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EXISTENTIALLY CLOSED LOCALLY COFINITE GROUPS
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Let I be a class of finite groups. Then a cX-group shall be a topological group which has a fundamental
system of open neighbourhoods of the identity consisting of normal subgroups with 3c-factor groups and
trivial intersection. In this note we study groups which are existentially closed (e.c.) with respect to the class
LcX of all direct limits of a£-groups (where X satisfies certain closure properties). We show that the so-called
locally closed normal subgroups of an e.c. LcX-group are totally ordered via inclusion. Moreover it turns out
that every V2-sentence, which is true for countable e.c. L3£-groups, also holds for e.c. Lcl-groups. This allows
it to transfer many known properties from e.c. ZJE-groups to e.c. Lc3c-groups.

1980 Mathematics subject classification (1985 Revision): 20E26, 2OE18, 22A05.

1. Introduction

In this paper, X will always denote a class of finite groups, which is closed with
respect to subgroups, homomorphic images, and extensions. In particular, we write 3,
3n> 5* n ©> «5P for the classes of all finite groups, finite rc-groups, finite soluble rc-groups,
and finite p-groups (resp.); here n is a fixed set of primes. A great amount of information
has been obtained about existentially closed (e.c.) groups in the class LX of all locally X-
groups, especially in the cases when X = 5 or X = 3fp (see [7], [14, § 6], [21], [15], [17],
[18]). It was the original purpose of the present note to use this knowledge in studying
e.c. locally residually X-groups (LRX-groups). Here we cannot expect results as nice as in
the LX-case. The reason is that there exist 2No finitely generated (f.g.) Rgp-groups
([5], [6]), hence also 2Ko countable e.c. LRX-groups (see also Example 4.5), while we
have unique countable e.c. objects in Lg and in L%p. However, the close connection
between the classes LX and LRX is demonstrated by the fact, that there exist countable
e.c. LX-groups, which are e.c. in LRX (use the argument of [9, Satz 3.5]). If X = 5 or
X = 3p , then every e.c. LX-group is e.c. in LRX (copy the proofs of [21, Satz 6] and [17,
Theorem 3.7]).

Unfortunately, the study of e.c. L/?X-groups is considerably complicated by the fact,
that it seems to be very hard to find general constructions in order to produce
sufficiently interesting LRX-supergroups of given LRX-groups. Here we are only able to
use some ad hoc arguments. For example, HAW-extensions and free products of LRft-
groups stay in LRft, whenever the involved isomorphic subgroups are finite (see [1],
[2]). The information obtained in this way is fairly weak.

Because of this situation, we put more emphasis on the profinite topologies living on
each KX-group. This leads to the following refinement or our considerations. We replace
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234 FELIX LEINEN

RX by the class cX of all co-3E-groups in the sense of [8]. These arise as follows. Let
U e RX. Suppose that 3& is a residual system in U, i.e., a set of normal subgroups in U
satisfying

(1) U/NeXforaUNe®,

(2) for any Nl,N1eSt there exists N3e@ such that N3g,N1nN2, and

(3)

Then 1/ becomes a Hausdorff topological space by requiring that f be a basis of
neighbourhoods of the identity (the reader is referred to [11] or [10, §2] for the
standard facts about topological groups). The topological group U is now called a cX-
group. Thus, a cX-group is just an RJ-group equipped with a certain fixed pro-X
topology. In general, different residual systems on the same RX-group lead to different
cX-groups.

If U ̂  V e cX, then U is a c3E-group via the topology induced by V. For this reason, an
embedding <j>:U^V of c3E-groups shall be a group homeomorphism <f> of U onto the cX-
subgroup U<p of V. Note that embeddings are always continuous. In order to prove that
a monomorphism </>:£/-> F of c3£-groups is an embedding, it suffices to find residual
systems Mv and Mv which give the topologies on V resp. V such that, for every Ne^v

there exists some M e 3&v with M n U<j> g iV<£, and such that for every Me3%v there
exists some Ne^v with N<f>^M n [ / f Since X-groups can only carry the discrete
pro-3E topology, every monomorphism <p:U->V, where UeX and KecX, is an embed-
ding. An Lc3E-group G is a direct limit of c3£-groups with respect to embeddings. Note
that G is in general not a topological group with respect to the direct limit topology,
since multiplication in G need not be continuous [3, Appendix 2, 1.9]. However, with
each f.g. subgroup of G there is associated a unique topology. An embedding <j>:G-*H of
Lc£-groups shall be a group monomorphism (f> such that, for each f.g. subgroup U of G,
the restriction <j>\U is a homeomorphism of U onto [/</>. Again, monomorphisms
<t>:G->H, where GeLX and HeLcX, are embeddings.

