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SUMMARY

The value of Google Flu Trends (GFT) remains unclear after it overestimated the proportion of
physician visits related to influenza-like illness (ILI) in the United States in 2012–2013. However,
GFT estimates (%GFT) have not been examined nationally in Canada nor compared with
positivity for respiratory viruses other than influenza. For 2010–2014, we compared %GFT for
Canada to Public Health Agency of Canada ILI consultation rates (%PHAC) and to positivity
for influenza A and B, respiratory syncytial virus (RSV), human metapneumovirus (hMPV),
and rhinoviruses. %GFT correlated well with %PHAC (ρ = 0·77–0·90) and influenza A positivity
(ρ = 0·64–0·96) and overestimated the 2012–2013 %PHAC peak by 0·99 percentage points.
%GFT peaks corresponded temporally with peaks in positivity for influenza A and rhinoviruses
(all seasons) and RSV and hMPV when their peaks preceded influenza peaks. In Canada, %GFT
represented traditional surveillance data and corresponded temporally with patterns in circulating
respiratory viruses.
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INTRODUCTION

Google Flu Trends (GFT) estimates the proportion of
physician visits related to influenza-like illness (ILI)
based on the historical relationship between internet
search queries using Google and traditional ILI sur-
veillance data [1]. In the United States, GFT estimates
are posted online between 1 and 2 weeks before the
Centers for Disease Control and Prevention (CDC)
reports ILI surveillance data; therefore, GFT esti-
mates offer the potential for early warning of increases
in ILI [1]. However, during the ‘moderately severe’

2012–2013 influenza season in the United States [2],
GFT estimates of the peak in ILI-related physician
visits were much higher than those reported by CDC
[3, 4]. This inaccuracy has been hypothesized to be at-
tributable to increases in influenza-related internet
searches due to media attention [3] and changes to
Google’s search algorithm [5] and has called into
question the value of GFT estimates [4]. This inaccur-
acy led Google to revise their US GFT model in 2013
[6], following an initial revision in 2009 after failing to
effectively detect the emergence of the first wave of the
H1N1 pandemic in the United States [7]. Therefore,
the utility of GFT estimates remains unclear.

Currently, GFT estimates are available for 29 coun-
tries, including Canada [8], are being used in
ILI-related research [9–12], and have been investigated
at national level in several countries including the
United States [4, 13], European countries [14, 15],

* Author for correspondence: Dr L. J. Martin, School of Public
Health, University of Alberta, 4-057A Edmonton Clinic Health
Academy, 11405 87th Avenue, Edmonton, Alberta, Canada,
T6G 1C9.
(Email: leah.martin@ualberta.ca) [L.J.M.]
(Email: yyasui@ualberta.ca) [Y.Y.]

Epidemiol. Infect. (2016), 144, 325–332. © Cambridge University Press 2015
doi:10.1017/S0950268815001478

https://doi.org/10.1017/S0950268815001478 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268815001478&domain=pdf
https://doi.org/10.1017/S0950268815001478


and New Zealand [16]. By contrast, only two studies
have examined GFT in Canada, both on a provincial
scale in Manitoba [17, 18]; no research, to our knowl-
edge, has examined GFT on a national scale in this
country. In Canada, GFT estimates target ILI con-
sultation rates reported by the Public Health Agency
of Canada (PHAC) [19] and, as with the US data, are
available online 1–2 weeks before PHAC values are
reported. Similar to the United States, the 2012–2013
influenza season in Canada started earlier and was
more severe than previous seasons, with high ILI con-
sultation rates and, in laboratory-confirmed influenza
cases, a greater number of influenza-related hospitaliza-
tions and a higher number of mortalities [20]. Therefore,
GFT estimates may have also overestimated ILI con-
sultation rates reported by PHAC during this season.
Understanding how GFT estimates compare to trad-
itional ILI surveillance data will help determine their
potential value for early warning of ILI increases in fu-
ture influenza seasons in Canada.

GFT estimates are meant to target the percentage
of sentinel physician visits that are related to ILI.
However, we hypothesize that, in order to provide
estimates that are useful for detecting epidemics of re-
spiratory disease, digital surveillance data for ILI
should represent variations in the proportion of la-
boratory tests positive for respiratory viruses (positiv-
ity), which is similar to previous research examining
the usefulness of syndromic surveillance data [21].
Others have examined how well GFT estimates correlate
with respiratory pathogens, but have limited their ana-
lyses to laboratory-confirmed influenza [13, 17, 18].
However, given that GFT is based upon internet search
terms that are not specific to influenza [7], variations in
GFT estimates may be explained by variations in
positivity for a number of different respiratory viral
pathogens that cause ILI-related symptoms, not only
influenza.

