjecture 2.6 implies a variant of the Beilinson–Bernstein

equivalence for derived categories.

Recall that we have an identification

ZHar(Uζ)∼=C[2Λ]W◦ ⊂C[2Λ]⊂C[Λ].

Recall also that we identify C[Λ] with the coordinate algebra C[H] of H .

Set H(2) = H/Ker(H � t �→ t2 ∈ H), and let π : H → H(2) be the canoni-

cal homomorphism. Then we have a natural identification C[H(2)] = C[2Λ]

so that π∗ : C[H(2)] → C[H] is identified with the inclusion C[2Λ] ⊂ C[Λ].

Denote the isomorphism H ∼=H(2) corresponding to C[Λ] � e(λ)↔ e(2λ) ∈
C[2Λ] by t↔ t1/2. Then we have π(t) = (t2)1/2. The shifted action (1.13) of

W on C[2Λ] induces an action of W on H(2) given by

w ◦ t1/2 =
(
w(tt2ρ)t

−1
2ρ

)1/2
(w ∈W,t ∈H),
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where t2ρ ∈H is given by θμ(t2ρ) = ζ2(μ,ρ) for any μ ∈ Λ (note that 2(μ,ρ) ∈
Z), and ZHar(Uζ) is regarded as the coordinate algebra of the quotient vari-

ety (W◦)\H(2). For t ∈ H we denote by χt : C[Λ] → C the corresponding

algebra homomorphism. By the above argument, we have

χt1 |ZHar(Uζ) = χt2 |ZHar(Uζ) ⇐⇒ (t21)
1/2 ∈W ◦ t1/22 .

We say that t ∈H is regular if{
w ∈W

∣∣w ◦ (t2)1/2 = (t2)1/2
}
= {1}.

We denote by Modcoh(Fr∗DBζ ,t) (resp., Modf (Uζ ⊗ZHar(Uζ) Ct)) the cate-

gory of coherent Fr∗DBζ ,t-modules (resp., finitely generated Uζ ⊗ZHar(Uζ)Ct-

modules). We also denote by Modcoh,t(Fr∗DBζ
) (resp., Modf,t(Uζ)) the cat-

egory of coherent Fr∗DBζ
-modules (resp., finitely generated Uζ -modules)

killed by some power of the maximal ideal of C[Λ] (resp., ZHar(Uζ)) corre-

sponding to t ∈H .

Theorem 2.8. Let � > hG, and assume that Conjecture 2.6 is valid. If

t ∈H is regular, then the natural functors

RΓt̂ :D
b
(
Modcoh,t(Fr∗DBζ ,t)

)
→Db

(
Modf,t(Uζ)

)
,

RΓt :D
b
(
Modcoh(Fr∗DBζ ,t)

)
→Db

(
Modf (Uζ ⊗ZHar(Uζ) Ct)

)
give equivalences of derived categories.

The proof of this result is completely similar to that of the corresponding

fact for Lie algebras in positive characteristics given in [6, Theorem 5.3.1].

We give below only an outline of it. First note the following.

Proposition 2.9 ([7, Theorem B]). Here Uζ has finite homological

dimension.

The functors

RΓt̂ :D
b
(
Modcoh,t(Fr∗DBζ

)
)
→Db

(
Modf,t(Uζ)

)
,

RΓt :D
−(Modcoh(Fr∗DBζ ,t)

)
→D−(Modf (Uζ ⊗ZHar(Uζ) Ct)

)
have left adjoints

Lt̂ :D
b
(
Modf,t(Uζ)

)
→Db

(
Modcoh,t(Fr∗DBζ

)
)
,

Lt :D
−(Modf (Uζ ⊗ZHar(Uζ) Ct)

)
→D−(Modcoh(Fr∗DBζ ,t)

)
.

Arguing exactly as in [6, Sections 3.3, 3.4] using Theorem 2.4 and Proposi-

tion 2.9, we obtain the following.
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Proposition 2.10.

(i) If t is regular, the adjunction morphism Id→ RΓt̂ ◦ Lt̂ is an isomor-

phism on Db(Modf,t(Uζ)).

(ii) For any t, the adjunction morphism Id→RΓt ◦ Lt is an isomorphism

on D−(Modf (Uζ ⊗ZHar(Uζ) Ct)).

Arguing exactly as in [6, Section 3.5] using Theorem 2.4, Proposition 2.10,

and Lemma 2.11 below, we obtain Theorem 2.8. Details are omitted.

Lemma 2.11 ([21, Section 2.4]). The variety V is a symplectic manifold.

2.5. Finite part

2.5.1. In [20, Section 4], we also introduced a quotient algebra D′
ζ of Eζ ,

which is closely related to Dζ . Let us recall its definition. Take bases {xp}p,
{yp}p, {xLp }p, {yLp }p of U+

ζ , U−
ζ , UL,+

ζ , UL,−
ζ , respectively, such that

τLζ (xp1 , y
L
p2) = δp1,p2 ,

Lτζ(x
L
p1 , yp2) = δp1,p2 .

We assume that

xp ∈ U+
ζ,βp

, yp ∈ U−
ζ,−βp

, xLp ∈ UL,+
ζ,βp

, yLp ∈ UL,−
ζ,−βp

for βp ∈Q+.

For ϕ ∈Aζ(λ)ξ with λ ∈ Λ+, ξ ∈ Λ, we set

Ω′
1(ϕ) =

∑
p

(yLp ·ϕ)xp ∈Eζ,♦,

Ω′
2(ϕ) =

∑
p

(
(SxLp ) ·ϕ

)
ypkβpk2ξe(−2λ) ∈Eζ,♦,

Ω′(ϕ) = Ω′
1(ϕ)−Ω′

2(ϕ) ∈Eζ,♦.

We extend Ω′ to whole Aζ by linearity. Then D′
ζ is defined by

D′
ζ =Eζ

/ ∑
ϕ∈Aζ

AζΩ
′(ϕ)UζC[Λ].

We have a sequence

Eζ →D′
ζ →Dζ

of surjective homomorphisms of Λ-graded algebras. Moreover, D′
ζ → Dζ

induces an isomorphism

(2.7) ω∗D′
ζ
∼= ω∗Dζ

in Mod(OBζ
) (see [20, Corollary 6.6]).

https://doi.org/10.1215/00277630-2402198 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2402198


QUANTIZED FLAG MANIFOLDS 25

2.5.2. We set

U0
F,♦ =

⊕
λ∈Λ

Fk2λ ⊂ U0
F , UF,♦ = S(U−

F )U0
F,♦U

+
F ⊂ UF.

Then we see easily the following.

Lemma 2.12. The subspace UF,♦ is an ad(UF)-stable subalgebra of UF.

Set

(2.8) UF,f =
{
u ∈ UF

∣∣ dimad(UF)(u)<∞
}
.

Then UF,f is a subalgebra of UF. Moreover, by [12] we have

(2.9) UF,f =
∑
λ∈Λ+

ad(UF)(k−2λ),

and hence UF,f is a subalgebra of UF,♦. Note that UF,♦ and UF,f are not

Hopf subalgebras of UF; nevertheless, they satisfy the following.

Lemma 2.13. We have

Δ(UF,f )⊂ UF ⊗UF,f , Δ(UF,♦)⊂ UF ⊗UF,♦.

Proof. For u ∈ UF and λ ∈ Λ+, we have

Δ
(
ad(u)(k−2λ)

)
=
∑
(u)

Δ
(
u(0)k−2λ(Su(1))

)

=
∑
(u)3

u(0)k−2λ(Su(3))⊗ u(1)k−2λ(Su(2))

=
∑
(u)2

u(0)k−2λ(Su(2))⊗ ad(u(1))(k−2λ).

Hence, the first formula follows from (2.9). Since UF,♦ is generated by ei,

Sfi for i ∈ I and k2λ for λ ∈ Λ, the second formula is a consequence of the

fact that Δ(ei), Δ(Sfi), Δ(k2λ) belong to UF ⊗UF,♦.

We set

EF,♦ =AF ⊗UF,♦ ⊗ F[Λ]⊂EF,

EF,f =AF ⊗UF,f ⊗ F[Λ]⊂EF.
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By Lemma 2.13, they are subalgebras of EF.