By the standard argument [13, Proposition 1.3], every Lc3£-group G is embeddable
into an e.c. Lc3E-group of cardinality max{X0, |G|}. AS before, there exist countable e.c.
LX-groups which are e.c. in LcX. If X = 3 or X = gp, then every e.c. ZJE-group is e.c. in
LcX.

Clearly, the class pX of all pro-3£-groups is a subclass of cX. Note that continuous
monomorphisms of pX-groups are already embeddings [11, Proposition 10(^")]. On the
other hand, every c3E-group U is a subgroup of its pro-X completion U [8, Lemmata
2.5/6]. Let if be the local system of all f.g. subgroups in the LcX-group G. If X,
satisfy X ^ Y, then there exists an embedding a of X into Y such that the diagram
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commutes [8, Theorem 2.1]. It follows, that G is embeddable into its Lp3E-completion
G = lim{X\X e£f}. Consequently, every ex. Lp3E-group is e.c. in LcX, and the study of
e.c. Lc3E-groups comprises the study of e.c. LpJ-groups. Note also, that every e.c. LcX-
group is e.c. in its Lp3E-completion.

Our basic amalgamation technique within LcX uses suitable factor groups of free
products with amalgamation. A combination with embeddings of d-groups into
cartesian products of X-groups then reduces the problem of solving finite systems of
equations and inequalities over an e.c. Lcl-group G to solving them over certain X-
sections of f.g. subgroups of G. As a valuable corollary we note, that every V2-sentence,
which holds in every countable e.c. ZJE-group, is also true in every e.c. Lc3E-group.

From this, we can immediately carry over a lot of information from e.c. ZJE-groups to
e.c. LcX-groups. For example, it follows that every e.c. Leg-group G is simple. And
isomorphisms between finite subgroups of G are always induced by conjugation in G,
while there can exist an element j e G of infinite order such that g is conjugate to g"
(n e Z) if and only if n = ± 1 (see Section 6).

In the general case, we can carry over elementary properties like verbal completeness
and triviality of centralizers of non-trivial normal subgroups. Also, unions and
intersections of the so-called locally closed normal subgroups (see Section 3) of an e.c.
Lc3E-group G are totally ordered via inclusion. However, it remains open whether every
normal subgroup of G is such a union or intersection. In Section 4 we construct
examples which show, that the Lg-residual of G can be a proper subgroup. The Lg-
radical and the factor group modulo the Lg-residual can be treated by methods used
for e.c. LX-groups (see Section 3).

The theory becomes much more satisfactory in the case when 3E = g p (see Section 5).
Here we can use our corollary about V2-sentences directly to show, that every e.c.
Lcgp-group has a unique chief series Z, that the factors of £ are central and cyclic of
order p, and that the order type of £ is a dense order without endpoints. If K^G
satisfies K^(gG) for all geG, then K is e.c. in G. However, it seems to be unlikely that
such a K is in general e.c. in Lcgp (as one might expect from the theory of e.c.
Lgp-groups). We will show, that every subnormal subgroup of G is already normal in G.
Also, the results about embeddings of Lgp-groups into e.c. Lgp-groups [15, §3] and
about conjugacy of finite subgroups of e.c. Lgp-groups [17, Theorem 6.1] remain true
for e.c. Lcgp-groups. As in the Leg-case, conjugacy of infinite f.g. subgroups of G is
more delicate. Although we can give a quite satisfactory necessary and sufficient
condition (which shows for example, that an element geG of infinite order is conjugate
to g" {ne Z) if and only if n = 1 (mod p)), it remains open whether an isomorphism
<f):A->B between f.g. subgroups of G is induced by conjugation in G if and only if
a~v-a<l>eN for all a e (An M)-N and all chief factors M/N of G.

2. Constructions within

In the sequel, if UecX, then N^0U will denote that N is an open normal subgroup
of U. The following amalgamation theorem is the foundation of this note.
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Theorem 2.1. An amalgam G u H | U of LcX-groups over the f.g. common subgroup U
is embeddable into an LcX-group if and only if there exist local systems Jz?c in G and S£H

in H consisting of f.g. subgroups which contain U such that, for every pair (X, Y) e £CG x
Z£H, the topologies on X and Y are given by residual systems @X,Y ' " X resP- &r,x '" ^
such that, for every LBMX Y (resp. Le8%YX), there exist Met%x Y and N e3&Y x satisfying

(1) Mg,L(resp. NgL) and MnU = LnU = NnU, and

(2) the amalgam X/M u Y/N \ UL/L {where UM/M and UN/N are identified with
UL/L via uM = uL = uN for all ueU) is contained in an X-group.