Therefore, our objectives were to determine: (a)
how well GFT estimates for Canada correlate with na-
tional ILI consultation rates from PHAC and (b) how
well GFT estimates correspond nationally with posi-
tivity for influenza as well as for other respiratory
pathogens that cause ILI-related symptoms and circu-
late during a similar period of time as influenza.

METHODS

We used data from GFT for Canada [8]; ILI-related
sentinel surveillance data from the FluWatch pro-
gramme [22]; and respiratory virus testing data from

the Respiratory Virus Detection Surveillance System
(RVDSS) [23]. GFT estimates the number of ‘ILI
cases per 100 000 physician visits’ [19] from which we
calculated the percentage (%GFT). From FluWatch
reports we obtained the most recently updated weekly
number of ILI-related consultations per 1000 patient
visits (we estimated the value from the bar chart if
an exact value was not provided or had obviously
changed since last being reported), from which we cal-
culated the percentage (%PHAC). Note that physician
visits for the Territories and Prince Edward Island are
included in FluWatch values, based on data from 32
sentinel providers [22]; however, as GFT does not pro-
vide separate estimates for these areas, they are not
likely to be included within the national GFT esti-
mates for Canada [8]. The current definition of ILI
used by PHAC is as follows: ‘Acute onset of respira-
tory illness with fever and cough and with one or
more of the following – sore throat, arthralgia, myal-
gia, or prostration which is likely due to influenza.
In children under 5, gastrointestinal symptoms may
also be present. In patients under 5 or 65 and older,
fever may not be prominent’ [24]. From RVDSS, we
examined positivity for four viruses with winter sea-
sonality: influenza A, influenza B, respiratory syncyt-
ial virus (RSV), and human metapneumovirus
(hMPV); and a group of respiratory viruses that is en-
demic throughout the year, i.e. rhinoviruses. Since
most laboratories in Canada use tests that do not dis-
tinguish between rhinoviruses and enteroviruses, both
of these viruses are likely represented in this time ser-
ies, but we have used the term ‘rhinoviruses’ to reflect
the way data are reported by PHAC.

We compared %GFT to %PHAC and to positivity
for each pathogen based on peak timing and
Spearman’s correlation. We assessed correlation as-
suming no lead or lag times and we also tested (a) 1-
and 2-week leads for each of %GFT and %PHAC
ahead of the laboratory data and (b) ±1- and
±2-week lead and lag times between %GFT and %
PHAC. We limited the assessments of (a) and (b) to
weeks with values available for all the lead and lag
times considered. We defined the main peak as the
highest percentage of ILI-related visits or percentage
of tests positive during the season; however, we also
describe smaller, but comparably sized, peaks.

We examined data for week 35 of 2010–2011 until
week 8 of 2013–2014 (29 August 2010–22 February
2014; 182 weeks). Although GFT estimates are avail-
able from 2003 onwards, we did not use these prior
data because, in the United States, Google only
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began prospectively estimating ILI-related physician
visits in 2008 [1]; however, we cannot find specific in-
formation for Canada. We began our analysis with the
2010–2011 season to eliminate the 2009 H1N1 pan-
demic from our investigation. We did not require eth-
ical approval because all data were publicly available.
We conducted analyses in R v. 3.0.2 [25] and SAS
v. 9.4 (SAS Institute Inc., USA).

RESULTS

The percentage of physician visits related to ILI
reported by PHAC ranged from 0·26% to 6·71% (me-
dian 1·86%) and estimated by GFT ranged from
0·18% to 7·70% (median 1·62%). Overall, %PHAC
values and %GFT estimates correlated strongly, ranging
from ρ= 0·78 in 2013–2014 to ρ= 0·90 in 2010–2011
(Table 1), with slight increases when allowed to lag
(Table 2); however, %PHAC varied more from
week-to-week (Fig. 1). The lag between the two datasets
differed by season, ranging from %GFT leading
%PHAC by 2 weeks to %GFT lagging %PHAC by 1
week (Table 2). Each season, the magnitude of the
main peak was greater for %PHAC than for %GFT ex-
cept in 2012–2013 when the peak in %GFT was higher
than the peak in %PHAC (7·70% vs. 6·71%) (Fig. 1).
The timing of the peaks in %GFT and %PHAC were
similar; however, in 2011–2012, the main peak in
%GFT occurred in week 52 and the main peak in
%PHAC occurred in week 10, although %GFT had a
smaller peak during week 10 and %PHAC had several
peaks of similar magnitude between week 52 and
week 12 (Fig. 1, Table 1).