We set

U0
A,♦ = U0

F,♦ ∩UA =
⊕
λ∈Λ

Ak2λ, UA,♦ = UF,♦ ∩UA = S(U−
A )U0

A,♦U
+
A ,

UA,f = UA ∩UF,f ,

and

EA,♦ =EA ∩EF,♦ =AA ⊗UA,♦ ⊗A[Λ]⊂EF,♦,

EA,f =EA ∩EF,f =AA ⊗UA,f ⊗A[Λ]⊂EF,f .

We also set

Eζ,♦ =C⊗A EA,♦ =Aζ ⊗Uζ,♦ ⊗C[Λ]⊂Eζ ,

Eζ,f =C⊗A EA,f =Aζ ⊗Uζ,f ⊗C[Λ]⊂Eζ ,

and

Dζ,♦ = Im(Eζ,♦ →Dζ), Dζ,f = Im(Eζ,f →Dζ),

D′
ζ,♦ = Im(Eζ,♦ →D′

ζ), D′
ζ,f = Im(Eζ,f →D′

ζ).

By

Eζ
∼=Eζ,♦ ⊗Uζ,♦ Uζ

we obtain

D′
ζ,♦ =Eζ,♦

/ ∑
ϕ∈Aζ

AζΩ
′(ϕ)Uζ,♦C[Λ],(2.10)

D′
ζ
∼=D′

ζ,♦ ⊗Uζ,♦ Uζ .(2.11)

2.5.3. Since Uζ is a free Uζ,♦-module, we have

RiΓ(ω∗D′
ζ)

∼=RiΓ(ω∗D′
ζ,♦)⊗Uζ,♦ Uζ

for any i ∈ Z. Since Uζ,♦ is a localization of Uζ,f with respect to the Ore

subset {k−2λ |Λ ∈ Λ+}, we have

RiΓ(ω∗D′
ζ,♦)∼=RiΓ(ω∗D′

ζ,f )⊗Uζ,f
Uζ,♦
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for any i ∈ Z. It follows that

(2.12) RiΓ(ω∗D′
ζ)

∼=RiΓ(ω∗D′
ζ,f )⊗Uζ,f

Uζ

for any i ∈ Z. Note that

RiΓ(B,Fr∗DBζ
)∼=RiΓ(ω∗D′

ζ)

by Lemma 1.8 and (2.7). Hence Conjecture 2.6 is a consequence of the

following stronger conjecture.

Conjecture 2.14. Assume that � > hG. We have

Γ(ω∗D′
ζ,f )

∼= Uζ,f ⊗ZHar(Uζ) C[Λ],

and

RiΓ(ω∗D′
ζ,f ) = 0

for i �= 0.

In the rest of this article, we give a reformulation of Conjecture 2.14 in

terms of the induction functor.

§3. Representations

3.1.

For simplicity, we introduce a new notation, Ũ−
F = S(U−

F ). Then we have

Ũ−
F = 〈f̃i | i ∈ I〉, where f̃i = fiki for i ∈ I . Moreover, setting

Ũ−
F,γ =

{
u ∈ Ũ−

F

∣∣ kμuk−μ = q(γ,μ)u (μ ∈ Λ)
}

for γ ∈Q, we have

Ũ−
F =

⊕
γ∈Q+

Ũ−
F,−γ , Ũ−

F,−γ = U−
F,−γkγ (γ ∈Q+).

We also set

ŨA = UA ∩ ŨF, ŨA,−γ = UA ∩ ŨF,−γ (γ ∈Q+),

Ũζ =C⊗A ŨA, Ũζ,−γ =C⊗A ŨA,−γ (γ ∈Q+).

Then we have

Ũ−
A =

⊕
γ∈Q+

Ũ−
A,−γ , Ũ−

ζ =
⊕
γ∈Q+

Ũ−
ζ,−γ .
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3.2.

For λ ∈ Λ, we define an algebra homomorphism χλ : U
0
F → F by χλ(kμ) =

q(λ,μ) (μ ∈ Λ). For M ∈Mod(UF) and λ ∈ Λ, we set

Mλ =
{
m ∈M

∣∣ hm= χλ(h)m (h ∈ U0
F)
}
.

For λ ∈ Λ, we define M+,F(λ),M−,F(λ) ∈Mod(UF) by

M+,F(λ) = UF

/ ∑
y∈U−

F

UF

(
y− ε(y)

)
+

∑
h∈U0

F

UF

(
h− χλ(h)

)
,

M−,F(λ) = UF

/ ∑
x∈U+

F

UF

(
x− ε(x)

)
+

∑
h∈U0

F

UF

(
h− χλ(h)

)
,

whereM+,F(λ) is a lowest-weight module with lowest-weight λ, andM−,F(λ)

is a highest-weight module with highest-weight λ. We have isomorphisms

M+,F(λ)∼= U+
F (u↔ u), M−,F(λ)∼= U−

F (u↔ u)

of F-modules. Moreover, we have weight-space decompositions

M+,F(λ) =
⊕

μ∈λ+Q+

M+,F(λ)μ, M−,F(λ) =
⊕

μ∈λ−Q+

M−,F(λ)μ.

For λ ∈ Λ+ we define L+,F(−λ),L−,F(λ) ∈Modf (UF) by

L+,F(−λ) = UF

/ ∑
y∈U−

F

UF

(
y− ε(y)

)

+
∑
h∈U0

F

UF

(
h− χ−λ(h)

)
+
∑
i∈I

UFe
((λ,α∨

i )+1)
i ,

L−,F(λ) = UF

/ ∑
x∈U+

F

UF

(
x− ε(x)

)

+
∑
h∈U0

F

UF

(
h− χλ(h)

)
+
∑
i∈I

UFf
((λ,α∨

i )+1)
i .

While L+,F(−λ) is a finite-dimensional irreducible lowest-weight module

with lowest-weight −λ, here L−,F(λ) is a finite-dimensional irreducible
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highest-weight module with highest-weight λ. We have weight-space decom-

positions

L+,F(−λ) =
⊕

μ∈−λ+Q+

L+,F(−λ)μ, L−,F(λ) =
⊕

μ∈λ−Q+

L−,F(λ)μ.

For λ ∈ Λ+ we have isomorphisms

L+,F(−λ)∼= UL,+
F

/∑
i∈I

UL,+
F e

((λ,α∨
i )+1)

i (u↔ u),

L−,F(λ)∼= ŨL,−
F

/∑
i∈I

ŨL,−
F f̃

((λ,α∨
i )+1)

i (u↔ u)

of vector spaces (see [13]).

Let M be a UF-module with weight-space decomposition M =
⊕

μ∈ΛMμ

such that dimMμ <∞ for any μ ∈ Λ. We define a UF-module M� by

M� =
⊕
μ∈Λ

M∗
μ ⊂M∗ =HomF(M,F),

where the action of UF is given by

〈um∗,m〉=
〈
m∗, (Su)m

〉
(u ∈ UF,m

∗ ∈M�,m ∈M).

Here 〈 , 〉 :M� ×M → F is the natural pairing.

We set

M∗
±,F(λ) =

(
M∓,F(−λ)

)�
(λ ∈ Λ),

L∗
±,F(∓λ) =

(
L∓,F(±λ)

)�
(λ ∈ Λ+).

Since L∓,F(±λ) is irreducible, we have

L∗
±,F(∓λ)∼= L±,F(∓λ) (λ ∈ Λ+).

We define isomorphisms

(3.1) Φλ : U
+
F →M∗

+,F(λ), Ψλ : Ũ
−
F →M∗

−,F(λ)

of vector spaces by〈
Φλ(x), v

〉
= τ(x, v) (x ∈ U+

F , v ∈ Ũ−
F ),〈

Ψλ(y), Su
〉
= τ(u, y) (y ∈ Ũ−

F , u ∈ U+
F ).
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Lemma 3.1.