Proof. Suppose first that the amalgam is contained in an LcX-group W. Let i£w, i£G

and Z£H be the local systems of all f.g. subgroups in W, G resp. H containing U.
For every Ve^w, denote by 0lv the residual system of all L ^ o V. If (A', Y)e^Gx^H,
then let MX<Y=^<X Y>r\X and @r x = @<XY>nY. Since X and Y are c3E-subgroups
of <X, Y>, the topologies on X and Y are given by the residual systems £%x Y resp.
0tYX. Now every Me@XY (resp. Ne0tY<x) is induced by some Ke@<XiY>. Put
N = KnYe@Y<x (resp. M = K nX e@x Y). Then MnU = NnU, and the amalgam
X/M u Y/N | UM/M = UN/N is embedded canonically in the I-group <*, Y>/K.

Conversely, fix some (X, Y) e i£G x SCH and regard the free product with
amalgamation Fx Y = X%Y. Let

i* tY =

Denote epimorphic images modulo f]^*,Y by bars. Then Fx YecX with the topology
given by the residual system $*iY. We will show:

An embedding of the amalgam l u Y \ U into Fx Y is given by z-+z for all z e X u Y. (2.1)

If X^VeJifc and Y^ W eS£H, then id:Fx Y->FV w induces an embedding of Fx Y into
Fy.w ' ' (2.2)

Once (2.1) and (2.2) are proved, the discovered embeddings form commuting diagrams

XKJY\U ! >V\JW\U

X.Y r v, w
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and therefore, the amalgam G u H \ U is embeddable into the direct limit of the cX-
groups Fx Y with respect to the embeddings given in (2.2).

To see (2.1), suppose that l^xeX. Then x^L for some Le0tx Y. By hypothesis, there
exist W e l j j and Ne@YJC with Mf^L and MnU = LnU = NnU, and such that the
amalgam X/M u Y/N \ UL/L is contained in an 3£-group P. Let K be the kernel of the
canonical homomorphism FXY^P. Clearly, K^FXY with 3E-factor group such that
KnX = M-^0X and KnY = N-30Y. Now Ke@XiY and x$K. It follows that
Xn[f)@xy\ = l, and so the canonical map cp-.X^X is a group isomorphism. By
definition of @X>Y, the map <f> is continuous. The above argument also shows that we
can find for every LeMx Y some KeSt%tY with KnX^L, whence <f> is open.

In order to prove (2.2), it suffices to show:

Kr\FXYe3aXY for every KB01$W. (2.3)

For every Ke&XY there exists Ke@$iW such that Kr\FXY%K. (2.4)

The assertion (2.3) is an immediate consequence of the definition of @X,Y and ^*,
of the fact that the topology on X resp. Y is induced by the topology on V resp. W. It
remains to prove (2.4).

Let Ke$lXiY. Since S K W n I and 3tw vn Y are residual systems in X resp. Y which
induce the topology on X resp. Y, there exist L^eSiy.w and L2B^.WV such that
Lxr\X^Kc\X and L2nY^KnY. From hypothesis, we obtain MjefflVtW and
N{e®wy such that M^LU N 2 ^L 2 , and Mtr\ t / = L j n ( / = N j n l / , and such that the
amalgam V/Mt u W/Nt | l/L./L,- is contained in an X-group P;. Plainly, M nU = N r\U
for M = M,nM 2 and N = N1r\N2. Denote epimorphic images modulo M resp. /V by T.
Then an embedding a of the amalgam V\JW\O into P3 = P1xP2e3E is given by
v<x=(vMuvM2) for all D E F and wtx = {wNl,wN2) for all weW Put Q = FXY/K, and
regard Z u Y| (7 as an amalgam in P4 = 6 x ^3 v i a z = (z^,za) for all zeX u K We will
now embed the amalgam VuPAKJW, where K n P 4 = l and P4nW=Y, into an
3E-group.

To this end, let P5 = QWrP3e3E, and denote by nl:P4,-*P3 and n2:P5-»P3 the
canonical projections. Because of XnQ = \, we obtain from [12, Lemma 1] an
embedding <r:P4->P5 satisfying an2 = nl and o-|jp = 7r1|Jp=a|jp. Lift a to an embedding of
the amalgam V<oP^\X into P5 via ff|<7 = a|(7. Regard the amalgam P5 u Wa\ Ya, where
Ĥ ff is an artificial copy of W. Denote the base group of P5 by Q, and put
P6 = QWrP3e3E. Since Yon£1=1, a further application of [12, Lemma 1] leads to an
embedding T :P 5 -»P 6 such that 0T|p = <T7r2|f = ti|f = «|f- Extend T to an embedding of
the amalgam PsvWo\Yo into P6 via <TT|̂  = a|^. Now ax embeds the amalgam
K u P 4 u l f into the I-group P6.