The correlation was strong between influenza A
positivity and %GFT (ranging from ρ = 0·64 in
2011–2012 to ρ = 0·96 in 2013–2014) and was equal
to or higher than the correlation between %PHAC
and influenza A positivity (Table 1). In 2013–2014,
we observed the lowest correlation between %GFT
and %PHAC (ρ = 0·77); in this same season, we
observed the highest correlation between %GFT and
influenza A positivity (ρ = 0·96) and the lowest correl-
ation between %PHAC and influenza A positivity (ρ
= 0·70). For every season except 2013–2014, we
observed slightly higher correlations between %GFT
estimates from 2 weeks previous and influenza A posi-
tivity for the current week than between both mea-
sures for the same week (Table 2). In contrast to
results for influenza A, overall, %GFT did not correl-
ate as strongly with influenza B, ranging from ρ = 0·29
in 2012–2013 to ρ = 0·85 in 2013–2014 with no lagT
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(Table 1), which increased somewhat when allowed to
lag (Table 2).

The timing of the peak in %GFT occurred just after
the peak in influenza A positivity each season except
in 2011–2012 (Fig. 2a). By contrast, in 2011–2012,
%GFT showed two peaks, the first of which appeared
to correspond well with the peaks in RSV positivity
(week 52) and hMPV positivity (week 1), while the se-
cond appeared to correspond well with the peak in
influenza A positivity (week 10; Fig. 2a). In this sea-
son (2011–2012), the correlation between %GFT and
RSV positivity was stronger than the correlation be-
tween %GFT and influenza A positivity (ρ = 0·89 vs.
0·64, Table 1). Similar results were observed for %
PHAC (Fig. 2b, Table 1). At the beginning of each
season (approximately weeks 35–44 or 48) we
observed smaller peaks in %GFT that plateaued be-
fore the main %GFT peaks occurred. These peaks ap-
pear to correspond with increases in positivity for
rhinoviruses (Fig. 2a). However, the overall correl-
ation between rhinovirus positivity and %GFT is
negative (Tables 1 and 2). We observed similar results
for rhinoviruses for %PHAC (Fig. 2b, Tables 1 and 2).

DISCUSSION

On a given week, a GFT estimate is available earlier
than the corresponding traditional surveillance data
from PHAC, which makes GFT an attractive poten-
tial addition to influenza and ILI surveillance.
However, the usefulness of these estimates remains
in question because their correspondence with trad-
itional surveillance data has been inconsistent, espe-
cially in the United States. One of the first steps in
determining the value of GFT estimates and under-
standing how best to use them is to examine how
they correlate, and how they correspond in terms of
peak magnitude and timing, with traditional surveil-
lance data.

In Canada, %GFT represented %PHAC well over
the four seasons examined. We observed more vari-
ability in %PHAC than %GFT; this variability is
not surprising given the relatively small number of
sentinel physicians (n= 416) reporting across the
country [22]. Although the magnitude of the main
peak in %PHAC was usually higher than that of
%GFT, in 2012–2013, the peak in %GFT was higher
and 2 weeks later than the peak in %PHAC. This sug-
gests that, similar to hypotheses about GFT estimates
in the United States [3], %GFT estimates in Canada
may have been inflated due to media attention aboutT
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influenza, which may have resulted in an increased
number of internet searches related to influenza.
However, this overestimation was much greater in
the United States in 2012–2013, where GFT estimated
the peak in the percentage of physician visits related to
ILI at 10·6% 3 weeks after the 6·1% peak reported by
CDC [4]. Therefore, GFT estimates appear to have
performed better as a representation of national senti-
nel ILI surveillance in Canada during 2012–2013 than
they did in the United States.

%GFT correlated strongly with influenza A positiv-
ity in all seasons except 2011–2012 and the timing of
its peaks closely corresponded with those of influenza
A positivity. However, in 2011–2012 %GFT had
lower correlation with influenza A positivity and
higher correlation with RSV and hMPV positivity,
appearing to correspond first with peaks in positivity
for RSV and hMPV and second with peaks in positiv-
ity for influenza A. This may be explained by the earl-
ier peaks in RSV and hMPV positivity, which
occurred before influenza positivity peaked in
2011–2012, whereas in the other seasons, RSV and
hMPV positivity peaked during or after the peak in
influenza A positivity. Therefore, during periods in
which RSV and hMPV circulated, ILI-related inter-
net searches may have been more likely if this period
preceded increases in influenza A positivity. This

observation should be examined in future seasons.
In contrast to these pathogens, GFT estimates did
not appear to correspond closely with influenza B
positivity, which was not the dominant type of
influenza, except during 2011–2012, when influenza
A and B co-circulated in the latter part of the season.
Our short study period limited our ability to explore
these relationships.

For each season examined, the correlation between
%GFT and influenza A positivity was equal to or
stronger than the correlation between %PHAC and
influenza A positivity. These results are in contrast
to US research, which found overall influenza positiv-
ity to correlate more strongly with ILI sentinel surveil-
lance data from the CDC than with US GFT
estimates for 2003–2008 [13]. These differences in
results may be due to differences in the study periods
and influenza seasons examined, to the combining of
influenza types in the US study compared to our sep-
aration by antigenic type, or to differences between
the two populations.