(i) The UF-module structure of M∗
+,F(λ) is given by

h ·Φλ(x) = χλ+γ(h)Φλ(x) (x ∈ U+
F,γ , h ∈ U0

F),(3.2)

v ·Φλ(x) =
∑
(x)

τ(x(0), Sv)Φλ(x(1)) (x ∈ U+
F , v ∈ U−

F ),(3.3)

u ·Φλ(x) = Φλ

(
k−λ

(
ad(u)(kλxkλ)

)
k−λ

)
(x ∈ U+

F , u ∈ U+
F ).(3.4)

(ii) The UF-module structure of M∗
−,F(λ) is given by

h ·Ψλ(y) = χλ−γ(h)Ψλ(y) (y ∈ Ũ−
F,−γ , h ∈ U0

F),(3.5)

u ·Ψλ(y) =
∑
(y)

τ(u, y(0))Ψλ(y(1)) (y ∈ Ũ−
F , u ∈ U+

F ),(3.6)

v ·Ψλ(y) = Ψλ

(
kλ

(
ad(v)(k−λyk−λ)

)
kλ

)
(y ∈ Ũ−

F , v ∈ U−
F ).(3.7)

Proof. We will prove only (i). The proof of (ii) is similar and omitted.

Note that for x ∈ U+
F , a ∈ UF, and v ∈ Ũ−

F , we have〈
a ·Φλ(x), v

〉
=
〈
Φλ(x), (Sa)v

〉
.

Let us show (3.2). For v ∈ Ũ−
F,−δ, we have

〈
h ·Φλ(x), v

〉
=
〈
Φλ(x), (Sh)v

〉
= δγ,δ

〈
Φλ(x), (Sh)v

〉
= δγ,δχλ+γ(h)

〈
Φλ(x), v

〉
= χλ+γ(h)

〈
Φλ(x), v

〉
.

Hence, (3.2) holds. Let us next show (3.3). For v ∈ Ũ−
F , we have

〈
y ·Φλ(x), v

〉
=
〈
Φλ(x), (Sy)v

〉
= τ

(
x, (Sy)v

)
=
∑
(x)

τ(x(0), Sy)τ(x(1), v)

=
〈
Φλ

(∑
(x)

τ(x(0), Sy)x(1)

)
, v
〉
.

Hence, (3.3) also holds. Let us finally show (3.4). We may assume that

u ∈ U+
F,β for some β ∈Q+. Then we can write

Δu=
∑
j

ujkβ′
j
⊗ u′j (βj , β

′
j ∈Q+, βj + β′

j = β,uj ∈ U+
F,βj

, u′j ∈ U+
F,β′

j
).
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For v ∈ Ũ−
F , we have〈

u ·Φλ(x), v
〉
=
〈
Φλ(x), (Su)v

〉
=

∑
(u)2,(v)2

τ(Su(2), v(0))τ(Su(0), Sv(2))
〈
Φλ(x), v(1)(Su(1))

〉

=
∑
j,(v)2

τ(Su′j , v(0))τ(ujkβ′
j
, v(2))

〈
Φλ(x), v(1)(Skβ′

j
)
〉

=
∑
j,(v)2

q(λ,β
′
j−βj)τ(Su′j , v(0))τ(ujkβ′

j
, v(2))

〈
Φλ(x), v(1)k−βj

〉

=
∑
j,(v)2

q(λ,β
′
j−βj)τ(Su′j , v(0))τ(ujkβ′

j
, v(2))τ(x, v(1)k−βj

)

=
∑
j,(v)2

q(λ,β
′
j−βj)τ(Su′j , v(0))τ(x, v(1))τ(ujkβ′

j
, v(2))

=
∑
j

q(λ,β
′
j−βj)τ

(
ujkβ′

j
x(Su′j), v

)
=
〈
Φλ

(
k−λ

(
ad(u)(kλxkλ)

)
k−λ

)
, v
〉
.

Here, we have used Lemma 1.1. Note also that ΔŨ−
F ⊂

∑
γ∈Q+ Ũ−

F kγ ⊗
Ũ−
F,−γ , and hence we have Δ2Ũ

−
F ⊂

∑
γ,δ∈Q+ Ũ−

F kγ+δ ⊗ Ũ−
F,−γkδ ⊗ Ũ−

F,−δ.

Thus, (3.4) is proved.

For λ ∈ Λ we denote by F
�0
λ = F1

�0
λ (resp., F

�0
λ = F1

�0
λ ) the 1-dimensional

U
�0
F -module(resp., U

�0
F -module) such that h1

�0
λ = χλ(h)1

�0
λ , u1

�0
λ = ε(u)1

�0
λ

for h ∈ U0
F and u ∈ U+

F (resp., h1
�0
λ = χλ(h)1

�0
λ , u1

�0
λ = ε(u)1

�0
λ for h ∈ U0

F

and u ∈ U−
F ).

Note that for any λ ∈ Λ, k−2λU
+
F (resp., Ũ−

F k−2λ) is ad(U
�0
F )-stable (resp.,

ad(U
�0
F )-stable). We see easily from Lemma 3.1 the following.

Lemma 3.2. Let λ ∈ Λ.

(i) The linear map

k−2λU
+
F →M∗

+,F(−λ)⊗ F
�0
λ

(
k−λxk−λ �→Φ−λ(x)⊗ 1

�0
λ

)
is an isomorphism of U

�0
F -modules, where k−2λU

+
F is regarded as a

U
�0
F -module by the adjoint action.
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(ii) The linear map

Ũ−
F k−2λ → F

�0
−λ ⊗M∗

−,F(λ)
(
k−λyk−λ �→ 1

�0
−λ ⊗Ψλ(y)

)
is an isomorphism of U

�0
F -modules, where Ũ−

F k−2λ is regarded as a

U
�0
F -module by the adjoint action.

We have an injective UF-homomorphism

(3.8) L∗
±,F(∓λ)→M∗

±,F(∓λ) (λ ∈ Λ+)

induced by the natural homomorphism M±,F(∓λ)→ L±,F(∓λ). For λ ∈ Λ+

we define subspaces U+
F (λ), Ũ−

F (λ) of U+
F , Ũ−

F , respectively, by

U+
F (λ) = Φ−1

−λ

(
L∗
+,F(−λ)

)
, Ũ−

F (λ) = Ψ−1
λ

(
L∗
−,F(λ)

)
.

Lemma 3.3.

(i) For λ,μ ∈ Λ+ we have

U+
F (λ)⊂ U+

F (λ+ μ), Ũ−
F (λ)⊂ Ũ−

F (λ+ μ).

(ii) We have

U+
F =

∑
λ∈Λ+

U+
F (λ), Ũ−

F =
∑
λ∈Λ+

Ũ−
F (λ).

Proof. We will prove only the statements for U+
F . By definition, we have

U+
F (λ) = {x ∈ U+

F | τ(x, Iλ) = {0}}, where Iλ =
∑

i∈I Ũ
−
F f̃

((λ,α∨
i )+1)

i .

Hence, (i) is a consequence of Iλ ⊃ Iλ+μ for λ,μ ∈ Λ+. To show (ii) it is

sufficient to show that for any β ∈Q+ there exists some λ ∈ Λ+ such that

U+
F,β ⊂ U+

F (λ). Set m= ht(β). If λ ∈ Λ+ satisfies (λ,α∨
i )�m for any i ∈ I ,

then we have Iλ ⊂
⊕

γ∈Q+,ht(γ)>m Ũ−
F,−γ . From this we obtain τ(U+

F,β, Iλ) =

{0}, and hence U+
F,β ⊂ U+

F (λ).

Lemma 3.4. For λ ∈ Λ+, we have

Ũ−
F (λ)k−2λ ⊂ UF,f , k−2λU

+
F (λ)⊂ UF,f .

Proof. By Lemma 3.2, we have an isomorphism

k−2λU
+
F (λ)→ L∗

+,F(−λ)⊗ F
�0
λ

(
k−λxk−λ �→Φ−λ(x)⊗ 1

�0
λ

)
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of U
�0
F -modules. We have L∗

+,F(−λ)∼= L+,F(−λ), and hence L∗
+,F(−λ)⊗F

�0
λ

is generated by Φ−λ(1)⊗ 1
�0
λ as a U

�0
F -module. It follows that

k−2λU
+
F (λ) = ad(U

�0
F )(k−2λ)⊂ UF,f

by (2.9). The proof of Ũ−
F (λ)k−2λ ⊂ UF,f is similar.

3.3.

It is well known that, for λ,μ ∈ Λ such that λ �= μ, there exists h ∈ UL,0
A

such that χλ(h) = 1 and χμ(h) = 0. In particular, we have χλ �= χμ (see,

e.g., [20, Lemma 2.3]).