Let K be the kernel of the group homomorphism Fv W->P6 induced from T<TT. Then
KnV = M and KnW = N, whence Ke@fiW. Moreover, by choice of P4, we have

' •

https://doi.org/10.1017/S0013091500005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005514


238 FELIX LEINEN

Remark 2.2. Under the assumptions of Theorem 2.1, the amalgam GKJH\U is
actually contained in an LcX-group W with the following property: For all f.g. X^G and
Y^H containing U, if M~S0X and N-30Y are such that MnU = NnU and such that
the amalgam X/M v Y/N\ UM/M = UN/N is contained in an X-group, then there exists
K-S0(X,Y}^Wsuch that KnX = M and Kr\Y = N.

Proof. Since the amalgam is contained in an Lc3£-group, we may assume that S£G

and S£H in Theorem 2.1 are the local systems of all f.g. subgroups in G resp. H which
contain U. For (X, Y)el£G x S£H, define FXY and &*,Y a s m t n e proof of Theorem 2.1.
If M ^ o X and N^0Y satisfy the above assumptions, then the argument in the proof of
(2.1) shows that there exists KeMXtY with KnX = M and KnY = N. •

Amalgams of g-groups are always contained in an g-group [22, Theorem 5.2]. Thus,
if 3E = g, then the condition (2) in Theorem 2.1 becomes redundant. An amalgam
A v B | U of gp-groups is contained in an gp-group, if and only if there exist chief series
in A and B which both induce the same chief series in U (see [12]). In particular,
amalgams of gp-groups over a common cyclic subgroup are always contained in an
gp-group. Moreover, every cyclic group U carries a unique pro-gp topology, and if

p, then the residual system of all M^0V induces the residual system of all
in U. Therefore, Theorem 2.1 yields that every amalgam of Lc5p-groups over a

common cyclic subgroup is embeddable into an Lcgp-group.
In the case when 3E = gp, it is readily verified that the conditions in Theorem 2.1 are

equivalent to the property that, for each pair (X, Y) e S£G x JS?H, the topologies on X and
Y are given by descending chains Jf = {Mx\cceco} and Jr = {Nx\a.ea>} of open normal
subgroups Ma-^X, Na^Y of index Sp" such that ()Jt=\ = {\jV and Jtr\U =
Jf r\U. Therefore our criteria for amalgamation within Lc% resp. Lc%p are in line with
the criteria given in [23, Theorems 1.2 and 3.1] for the existence of the pro-5 resp.
pro-gp amalgamated product. In fact, it follows from [8, Theorem 2.1], that the pro-3£
completion EXY of the group FXY in the proof of Theorem 2.1 is the pro-I
amalgamated product of X u Y | U. In particular, the conditions in Theorem 2.1 ensure
the existence of the pro-I amalgamated product of l u Y\ U. Moreover, (2.1)/(2.2) and
[8, Theorem 2.1] lead to commuting diagrams

v,w

of the canonical embeddings, and so G u H \ U is embedded canonically in lim Ex Y.
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Theorem 2.1 allows us to deduce a necessary and sufficient criterion for the solvability
of finite systems of equations and inequalities in e.c. LcX-groups.

Theorem 2.3. A finite system of equations and inequalities with coefficients cx,...,cr in
the e.c. LcX-group G has a solution in G if and only if there exists a local system <£ in G
consisting off.g. subgroups which contain [7 = <c1,...,cr> such that, for every XeHC, the
topology on X is given by a residual system 9tx such that, for every Me&x, the system

(with coefficients CiM,...,crM) has a solution in some X-group WX

Proof. Suppose that glt...,g5 is a solution to Sf in G. Let i£ be the local system of
all f.g. subgroups of G which contain V = (U,gu...,g,y. For Xe&, denote by &x the
residual system of all M^0X such that w(ci,...,cr,gl,...,gs)$M for every inequality
w(c1,... ,cr,x1,... ,xs)/l in y. Clearly, if M e ^ . then y / M has the solution
glM,...,gtMia WXiM = X/M.

Conversely, let J( = {(X,M)\Me3tx,Xe&}. Regard H = Y\{WXtM\(X,M)eJl} as a
c3E-group under the product topology (where each Wx M carries the discrete topology).
Denote by Kx M the obvious direct complement to Wx M in H. An embedding <f>:U-*H
is given by

u<p={uM\XM)6M for all ueU,

since Kx M n t / 0 = (M n [/)(/> for all (X,M)eJf. In the following, we suppress <p and
regard U as a subgroup of H. Because H contains the componentwise solution to Sf,
and because G is e.c. in LcX, it suffices to embed the amalgam G u H | V into an LcX-
group. To this end, we will check the conditions of Theorem 2.1.

Put i£G = if, and let JSfH be the local system in H of all f.g. subgroups containing U.
For {X, Y)eSeGx£eH, choose 9tx.i = ®x and <#yx = {JV-s0 Y\NnUe&xn U}. If
L^o Y, then there exists Me0tx such that Mn 1/gLn U, whence N = Ln KXMe@YiX

satisfies N^L. This shows that 0%Y,X is a residual system in Y which gives the topology
on Y.