The peaks observed in both %PHAC and %GFT at
the beginning of each season may be explained by an in-
crease in rhinovirus/enterovirus positivity. Rhinoviruses
circulate year-round, but show increased occurrence in
early autumn and, to a lesser extent, in springtime [26]
while enteroviruses are more commonly detected in

1 (2011) 1 (2012) 1 (2013)

Week no. (year)

1 (2014)

Fig. 1. Google Flu Trends (GFT) Canada estimates and influenza-like illness (ILI) consultation rates reported by the
Public Health Agency of Canada (PHAC), 29 August 2010–22 February 2014.
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summer and autumn months [27]. An individual suffer-
ing from a cold, most frequently caused by rhinoviruses,
may search Google to determine if the symptoms are
due to a cold or to influenza; Google may then define
this internet search as one related to ILI. Lazer et al.
suggest that the overestimation observed in GFT

estimates in the United States may be related, in part,
to people querying the difference between influenza
and common colds [5]. Our results show that an in-
crease in GFT estimates at the beginning of the
influenza season may represent increased incidence in
rhinovirus/enterovirus infections.

1 (2011)

(a)

(b)

1 (2012) 1 (2013)

Week no. (year)

1 (2014)
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Fig. 2. Respiratory virus positivity compared to (a) Google Flu Trends (GFT) Canada estimates of influenza-like illness
(ILI) (red) and (b) ILI consultation rates from the Public Health Agency of Canada (PHAC) (blue), 29 August 2010–22
February 2014. RSV, respiratory syncytial virus; hMPV, human metapneumovirus.
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Our study has several limitations. First, we
extracted the number of sentinel ILI consultations
reported by PHAC manually from FluWatch reports;
therefore, exact values may have been updated after
reporting and some out-of-peak weeks were not expli-
citly reported; for these, we estimated values from bar
charts. However, these differences would have been
small; based on visual inspection, our figures match
well with those of PHAC. Second, this was an ex-
ploratory analysis and future studies should expand
on our results. For example, our study time period
was relatively short because we limited our data to
the seasons for which Google had reported prospect-
ive estimates of ILI in the United States following
the 2009 H1N1 pandemic. Further analyses should
be performed for future seasons. We focused on na-
tional data, but incorporating an examination of pro-
vincial/regional data would also be of interest.
Furthermore, our descriptive analysis should be
expanded to incorporate multivariable analyses to ad-
just for seasonality. Third, GFT data has limitations.
Google does not make public the search terms used in
their GFT methodology [1] and the number of
searches that Google defines as being ILI related
may change over time because of changes to
Google’s search algorithm [5]. These data are especial-
ly opaque for countries outside the United States be-
cause the peer-reviewed papers [1, 7] and updates [6]
that Google has produced focus on US data; it is
not clear how Google has implemented their updates
in Canada and this should be further explored.
However, by examining the correlation between trad-
itional surveillance data and digital disease surveil-
lance data such as this, we have an opportunity to
better understand the relationship between the pub-
lic’s interest in certain health conditions, their
healthcare-seeking behaviour, traditional sentinel sur-
veillance, and the incidence of disease in the commu-
nity; this may be useful to further understand how we
might be able to use GFT data for public health sur-
veillance and research. Fourth, age is an important
characteristic to consider for respiratory infections;
however, GFT estimates by age are not available
due to the nature of the data and publicly available
ILI consultation rates and laboratory surveillance
data from PHAC are not stratified by age. Last, an in-
herent limitation of traditional surveillance data is
that they are based on the healthcare-seeking behav-
iour of the population, testing behaviour of physi-
cians, and the testing algorithms of the laboratories,
which may differ across the country. That is, not

everyone who is sick will seek care, have a sample sub-
mitted to the laboratory, or be tested for each patho-
gen in our analysis. Similarly, a key consideration
in this analysis is that the people searching for
ILI-related terms using Google may not actually
have ILI.

GFT estimates are not only indicators of
ILI-related healthcare-seeking behaviour, but also re-
late to underlying patterns of respiratory pathogen
positivity. During the study period, GFT estimates
corresponded well with PHAC sentinel surveillance
data in terms of magnitude and timing of the peaks
and did not vastly overestimate the peak in 2012–2013
as was seen in the United States. The timing of peaks
in GFT estimates also corresponded well with timing
in peaks in positivity for a range of respiratory patho-
gens, including, but not limited to, influenza A.
Quantifying, examining, and monitoring these relation-
ships over time may improve our ability to potentially
use GFT as an early indicator to supplement existing
public health surveillance systems in Canada.
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