For M ∈Mod(UL
A ) and λ ∈ Λ, we set

Mλ =
{
m ∈M

∣∣ hm= χλ(h)m (h ∈ UL,0
A )

}
.

For λ ∈ Λ, we define M+,A(λ),M−,A(λ) ∈Mod(UL
A ) by

M+,A(λ) = UL
A

/ ∑
y∈UL,−

A

UL
A

(
y− ε(y)

)
+

∑
h∈UL,0

A

UL
A

(
h− χλ(h)

)
,

M−,A(λ) = UL
A

/ ∑
x∈UL,+

A

UL
A

(
x− ε(x)

)
+

∑
h∈UL,0

A

UL
A

(
h− χλ(h)

)
.

By the triangular decomposition we have isomorphisms

M+,A(λ)∼= UL,+
A (u↔ u), M−,A(λ)∼= UL,−

A (u↔ u)

of A-modules. In particular, M±,A(λ) is a free A-module, and we have F⊗A

M±,A(λ)∼=M±,F(λ). Moreover, we have weight-space decompositions

M+,A(λ) =
⊕

μ∈λ+Q+

M+,A(λ)μ, M−,A(λ) =
⊕

μ∈λ−Q+

M−,A(λ)μ.

For λ ∈ Λ+, we define L+,A(−λ) ∈Mod(UL
A ) (resp., L−,A(λ) ∈Mod(UL

A ))

to be the UL
A -submodule of L+,F(−λ) (resp., L−,F(λ)) generated by 1 ∈

L+,F(−λ) (resp., 1 ∈ L−,F(λ)). By definition, L±,A(∓λ) is a free A-module,

and we have F⊗A L±,A(∓λ) ∼= L±,F(∓λ). Moreover, we have weight-space

decompositions

L+,A(−λ) =
⊕

μ∈−λ+Q+

L+,A(−λ)μ, L−,A(λ) =
⊕

μ∈λ−Q+

L−,A(λ)μ.
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The canonical surjective UF-homomorphism M±,F(∓λ)→ L±,F(∓λ) induces

a surjective UL
A -homomorphism

(3.9) M±,A(∓λ)→ L±,A(∓λ) (λ ∈ Λ+).

Note that (3.9) is a split epimorphism of A-modules since A is a PID (Prin-

cipal Ideal Domain), and note that M±,A(∓λ)μ, L±,A(∓λ)μ are torsion-free

finitely generated A-modules for each μ ∈ Λ.

Let M be a UL
A -module with weight-space decomposition M =

⊕
μ∈ΛMμ

such that Mμ is a free A-module of finite rank for any μ ∈ Λ. We define a

UL
A -module M� by

M� =
⊕
μ∈Λ

HomA(Mμ,A)⊂HomA(M,A),

where the action of UL
A is given by

〈um∗,m〉=
〈
m∗, (Su)m

〉
(u ∈ UL

A ,m
∗ ∈M�,m ∈M).

Here 〈 , 〉 :M� ×M →A is the natural pairing.

We set

M∗
±,A(λ) =

(
M∓,A(−λ)

)�
(λ ∈ Λ),

L∗
±,A(∓λ) =

(
L∓,A(±λ)

)�
(λ ∈ Λ+).

Then M∗
±,A(λ) for λ ∈ Λ and L∗

±,A(∓λ) for λ ∈ Λ+ are free A-modules sat-

isfying

F⊗A M∗
±,A(λ)

∼=M∗
±,F(λ), F⊗A L∗

±,A(∓λ)∼= L∗
±,F(∓λ).

Moreover, we can identify M∗
±,A(λ) and L∗

±,A(∓λ) with A-submodules of

M∗
±,F(λ) and L∗

±,F(∓λ), respectively. Under this identification we have

(3.10) L∗
±,A(∓λ) = L∗

±,F(∓λ)∩M∗
±,A(∓λ) (λ ∈ Λ+).

In particular, the UL
A -homomorphism

(3.11) L∗
±,A(∓λ)→M∗

±,A(∓λ) (λ ∈ Λ+)

is a split monomorphism of A-modules.

By abuse of notation we write

(3.12) Φλ : U
+
A →M∗

+,A(λ), Ψλ : Ũ
−
A →M∗

−,A(λ)

for the isomorphisms of A-modules induced by (3.1). By Lemma 3.1 we have

the following.
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Lemma 3.5.

(i) The UL
A -module structure of M∗

+,A(λ) is given by

h ·Φλ(x) = χλ+γ(h)Φλ(x) (x ∈ U+
A,γ , h ∈ UL,0

A ),(3.13)

v ·Φλ(x) =
∑
(x)

τLA (x(0), Sv)Φλ(x(1)) (x ∈ U+
A , v ∈ UL,−

A ),(3.14)

u ·Φλ(x) = Φλ

(
k−λ

(
ad(u)(kλxkλ)

)
k−λ

)
(x ∈ U+

A , u ∈ UL,+
A ).(3.15)

(ii) The UL
A -module structure of M∗

−,A(λ) is given by

h ·Ψλ(y) = χλ−γ(h)Ψλ(y) (y ∈ Ũ−
A,−γ , h ∈ UL,0

A ),(3.16)

u ·Ψλ(y) =
∑
(y)

LτA(u, y(0))Ψλ(y(1)) (y ∈ Ũ−
A , u ∈ UL,+

A ),(3.17)

v ·Ψλ(y) = Ψλ

(
kλ

(
ad(v)(k−λyk−λ)

)
kλ

)
(y ∈ Ũ−

A , v ∈ UL,−
A ).(3.18)

For λ ∈ Λ+ we define A-submodules U+
A (λ), Ũ−

A (λ) of U+
A , Ũ−

A , respec-

tively, by

U+
A (λ) = Φ−1

−λ

(
L∗
+,A(−λ)

)
, Ũ−

A (λ) = Ψ−1
λ

(
L∗
−,A(λ)

)
.

The embeddings

(3.19) U+
A (λ) ↪→ U+

A , Ũ−
A (λ) ↪→ Ũ−

A (λ ∈ Λ+)

are split monomorphisms of A-modules. By (3.10), we have

(3.20) U+
A (λ) = U+

F (λ)∩U+
A , Ũ−

A (λ) = Ũ−
F (λ)∩ Ũ−

A (λ ∈ Λ+).

In particular, we have

U+
A (λ)⊂ U+

A (λ+ μ), Ũ−
A (λ)⊂ Ũ−

A (λ+ μ) (λ,μ ∈ Λ+),(3.21)

U+
A =

∑
λ∈Λ+

U+
A (λ), Ũ−

A =
∑
λ∈Λ+

Ũ−
A (λ),(3.22)

Ũ−
A (λ)k−2λ ⊂ UA,f , k−2λU

+
A (λ)⊂ UA,f (λ ∈ Λ+)(3.23)

by Lemmas 3.3 and 3.4.
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3.4.

Let λ ∈ Λ. By abuse of notation we also denote by χλ : UL,0
ζ → C the

C-algebra homomorphism induced by χλ : U
L,0
A →A. Then {χλ}λ∈Λ is a lin-

early independent subset of theC-module HomC(U
L,0
ζ ,C). ForM ∈Mod(UL

ζ )

and λ ∈ Λ, we set

Mλ =
{
m ∈M

∣∣ hm= χλ(h)m (h ∈ UL,0
ζ )

}
.

For λ ∈ Λ we set

M±,ζ(λ) =C⊗A M±,A(λ), M∗
±,ζ(λ) =C⊗A M∗

±,A(λ).

For λ ∈ Λ+ we set

L±,ζ(∓λ) =C⊗A L±,A(∓λ), L∗
±,ζ(∓λ) =C⊗A L∗

±,A(∓λ).

We have canonical UL
ζ -homomorphisms

M±,ζ(∓λ)→ L±,ζ(∓λ) (λ ∈ Λ+),(3.24)

L∗
±,ζ(∓λ)→M∗

±,ζ(∓λ) (λ ∈ Λ+).(3.25)

Note that (3.24) is surjective and that (3.25) is injective.

For any λ ∈ Λ+ we have an isomorphism

(3.26) Aζ(λ)∼= L∗
−,ζ(λ)

of UL
ζ -modules (see, e.g., [11, Chapter 9], [20, Section 3.1]).