If M e l X J , then N = KX MnYe3iY x satisfies M nU = N nU, and the amalgam
X/M<JY/N\UM/M = UN/N can be embedded into WXM via xM-+xM for all xeX
and yK-x,M-*yx,M f°r a " y^Y (where yx M denotes the component of yeH in WX<M).
Finally, regard some Le&YX. Then MnU = LnU for some Me9tXtY, and N =
Kx.M^Letliy x satisfies N^L and LnU = NnU. Denote epimorphic images modulo
M resp. N by bars. It remains to embed the amalgam X u Y \ U into an 3E-group.
Identify F with a subgroup of Pi = Wx Mx Y/LeX via y=(yx,M*yL) for all yeY. Since
0 n Y/L= 1, we obtain from [12, Lemma 1] an embedding O:P1-*P2 = Y/L'WT WXMeX
satisfying uo = u<=Wx M for all ueU. Extend a to an embedding of the amalgam
X u P , | O into P2 via xa = xeWx M for all xeX. Then P2 embeds in particular the
amalgam X u Y \ 0. •
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Lemma 2.4. Suppose that M = 0lx\j0l2 is a residual system in the RX-group U. Then
3ft,x or &2 is a residual system in U which gives the same topology on U as Si.

Proof. It suffices to show that one of the sets 3it and 3/t2 contains for every Nedt
some M such that M^N. Assume that there exists N€tMx such that no M e ^ 2 is
contained in N. Let 3 = {Me@\M^N}. Clearly I s ^ , and thus 0lx has the desired
property. •

Using the method of construction given in [9, Satz 3.5], every 3t-group can be
embedded into a countable e.c. LX-group, which is e.c. in LcX. It is therefore possible to
formulate the following corollary.

Corollary 2.5. The V'2-sentences, which hold in every e.c. LcX-group, are precisely the
V'2-sentences, which hold in those countable e.c. LX-group, which are e.c. in LcX.

Note that the classes Lg and Lgp contain a unique countable e.c, group.

Proof. Let \}i be an V2-sentence, i.e., let i/̂  = Vx(01(x) v ••• v^,(x)) where <pi(x) is a
primitive formula for every /. Suppose that one of the countable e.c. LX-group E, which
are e.c. in LcX, satisfies ip. Regard any e.c. LcX-group G and some c from G. Denote by
i f the local system of all f.g. subgroups of G containing c.

Fix some Xe£?. Let 01 ( be the set of all M^0X such that <p,(cM) holds in some
3£-group containing X/M. If M ^ o X, then X/M x EeLcX, and so the group E contains
a copy of X/M. Since E\=\//, it follows that M lies in some 9t-v Hence Lemma 2.4 yields
that one of the Mt is a residual system in X which induces the topology on X.

This shows that if = ifx u • • • u <£„ where JS?, is the set of all X e <£ in which the
topology is given by a residual system Sft.x such that, for every Me8$x, there exists an
X-group W^X/M with W|=0,(cM). By [14, Lemma 1.A.10], one of the if, is a local
system in G. Now Theorem 2.3 applied to this local system yields that G(=0,(c). This
shows that G (=(/'. •

As a second embedding technique within LcX, we will adopt the construction of [18,
§ 2] as far as possible.

Construction 2.6. Let r:G-*H be a homomorphism with kernel N. For every f.g. X^G,
let Wx = XWrH (unrestricted wreath product). Fix some f.g. U^G, and choose left
transversals R of U n N in U, and T of U in H. Then a group monomorphism

T : G >W = {j{Wx\X^Gf.g.)

is given by gi = fg-g, where the function fe'.H—•<#,C/> is defined via (t1rl)fg = rlgr2~
l

whenever tte T, r,eR satisfy t2f2 = tlflg.

Theorem 2.7. Adopt the notation of Construction 2.6. Let j£fG and S£H be the local
systems of all f.g. subgroups in G resp. H. Suppose that GeLcX, HeLX, and that
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^0X for all Xe<£G. Regard the base group Clx of Wx as a cX-group under the
product topology. The groups Wx Y = Qxx Y, where (X, Y)&<gGyi!£H,form a local system
in W. Each WXt r is a cX-group under the topology given by the residual system

With these topologies, x.G^W becomes an embedding of LcX-groups.

Proof. If (AT,-, y;)eifGxifH with X^X2 and Y^Y2, then the topology on X2

induces the topology on Xu and so the product topology on QX2 induces the product
topology on ClXl. Therefore, id: WXuYl-*Wx^Y2 is an embedding. This shows that W is
an Lc£-group.

Now, fix some XeHfG with U^X. It remains to show that X\X:X^XT^ WX X is a
homeomorphism. To this end, we consider the residual system &X = {M^OX\M^
JV n X} in X. If x e N n X, then XT = fx where (tr)fx = rxr'1 for all t e T, r e R. Therefore,

satisfies LMnXz = Mr for every Me!Mx, and thus T\X is open. To see that z\x is
continuous, let Le@XiX. Then there exist hu...,hveH and M , , . . . , M V ^ O X such that

for l^i^v}.

Put M = (]{Mi| l^i^v}-S0X. Then Mx^LnXr. D

3. General results

Let us begin with some elementary applications of Corollary 2.5. We will denote by n
the set of all primes which divide the order of some 3£-group.

Theorem 3.1. The following assertions hold for every e.c. LcX-group G.

(a) G is verbally complete.

(b) Ifl*N-£G,thenCG(N) = l.

(c) / / U and V aref.g. subgroups of G, then [[/ , V9~\ = 1 for some geG.

(d) Every non-trivial normal subgroup of G contains for every n-number \i an element of
order \i.

(e) For each n-number \i, every element of G is in the normal closure of some element of
order \i.

Proof. Let £ be any countable e.c. LJ-group. Then parts (a)-(c) hold for E by [16,
Theorem 2.1 and p. 212], and by the argument of [15, Lemma 2.2]. Note that (b) can
be encoded by the V2-sentence Vg,/i3x (^^1 ^ / j ->[g , / i x ] / l ) . For the proof of (d) and
(e), regard the V2-sentences
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^ y | / \ A X » = 1

and

,y| / \

/ \ x*#l A x" = l A |= [ X , J , Z ] |

These hold for E by the arguments of [16, Lemmata 2.5/4.3(b) and 3.3]. Therefore,
Corollary 2.5 applies in all cases. •

Because every f.g. c(5n
 n ©)-group H is hypoabelian, it follows from the argument of

[14, Proposition 1.B.3] that minimal normal subgroups of Lc(g, n ©)-groups are
abelian. Hence Theorem 3.1(b) implies that e.c. Lc(gn n (S)-groups have no minimal
normal subgroups.

Next, let us extend the notion of a G-subgroup given in [21, p. 114] for Lgp-groups.
Suppose that !£ is the local system of all f.g. subgroups of an LcX-group G. Then we
say that AT is a G-subgroup of t/e if (N^G U), if every Ve£f with U£ V contains some
M-30V such that MnU = N. Put UG = f] {N\ N ^ G U}^ U. It is readily verified that

Keif and N ^ G V implies NnU^GU, and so we may form

Note that G*^f]{N-^G\N nVS0U for all l / e i f} . A subgroup N = [j {Nx\Xe&}
is said to be a locally closed normal subgroup in G, if every Nx is a closed normal
subgroup in X, and if NX^NY whenever X^Y. Every N^ G is contained in the locally
c l o s e d n o r m a l s u b g r o u p N = {J {Nx\ Xe&}, w h e r e Nx = f) {K-S0X \NnX^K} is t h e
closure of N n X in X. Another kind of locally closed normal subgroup N can be
obtained from each N-SGUe^ by choosing Nx = f] {K-£0X\K n U = XnN}. In the
latter case N nU = N, and we immediately have:

Lemma 3.2. Let N~^GU where U is a f.g. subgroup of the LcX-group G. Then

Theorem 3.3. Let N = [j {Nx \ X e if} be a locally closed normal subgroup of the e.c.
LcX-group G. Then the following hold for every geG — N.

(a) Every finite system of equations and inequalities with coefficients from N, which is
solvable in G, already has a solution in every verbal subgroup of <gG>. In particular,
iV^<gG>, the locally closed normal subgroups of G are totally ordered via inclusion, and
the G-subgroups in each f.g. subgroup of G form a descending chain of length ^x .

(b) If 0(Ng) = n< co, then any two elements in Ng of order n are conjugate in every
verbal subgroup o/<gG>.

Proof, (a) Let Sf be a finite system of equations and inequalities with coefficients

https://doi.org/10.1017/S0013091500005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005514


EXISTENTIALLY CLOSED LOCALLY COFINITE GROUPS 243

clt...,creN, unknowns xlt...,xs, and a solution gl,...,gseG. Fix any reduced word
i>(£i,...,<!;,)# 1. Adjoin to Sf the equations

3

x, = v{in,...,U and fu= II Cft^m,^] (l£i£s,

with coefficients g. In the case when 0(Ng) = n<co, let h1,h2eNg with n = 0(/i;), and
adjoin the additional equations

h?+l = h2, xs + 1 = t ) (^ + l i l , . . . ,^ + 1 > ( ) , and

3

It = 1

with coefficients g,hl,h2. Denote the resulting system by P.
Since N is locally closed, there exists a f.g. V^G with gi , . . . ,g s ,ge V and