Let λ ∈ Λ. By abuse of notation we also denote by

Φλ : U
+
ζ →M∗

+,ζ(λ), Ψλ : Ũ
−
ζ →M∗

−,ζ(λ)

the isomorphisms of C-modules given by

〈
Φλ(x), v

〉
= τLζ (x, v) (x ∈ U+

ζ , v ∈ ŨL,−
ζ ),〈

Ψλ(y), Su
〉
= Lτζ(u, y) (y ∈ Ũ−

ζ , u ∈ UL,+
ζ ).

By Lemma 3.5, we have the following.
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Lemma 3.6.

(i) The UL
ζ -module structure of M∗

+,ζ(λ) is given by

h ·Φλ(x) = χλ+γ(h)Φλ(x) (x ∈ U+
ζ,γ , h ∈ UL,0

ζ ),(3.27)

v ·Φλ(x) =
∑
(x)

τLζ (x(0), Sv)Φλ(x(1)) (x ∈ U+
ζ , v ∈ UL,−

ζ ),(3.28)

u ·Φλ(x) = Φλ

(
k−λ

(
ad(u)(kλxkλ)

)
k−λ

)
(x ∈ U+

ζ , u ∈ UL,+
ζ ).(3.29)

(ii) The UL
ζ -module structure of M∗

−,ζ(λ) is given by

h ·Ψλ(y) = χλ−γ(h)Ψλ(y) (y ∈ Ũ−
ζ,−γ , h ∈ UL,0

ζ ),(3.30)

u ·Ψλ(y) =
∑
(y)

Lτζ(u, y(0))Ψλ(y(1)) (y ∈ Ũ−
ζ , u ∈ UL,+

ζ ),(3.31)

v ·Ψλ(y) = Ψλ

(
kλ

(
ad(v)(k−λyk−λ)

)
kλ

)
(y ∈ Ũ−

ζ , v ∈ UL,−
ζ ).(3.32)

For λ ∈ Λ+, we set

U+
ζ (λ) =C⊗A U+

A (λ),

Ũ−
ζ (λ) =C⊗A Ũ−

A (λ).

Then U+
ζ (λ) and Ũ−

ζ (λ) are the C-submodules of U+
ζ and Ũ−

ζ , respectively,

satisfying Φ−λ(U
+
ζ (λ)) = L∗

+,ζ(−λ) and Ψλ(Ũ
−
ζ (λ)) = L∗

−,ζ(λ). We have lin-

ear isomorphisms

(3.33) Φ−λ : U
+
ζ (λ)→ L∗

+,ζ(−λ), Ψλ : Ũ
−
ζ (λ)→ L∗

−,ζ(λ) (λ ∈ Λ+).

By (3.21), (3.22), and (3.23), we have

U+
ζ (λ)⊂ U+

ζ (λ+ μ), Ũ−
ζ (λ)⊂ Ũ−

ζ (λ+ μ) (λ,μ ∈ Λ+),(3.34)

U+
ζ =

∑
λ∈Λ+

U+
ζ (λ), Ũ−

ζ =
∑
λ∈Λ+

Ũ−
ζ (λ),(3.35)

Ũ−
ζ (λ)k−2λ ⊂ Uζ,f , k−2λU

+
ζ (λ)⊂ UA,f (λ ∈ Λ+).(3.36)

By (3.35) and (3.36), we can easily see the following.
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Lemma 3.7. For any u ∈ Uζ there exists some λ ∈ Λ+ such that uk−2λ ∈
Uζ,f .

§4. Induction functor

We set

C
�0
ζ =Cζ/I, I =

{
ϕ ∈Cζ

∣∣ 〈ϕ,UL,�0
ζ 〉= {0}

}
.

Then C
�0
ζ is a Hopf algebra, and we have a Hopf pairing

〈 , 〉 :C�0
ζ ×U

L,�0
ζ →C.

We have a canonical Hopf algebra homomorphism

res :Cζ →C
�0
ζ .

Following Backelin and Kremnizer [2, Section 3], we define abelian cate-

gories Mζ and Meq
ζ as follows.

An object of Mζ is a triplet (M,α,β) with

(1) M a vector space over C,

(2) α :Cζ ⊗M →M a left Cζ -module structure of M ,

(3) β :M →C
�0
ζ ⊗M a left C

�0
ζ -comodule structure of M

such that β is a morphism of Cζ -modules. (Or, equivalently, α is a morphism

of C
�0
ζ -comodules.) A morphism from (M,α,β) to (M ′, α′, β′) is a linear

map ϕ : M → M ′ which is a morphism of Cζ -modules as well as that of

C
�0
ζ -comodules.

An object of Meq
ζ is a quadruple (M,α,β, γ) with

(1) M a vector space over C,

(2) α :Cζ ⊗M →M a left Cζ -module structure of M ,

(3) β :M →C
�0
ζ ⊗M a left C

�0
ζ -comodule structure of M ,

(4) γ :M →M ⊗Cζ a right Cζ -comodule structure of M

subject to the conditions that (M,α,β) ∈Mζ , that β and γ commute with

each other, and that γ is a homomorphism of left Cζ -modules. A morphism

from (M,α,β, γ) to (M ′, α′, β′, γ′) is a linear map ϕ :M →M ′ which is com-

patible with the left Cζ -module structure, the left C
�0
ζ -comodule structure,

and the right Cζ -comodule structure.
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For a coalgebra C we denote by Comod(C) (resp., Comodr(C)) the cate-

gory of left C-comodules (resp., right C-comodules). We define functors

Ξ :Meq
ζ →Comod(C

�0
ζ ),

Υ : Comod(C
�0
ζ )→Meq

ζ

by

Ξ(M) =
{
M ∈M

∣∣ γ(m) =m⊗ 1
}
,

Υ(L) =Cζ ⊗L.

By Backelin and Kremnizer [2, Section 3.5], we have the following.

Proposition 4.1. The functor Ξ :Meq
ζ →Comod(C

�0
ζ ) gives an equiva-

lence of categories, and its quasi-inverse is given by Υ.

Remark 4.2. For M ∈Meq
ζ we have an isomorphism

Ξ(M)∼=C⊗Cζ
M

of vector spaces by Proposition 4.1. Here Cζ →C is given by ε.

For λ ∈ Λ we define χ
�0
λ ∈C

�0
ζ ⊂HomC(U

L,�0
ζ ,C) by

χ
�0
λ (hu) = χλ(h)ε(u) (h ∈ UL,0

ζ , u ∈ UL,−
ζ ).

We define left exact functors

ωM∗ :Mζ →ModΛ(Aζ),(4.1)

ΓM :Mζ →Mod(C)(4.2)

by

ωM∗(M) =
⊕
λ∈Λ

(
ωM∗(M)

)
(λ)⊂M,

(
ωM∗(M)

)
(λ) =

{
m ∈M

∣∣ β(m) = χ
�0
λ ⊗m

}
,

ΓM(M) =
(
ωM∗(M)

)
(0).

We denote by ModeqΛ (Aζ) the category consisting of N ∈ ModΛ(Aζ)

equipped with a right Cζ -comodule structure γ : N → N ⊗ Cζ such that
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γ(N(λ))⊂N(λ)⊗Cζ for any λ ∈ Λ and γ(ϕn) = Δ(ϕ)γ(n) for any ϕ ∈Aζ

and n ∈ N . (Note that Δ(Aζ(λ)) ⊂ Aζ(λ) ⊗ Cζ .) By definition, (4.1) and

(4.2) induce left exact functors

ωeq
M∗ :M

eq
ζ →ModeqΛ (Aζ),(4.3)

Γeq
M :Meq

ζ →Comodr(Cζ).(4.4)

We also define a left exact functor

(4.5) Ind : Comod(C
�0
ζ )→Comodr(Cζ)

by Ind = Γeq
M ◦Υ.

The abelian categories Mζ , Meq
ζ , Comodr(Cζ) have enough injectives,

and the forgetful functor Meq
ζ →Mζ sends injective objects to ΓM-acyclic

objects (see [2, Section 3.4]). Hence, we have the following.

Lemma 4.3. We have

For ◦RiΓeq
M =RiΓM ◦For :Meq

ζ →Mod(C),

RiInd ◦Ξ=RiΓeq
M :Meq

ζ →Comodr(Cζ)

for any i, where For : Comodr(Cζ) → Mod(C) and For : Meq
ζ → Mζ are

forgetful functors.

We define an exact functor

(4.6) res : Comodr(Cζ)→Comod(C
�0
ζ )

as follows. For V ∈Comodr(Cζ) with right Cζ -comodule structure β : V →
V ⊗ Cζ , we have res(V ) = V as a C-module, and the left C

�0
ζ -comodule

structure res(V )→C
�0
ζ ⊗ res(V ) of res(V ) is given by

β(v) =
∑
k

vk ⊗ϕk =⇒ γ(v) =
∑
k

res(S−1ϕk)⊗ vk.

The following fact is standard.

Lemma 4.4. For V ∈ Comodr(Cζ), M ∈ Comod(C
�0
ζ ), we have an iso-

morphism

F : Ind(M)⊗ V → Ind
(
res(V )⊗M

)
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of right Cζ-comodules given by

F
((∑

i

ϕi ⊗mi

)
⊗ v

)
=

∑
i,(v)

ϕiv(1) ⊗ v(0) ⊗mi,

where we write the right Cζ-comodule structure of V by

V � v �→
∑
(v)

v(0) ⊗ v(1) ∈ V ⊗Cζ .

For λ ∈ Λ we denote by C
�0
λ = C1

�0
λ the object of Comod(C

�0
ζ ) corre-

sponding to the1-dimensional rightU
L,�0
ζ -module givenby 1

�0
λ u= χ

�0
λ (u)1

�0
λ

for u ∈ U
L,�0
ζ . By definition, we have an isomorphism

Ind(C
�0
−λ)

∼=Aζ(λ) (λ ∈ Λ+)

of right Cζ -comodules.

Let N ∈ModΛ(Aζ). Then Cζ ⊗Aζ
N turns out to be an object of Mζ by

α
(
f ⊗ (f ′ ⊗ n)

)
= ff ′ ⊗ n (f, f ′ ∈Cζ , n ∈N),

β(f ⊗ n) =
∑
(f)

res(f(0))χλ ⊗ (f(1) ⊗ n)
(
f ∈Cζ , n ∈N(λ)

)
.

Hence, we have a functor ModΛ(Aζ)→Mζ sending N to Cζ ⊗Aζ
N .

Lemma 4.5. The functor ModΛ(Aζ)→Mζ as above induces a functor

Φ :Mod(OBζ
)→Mζ .

Proof. It is sufficient to show that Cζ ⊗Aζ
Aζ/Aζ(λ+Λ+) = {0} for any

λ ∈ Λ. Hence, we have only to show that CζAζ(λ) = Cζ for any λ ∈ Λ+.

Take ϕ ∈ Aζ(λ) such that ε(ϕ) = 1. We have Δ(Aζ(λ))⊂ Aζ(λ)⊗ Cζ , and

hence we can write Δ(ϕ) =
∑

iϕi ⊗ ϕ′
i with ϕi ∈ Aζ(λ), ϕ

′
i ∈ Cζ . Then we

have CζAζ(λ) �
∑

i(S
−1ϕ′

i)ϕi = 1.

We set

Ψ = ω∗ ◦ ωM∗ :Mζ →Mod(OBζ
).

Backelin and Kremnizer [2, Section 3.3] obtained the following result using

a result of Artin and Zhang [1, Theorem 4.5].
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Proposition 4.6. The functor Φ :Mod(OBζ
)→Mζ gives an equivalence

of categories, and its quasi-inverse is given by Ψ. Moreover, we have an

identification

ωM∗ ◦Φ= ω∗ : Mod(OBζ
)→ModΛ(Aζ)

of functors.

Hence we have the following.

Lemma 4.7. We have

RiΓ=RiΓM ◦Φ :Mod(OBζ
)→Mod(C)

for any i.

We set

Modeq(OBζ
) =ModeqΛ (Aζ)/ModeqΛ (Aζ)∩TorΛ+(Aζ).

Let N ∈ModeqΛ (Aζ). We denote the right Cζ -comodule structure of N by

γ′ :N →N ⊗ Cζ . Then we have a right Cζ -comodule structure γ : Cζ ⊗Aζ

N → (Cζ ⊗Aζ
N)⊗Cζ of Cζ ⊗Aζ

N given by

γ′(n) =
∑
k

nk ⊗ϕk =⇒ γ(f ⊗ n) =
∑
k,(f)

(f(0) ⊗ nk)⊗ f(1)ϕk.

This gives a functor ModeqΛ (Aζ)→Meq
ζ . Hence, by Lemma 4.5 we have a

functor

(4.7) Φeq : Modeq(OBζ
)→Meq

ζ

induced by Φ. LetM ∈Meq
ζ . The right Cζ -comodule structure ofM restricts

to that of ωM∗M so that ωM∗M ∈ModeqΛ (Aζ). Hence, we have a functor

(4.8) Ψeq :Meq
ζ →Modeq(OBζ

)

induced by Ψ. By Proposition 4.6, we have the following.

Proposition 4.8. The functor Φeq : Modeq(OBζ
)→Meq

ζ gives an equiv-

alence of categories, and its quasi-inverse is given by Ψeq.

By Proposition 4.8 we see that (4.1) and (4.2) induce

ωeq
∗ = ωeq

M∗ ◦Φeq : Modeq(OBζ
)→ModeqΛ (Aζ),(4.9)

Γeq =Γeq
M ◦Φeq : Modeq(OBζ

)→Comodr(Cζ).(4.10)

By Lemma 4.3, we have the following.
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Lemma 4.9. We have

For ◦RiΓeq =RiΓ ◦For : Modeq(OBζ
)→Mod(C)

for any i, where For : Comodr(Cζ) → Mod(C) and For : Modeq(OBζ
) →

Mod(OBζ
) are forgetful functors.

§5. Reformulation of Conjecture 2.14

5.1. Adjoint action of UL
ζ on D′

ζ

Define a left UF-module structure of EF by

ad(u)(P ) =
∑
(u)

u(0)P (Su(1)) (u ∈ UF, P ∈EF).

Then we have

ad(u)(P1P2) =
∑
(u)

ad(u(0))(P1)ad(u(1))(P2) (P1, P2 ∈EF),

ad(u)(ϕ) = u ·ϕ (ϕ ∈AF ⊂EF),

ad(u)(v) =
∑
(u)

u(0)v(Su(1)) (v ∈ UF ⊂EF),

ad(u)
(
e(λ)

)
= ε(u)e(λ)

(
λ ∈ Λ, e(λ) ∈ F[Λ]⊂EF

)
for u ∈ UF. We see from [20, Lemma 4.2] that this induces a left UF-module

structure of D′
F. Moreover, the UF-module structures of EF and D′

F induce

UL
A -module structures of EA, D

′
A, EA,♦, D′

A,♦, EA,f , and D′
A,f by Lemmas

1.2 and 2.12. Hence, by specialization we obtain UL
ζ -module structures of

Eζ , D
′
ζ , Eζ,♦, D′

ζ,♦, Eζ,f , and D′
ζ,f also denoted by ad.

5.2.

We will regard Eζ,f ,D
′
ζ,f ∈ ModΛ(Aζ) as objects of ModeqΛ (Aζ) by the

right Cζ -comodule structures induced from the left UL
ζ -module structures

(u,P ) �→ ad(u)(P ) (u ∈ UL
ζ , P ∈Eζ,f or D′

ζ,f ).

Then for

(Ξ ◦Φeq)(ω∗D′
ζ,f ) ∈Comod(C

�0
ζ )

we have

RiΓ(ω∗D′
ζ,f ) =RiInd

(
(Ξ ◦Φeq)(ω∗D′

ζ,f )
)

by Lemmas 4.3 and 4.9 and by (4.10).
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Define a right (Uζ,♦ ⊗C[Λ])-module V by

V =
(
Uζ,♦ ⊗C[Λ]

)
/I,

where

I =
(
Ũ−
ζ ∩Ker(ε)

)
Uζ,♦C[Λ] +

∑
λ∈Λ

(
k2λ − e(2λ)

)
Uζ,♦C[Λ].

By the triangular decomposition Ũ−
ζ ⊗U0

ζ,♦ ⊗U+
ζ
∼= Uζ,♦ we have

V ∼= U+
ζ ⊗C[Λ]

as a vector space. Define a right action of U
L,�0
ζ on Uζ,♦ ⊗C[Λ] by

(
u⊗ e(λ)

)
� v = ad(Sv)(u)⊗ e(λ) (u ∈ Uζ,♦, λ ∈ Λ, v ∈ U

L�0
ζ ).