C!,...,cpeNy (and with huh2eNyg in the case when n<oo). Let S£G = {X&S£\V-^X).
Because AT* is closed in Xe£CG, there exists LX^OX with NX^LX and g$Lx (and with
</!,•> n L j = l in the case when n<oo). Regard in X the residual system 0tx of all
M ^ 0 X satisfying M^LX and w(clJ...,cr,g1,...,g,)^M. for every inequality
w(cj,.. . ,cr,x!,.. . ,xs)#l in .S? Fix some Me$x. Since every e.c. ZiE-group is verbally
complete, we can find an 3E-group FXM^X/M such that, for every xeX, there exist
elements /x , ,eFx > M with xM = u([/x>1,/x>2],...,[/Xi2,_1,/Jt i2,]). Identify X/M with its
image in Lx/M Wr X/LX^WX M = FX M Wr X/Lx under some Krasner-Kaloujnine
embedding.

Let mx = 0(Lxg), and choose a left transversal T of <L^g> in X/Lx. Then every
f:X/Lx-*Fx M can be decomposed in WXM into a product / = / i / 2 / 3 , where

supp/2s(J{T-(LA-g1) | 'e{l ,--- , 'nx-l}isodd},

With this decomposition, the arguments of [16, Theorem 4.7 and Lemmata 4.2/4.3]
actually show that the system $~/M with coefficients Mc1,...,Mcr,Mg (and Mh1,Mh2)
has a solution in Wx M. Therefore, Theorem 2.3 yields that &~ has a solution in G,
whence Sf (and the equation h\ = h2) have a solution in the verbal subgroup of <gc>
generated by y (^ , . . . ,Q .

Finally, if h e N, then an application of the above to the system Sf consisting only of
the equation h = x with coefficient h shows that he(gGy. Hence iV^<gG>. •

Note, that Theorem 3.3 does in fact hold for unions and intersections of locally closed
normal subgroups.

https://doi.org/10.1017/S0013091500005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005514


244 FELIX LEINEN

Question. Is every normal subgroup of an e.c. LcX-group the union or intersection of a
chain of locally closed normal subgroups'!

If N^Ge LcX is such that N n U is closed in U for every f.g. U ̂  G, then each
U/U n i V i s a cX-group via the quotient topology. Note however, that this is in general
not enough to ensure that G/N e LcX since, for U ̂  V, the canonical monomorphism
U/(UnN)->V/(VnN) need not be an embedding [11, p. 23].

By combining Theorem 2.1 with [15, Theorem 2.1], we can apply the technique of
[16, §2] in order to extend [16, Theorems 2.3-2.6] to the normal Lg-subgroups of an
e.c. Lc£-group G. In particular, the normal Lg-subgroups of G form a chain. We will
now turn to the Lg-quotients of G. Note that by Theorem 3.3, for every f.g. subgroup U
of an e.c. Lc3E-group G, we have G*n [/ = [/£ or G*nU'3GU.

Theorem 3.4. Let G be e.c. in LcX.

(a) lfN-^G,thenN^G*orG*^N.

(b) IfG*<N^G, then N nU^GU for every f.g. U^G. In particular, G/N e LX.

(c) / / G/G* has a minimal normal subgroup, then (b) also applies to N' — G*.

(d) G* = f]{N^G\NnU^0U for all f.g. U^G}. In particular, G* contains the
LX-residual of G.

(e) If for every infinite f.g. U ̂  G the chain of G-subgroups in U has length a>, then G*
is the Lft-residual of G.

Proof, (a) Suppose that N is not in G*. Fix some geN—G*. Since G* is a locally
closed normal subgroup in G, Theorem 3.3 yields G*^<gG>^/sf.

(b) Since G*<N, we may assume that G*r\U<NnU. Choose M^GU maximal
with respect to N nU£M. Choose ge(N r\U) — M. Then Theorem 3.3 yields M^
<gG> nU^N nU, whence ATnC/^ol/. Since this also holds for every f.g. FrgG
containing U, we even obtain N n U^G U.

(c) Let N/G* be a minimal normal subgroup in G/G*. Fix some geN — G*. Regard
any f.g. U^G containing g. From (b) we have NnU^GU. Choose M^GU maximal
with respect to G*nU^M<NnU. Now (MGynU = M by Lemma 3.2. Because
N/G* is minimal normal in G/G*, we conclude from (a) that (MG}^G*. But then

(d) We have already noted that G*^S=f] {N^ G\Nn U^0 U for all f.g. U£G}.
Assume that G*<5. Then (b) implies that S/G* is a minimal normal subgroup in G/G*.
But now (c) leads to Sf^G*, a contradiction.