It induces a right action of U
L,�0
ζ on V . Moreover, we see easily that this

right U
L,�0
ζ -module structure gives a left C

�0
ζ -comodule structure of V .

Proposition 5.1. We have

(Ξ ◦Φeq)(ω∗D′
ζ,f )

∼= V

as a left C
�0
ζ -comodule.

The proof is given in Section 5.3.

It follows from Proposition 5.1 that Conjecture 2.14 is equivalent to the

following conjecture.

Conjecture 5.2. Assume that � > hG. We have

Ind(V )∼= Uζ,f ⊗ZHar(Uζ) C[Λ],

and

RiInd(V ) = 0

for i �= 0.

Remark 5.3. We can show that

Uζ,f
∼= (Cζ)ad, V ∼= ad(C

�0
ζ )⊗C[2Λ] C[Λ],
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where (Cζ)ad (resp., ad(C
�0
ζ )) is given by the right (resp., left) adjoint coac-

tion of Cζ (resp., C
�0
ζ ) on itself. Hence, Conjecture 5.2 is equivalent to

R Ind
(
ad(C

�0
ζ )

)∼= (Cζ)ad ⊗C[2Λ]W C[2Λ].

The corresponding statement for q = 1 is

R Ind
(
adC[B

−]
)∼=C[G]ad ⊗C[H/W ] C[H].

We can prove this by a geometric method.

Remark 5.4.† A proof of Conjecture 5.2, when � is a prime greater than

the Coxeter number, is given by Backelin and Kremnizer in [3, Proposi-

tion 3.25]; however, in a more recent article they admit that there are gaps

in [3] (see [4, Version 3, Section 1.1.2]) and propose different proofs. But it is

likely that problems still remain in the new proofs given in [4], as explained

below.

The proof in [4, Versions 1 and 2] is wrong because all positive roots are

assumed there to be dominant (see [4, Version 2, proof of Theorem 2.1]).

Another proof given in [4, Version 3] also has problems. In Step (b) of

[4, Version 3, proof of Theorem 2.2.1], the authors compare certain weight

multiplicities aq,μ and bq,μ. But since those multiplicities are infinite, the

argument there should be modified using multiplicities as Uq-modules. Let

us assume for simplicity that q is generic and try to modify the original

argument by replacing aq,μ, bq,μ, b
′
q,μ with their counterparts as multiplicities

of Uq-modules. This even fails since a1,μ (resp., b′1,μ) is the dimension of

the 0-weight space of the irreducible module (resp., Verma module) with

highest-weight μ. We also point out that the reason that Uλ
q is an integral

domain is not given in Step (a).

Note that the arguments in [4, Version 3, proof of Theorem 2.2.1] are

partially similar to those in the earlier manuscripts (see [2, Proposition 4.8],

[3, Proposition 3.25]). The main difference is that [4, Version 3] relies on a

Bq-stable filtration with 1-dimensional subquotients instead of the Joseph–

Letzter filtration used in [2] and [3]. For us, the original argument in [2] and

[3] for generic q using the Joseph–Letzter filtration is not comprehensible

either. In the notation of [2, proof of Proposition 4.8], the validity of the

formula mj(1) = ñj(1) is not clear to us since the Joseph–Letzter filtration

does not induce at q = 1 the ordinary filtration for enveloping algebras and

differential operators in general.

†This remark is added at the editor’s request.
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5.3.

We will give a proof of Proposition 5.1 in the rest of this article. By

Remark 4.2, we have

(Ξ ◦Φeq)(ω∗D′
ζ,f )

∼=C⊗Aζ
D′

ζ,f

as a vector space, where Aζ →C is given by ε. Note that

C⊗Aζ
Eζ,♦ ∼= Uζ,♦ ⊗C[Λ].

We first show the following.

Lemma 5.5. We have

C⊗Aζ
D′

ζ,♦ ∼= V.

Proof. By (2.10) we obtain

C⊗Aζ
D′

ζ,♦ ∼=
(
Uζ,♦ ⊗C[Λ]

)/ ∑
ϕ∈Aζ

(
1⊗Ω′(ϕ)

)(
Uζ,♦ ⊗C[Λ]

)
,

where 1⊗ Ω′(ϕ) is the image of Ω′(ϕ) in C⊗Aζ
Eζ,♦ = Uζ,♦ ⊗ C[Λ]. Note

that ε(Aζ(λ)ξ) = {0} for λ ∈ Λ+, ξ ∈ Λ with λ �= ξ, and that ε(Aζ(λ)λ) =C

for λ ∈ Λ+. Hence, for ϕ ∈Aζ(λ)ξ with λ ∈ Λ+, ξ ∈ Λ we have

1⊗Ω′
1(ϕ) =

{
0 (λ �= ξ),

ε(ϕ) (λ= ξ).

Let us also compute 1⊗Ω′
2(ϕ). Let

Ψ̃λ : Ũ
−
ζ (λ)→Aζ(λ)

be the composite of the linear isomorphism Ψλ : Ũ−
ζ (λ) → L∗

−,ζ(λ) (see

(3.33)) and an isomorphism f : L∗
−,ζ(λ)→ Aζ(λ) of UL

ζ -modules. We have

Ψ̃λ(Ũ
−
ζ (λ)−(λ−ξ)) =Aζ(λ)ξ for any ξ ∈ Λ. Hence, we may assume that ε=

ε ◦ Ψ̃λ on Ũ−
ζ (λ). Let ϕ ∈ Aζ(λ)ξ, and take v ∈ Ũ−

ζ (λ)−(λ−ξ) satisfying

Ψ̃λ(v) = ϕ. Then we have∑
p

(SxLp ) ·ϕ⊗ ypkβp =
∑
p

f
(
(SxLp ) ·Ψλ(v)

)
⊗ ypkβp

=
∑
p

ζ−(βp,ξ)f
(
(SxLp )kβp ·Ψλ(v)

)
⊗ ypkβp
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=
∑
p,(v)

ζ−(βp,ξ)f
(
Lτζ

(
(SxLp )kβp , v(0)

)
Ψλ(v(1))

)
⊗ ypkβp

=
∑
p,(v)

ζ−(βp,ξ)Lτζ
(
(SxLp )kβp , v(0)

)
Ψ̃λ(v(1))⊗ ypkβp ,

and hence

1⊗Ω′
2(ϕ) =

∑
p

ε
(
(SxLp ) ·ϕ

)
ypkβpk2ξe(−2λ)

=
∑
p,(v)

ζ−(βp,ξ)Lτζ
(
(SxLp )kβp , v(0)

)
ε(v(1))ypkβpk2ξe(−2λ)

=
∑
p

ζ−(βp,ξ)Lτζ
(
(SxLp )kβp , v

)
ypkβpk2ξe(−2λ)

=
∑
p

ζ−(βp,ξ)Lτζ(k−βpx
L
p , S

−1v)ypkβpk2ξe(−2λ)

=
∑
p

ζ−(βp,ξ)−(βp,βp)Lτζ(x
L
p , S

−1v)ypkβpk2ξe(−2λ)

=
∑
p

ζ−(λ−ξ,λ)Lτζ(x
L
p , S

−1v)ypkλ−ξk2ξe(−2λ)

= ζ−(λ−ξ,λ)(S−1v)kλ−ξk2ξe(−2λ).

(Note that (S−1v)kλ−ξ ∈ Ũ−
ζ (λ)−(λ−ξ).) It follows that

1⊗Ω′(ϕ) =

{
−ζ−(λ−ξ,λ)(S−1v)kλ−ξk2ξe(−2λ) (λ �= ξ),

ε(ϕ)(1− k2λe(−2λ)) (λ= ξ).

Hence, we have∑
λ∈Λ+,

γ∈Q+

∑
ϕ∈Aζ(λ)λ−γ

(
1⊗Ω′(ϕ)

)(
Uζ,♦ ⊗C[Λ]

)

=
∑

λ∈Λ+,

γ∈Q+\{0}

Ũ−
ζ (λ)−γ

(
Uζ,♦ ⊗C[Λ]

)
+

∑
λ∈Λ+

(
1− k2λe(−2λ)

)(
Uζ,♦ ⊗C[Λ]

)

=
(
Ũ−
ζ ∩Ker(ε)

)(
Uζ,♦ ⊗C[Λ]

)
+

∑
λ∈Λ

(
k2λ − e(2λ)

)(
Uζ,♦ ⊗C[Λ]

)
by (3.35).
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Lemma 5.6. We have

C⊗Aζ
D′

ζ,f
∼= V.

Proof. We need to show that the canonical homomorphism C⊗Aζ
D′

ζ,f →
C ⊗Aζ

D′
ζ,♦ is bijective. The surjectivity is a consequence of (3.35) and

(3.36). Let us give a proof of the injectivity. Set

K=AζUζ,fC[Λ]∩
∑
ϕ∈Aζ

AζΩ
′(ϕ)Uζ,♦C[Λ]⊂Aζ ⊗Uζ,f ⊗C[Λ].

Then it is sufficient to show that the natural map

C⊗Aζ

((
Aζ ⊗Uζ,f ⊗C[Λ]

)
/K

)
→

(
Uζ,♦ ⊗C[Λ]

)
/I

is injective. Let F : Aζ ⊗ Uζ,f ⊗ C[Λ] → Uζ,♦ ⊗ C[Λ] be the natural map.

Then it is sufficient to show that

(5.1) I ∩
(
Uζ,f ⊗C[Λ]

)
⊂ F (K).

Indeed, assume that (5.1) holds. Denote by

p :Aζ ⊗Uζ,f ⊗C[Λ]→C⊗Aζ

((
Aζ ⊗Uζ,f ⊗C[Λ]

)
/K

)
,

π : Uζ,♦ ⊗C[Λ]→
(
Uζ,♦ ⊗C[Λ]

)
/I

the natural maps. We have to show that Ker(π ◦ F ) ⊂ Ker(p). Take x ∈
Ker(π ◦ F ). Then F (x) ∈ I ∩ (Uζ,f ⊗ C[Λ]). Hence, by (5.1) there exists

some v ∈K such that F (x) = F (v). Then p(x) = p(x− v) + p(v) = p(x− v).

Hence, we may assume that F (x) = 0 from the beginning. Note that p factors

through

p′ :Aζ ⊗Uζ,f ⊗C[Λ]→C⊗Aζ

(
Aζ ⊗Uζ,f ⊗C[Λ]

)(
= Uζ,f ⊗C[Λ]

)
.

By F (x) = 0 we have p′(x) = 0, and hence p(x) = 0, as desired.

It remains to show (5.1). Let λ ∈ Λ+, and let ϕ ∈Aζ(λ)λ. Then we have

Ω′
1(ϕ) =

∑
p

(yLp ·ϕ)xp ∈AζU
+
ζ , Ω′

2(ϕ) = ϕk2λe(−2λ).

Let us show that

(5.2) Ω′
1(ϕ) =

∑
p

(yLp ·ϕ)xp ∈AζU
+
ζ (λ).

https://doi.org/10.1215/00277630-2402198 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2402198


QUANTIZED FLAG MANIFOLDS 49

This is equivalent to

∑
p

(yLp ·ϕ)⊗Φ−λ(xp) ∈Aζ ⊗L∗
+,ζ(−λ).

This follows from

∑
p

〈
Φ−λ(xp), uf

((λ,α∨
i )+1)

i

〉
yLp ·ϕ=

∑
p

τLζ (xp, uf
((λ,α∨

i )+1)
i )yLp ·ϕ

= (uf
((λ,α∨

i )+1)
i ) ·ϕ= 0

for u ∈ UL,−
ζ , i ∈ I . Thus, (5.2) is verified. Hence, we have

Ω′(ϕ)k−2λ ∈K.

It follows that

(5.3) F (K)⊃
(
k−2λ − e(−2λ)

)
Uζ,fC[Λ] (λ ∈ Λ+).

Now let u ∈ I ∩ (Uζ,f ⊗C[Λ]). If we can show that k−2μu ∈ F (K) for some

μ ∈ Λ+, then we obtain

u= e(2μ)
(
e(−2μ)− k−2μ

)
u+ e(2μ)k−2μu ∈ F (K)

by (5.3). Hence, it is sufficient to show that for any u ∈ I there exists some

μ ∈ Λ+ such that k−2μu ∈ F (K). We may assume that there exists ν ∈ Q

such that k−2μu = ζ(μ,ν)uk−2μ for any μ ∈ Λ. Therefore, we have only to

show that for any u ∈ I there exists some μ ∈ Λ+ such that uk−2μ ∈ F (K).

By Lemma 5.5 we can take ϕi ∈ Aζ , xi ∈ Uζ,♦ ⊗ C[Λ] (i = 1, . . . ,N ) such

that

u= 1⊗
N∑
i=1

Ω′(ϕi)xi.

By Lemma 3.7 we can take μ ∈ Λ+ such that Ω′(ϕi)xik−2μ ∈Aζ⊗Uζ,f ⊗C[Λ]

for any i. Then we have

uk−2μ =
N∑
i=1

F
(
Ω′(ϕi)xik−2μ

)
∈ F (K).

https://doi.org/10.1215/00277630-2402198 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2402198


50 T. TANISAKI

By Lemma 5.6 we obtain an isomorphism

(Ξ ◦Φeq)(ω∗D′
ζ,f )

∼= V

of vector spaces. We need to show that it is in fact an isomorphism of left

C
�0
ζ -comodules. This is a consequence of the corresponding fact for Eζ,f .

Note that we have

C⊗Aζ
Eζ,f

∼= Uζ,f ⊗C[Λ],

and hence we have an isomorphism

(5.4) (Ξ ◦Φeq)(ω∗Eζ,f )∼= Uζ,f ⊗C[Λ]

of vector spaces. Hence, we have only to show the following.

Lemma 5.7. Under identification (5.4), the left C
�0
ζ -comodule structure

of Uζ,f ⊗C[Λ] is associated to the right U
L,�0
ζ -module structure given by

(
u⊗ e(λ)

)
· v = ad(Sv)(u)⊗ e(λ) (u ∈ Uζ,f , λ ∈ Λ, v ∈ U

L,�0
ζ ).

Proof. Note that the left C
�0
ζ -comodule structure of Uζ,f ⊗C[Λ] is given

by

Uζ,f ⊗C[Λ]∼=Ξ
(
Cζ ⊗

(
Uζ,f ⊗C[Λ]

))
,

where Cζ ⊗ (Uζ,f ⊗C[Λ]) is regarded as a left C
�0
ζ -comodule by the tensor

product of Cζ (with left C
�0
ζ -comodule structure (res⊗ 1) ◦Δ :Cζ →C

�0
ζ ⊗

Cζ) and Uζ,f ⊗ C[Λ] with trivial left C
�0
ζ -comodule structure. Hence, it is

sufficient to show that for a right Cζ -comodule M the right U
L,�0
ζ -module

structure of

M ∼=Ξ(Cζ ⊗M) ∈Comod(C
�0
ζ )

is given by

m · v = (Sv) ·m (m ∈M,v ∈ U
L,�0
ζ ).

Denote by M triv the trivial right Cζ -comodule which coincides with M

as a vector space. We denote by M � m ↔ m ∈ M triv the canonical lin-

ear isomorphism. We have Cζ ⊗M triv ∈Comodr(Cζ) as the tensor product

of Cζ ∈ Comodr(Cζ) and M triv ∈ Comodr(Cζ). We can also define a left

C
�0
ζ -comodule structure of Cζ ⊗ M triv as the tensor product of the left
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C
�0
ζ -comodules Cζ and M triv, where the left C

�0
ζ -comodule structure of

M triv is given by the right U
L,�0
ζ -module structure

m · v = (Sv) ·m (m ∈M,v ∈ U
L,�0
ζ ).

Then we have a linear isomorphism

Cζ ⊗M � ϕ⊗m �→
∑
(m)

ϕm(1) ⊗m(0) ∈Cζ ⊗M triv

preserving the right Cζ -comodule structures and the left C
�0
ζ -comodule

structures. It follows that

Ξ(Cζ ⊗M)∼=Ξ(Cζ ⊗M triv) =M triv ∈Comod(C
�0
ζ ).

The proof of Proposition 5.1 is complete.
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