(e) Let N ^ G with G/NeL'%. Then, for every infinite f.g. U^G, we have \U:Ur\N\ <oo.
By our assumption, U n N is therefore not contained in the intersection of all
G-subgroups of U. Choose M^GU maximal with respect to Ur\N<£M. As in (b),
UnN-^0U. The latter also holds for finite U. It thus follows from (d) that G*gN. •

Theorem 3.4 enables us to apply Construction 2.6 to all normal subgroups of an e.c.
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LcX-group G which contain G* (see Theorem 2.7). We can therefore extend most of the
results from [15] and [18] about normal subgroups and chief factors of e.c. Li-groups
to normal subgroups and chief factors of G above G*. Here is a list of theorems which
can be transposed literally: [15, Theorems 2.3, 2.5 and 2.6], [18, Theorems 3.1-4.3].
Also, [15, §3] and the corresponding results about embeddings of countable super-
soluble 7r-groups into e.c. LO,, n ©)-groups carry over (cf. [18, end]). As a slight
extension of [15, Theorem 2.5] we note that, if N ^ G contains an element h of infinite
order, then so does each coset of N in G (apply Theorem 3.1(c) with l/ = <x> and
K = </i>; then hgx is the desired element in the coset Nx). Finally, [16, Theorem 5.1]
about locally inner automorphisms of countable e.c. L3E-groups holds as well for
countable e.c. LcX-groups.

4. G-subgroups

Up to now, we have not established the existence of proper G-subgroups in infinite
f.g. subgroups of an LcJ-group G. In fact, they need not exist, since we will show in
Theorem 6.1 that e.c. LcJJ-groups are simple. However, the situation is not always so
bad.

Theorem 4.1 Suppose that all simple X-groups are contained in a variety "V such that
every free Y-group of finite rank has only finitely many subgroups of finite index. Then
every infinite f.g. subgroup U of an LcX-group G contains a descending chain of G-
subgroups of length a>.

Proof. Suppose that M-SGU. Let Jf be the set of all N-g}0M containing V{M).
Then Jf is finite by hypothesis. Assume that Jf contains no G-subgroup of U. Then we
can find a f.g. X^G such that U^X, and such that Ln U$Jf for all L^0X. On the
other hand, there exists K^0X with KnU = M, and we can choose L^0X maximal
with respect to L<K. As a chief factor of X/LeX, the factor K/L lies in f . But now
LnUeJf, a contradiction. This shows that the desired chain can be constructed
inductively. •

Theorem 4.1 applies for example in the case when £ = 5 n n ® for a finite set n of
primes. More generally, Theorem 4.1 holds whenever the exponents of the simple 3£-
groups are uniformly bounded (use Zelmanov's solution of the restricted Burnside
problem [24], [25]).

Because chief factors of 3fP-g
roups are cyclic of order p, Theorem 4.1 has the

following Corollary.

Corollary 4.2. Every f.g. subgroup U of an Lc%p-group G contains G-subgroups of
every index p" ^ | U\ (a £ co).

This of course generalizes the fact, that every chief series of an L5p-group induces a
chief series on each of its finite subgroups. Conversely, we know from [15, Corollary
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3.3], that every series of an gp-group U is induced by the unique chief series of some
countable ex. Lgp-group G ^ U. We will also extend this result to the Lcgp-case.

Construction 4.3. Let (nx)x<to be a sequence with nx^cx>. Suppose that Uo is an infinite
f.g. c'Sp-group, and that {UOp\P<a>} is a descending chain of open normal subgroups of
index p^ in Uo. Then there exists an ascending chain {Ux\a<co} of f.g. c%p-groups, and
for every <x a descending chain {Uxp \p<co] of open normal subgroups of index p^ in Ux

such that

(1) G = y {Ux| <x<a>} is an e.c. Lc%p-group,

(2) {Uxp-\P<<x>} is the unique chain of G-subgroups in Ux,

(3) for every P^nx, there exists p' <co such that Uap=Uxn Ux+li^, and

(4) if nx<co, and if ma is minimal with respect to [ / S I i = [ / , n ( / , + U i , then l/a „,=

In the course of the construction it suffices to choose nx+l after determining Ux and the
chain {Uxfi\

Proof, (a) Using Cantor's diagonal enumeration of co x a> we can find a bijection
X-COXCO-KO such that a:g(a,/?)/ for all a,/?<a> (see also [9, Satz 3.5]). The construction
is now performed inductively in such a way that,

for all a' g a, j? < co, there exists N^OUX such that Ux.p = N nU^. (4.1)

In the step <X-KX+ 1, let yxy, y<co, be an enumeration of all finite systems of equations
and inequalities with coefficients from Ux. Fix i,j<co with <x = (i,j)x- Then a ^ i , and S^j
does already exist by induction. If 5^- is solvable in a f.g. cgp-group V ^ Ux such that,

for all a' ^ a, J3 < co, there exists N -3 0 V such that Ua.f = NnUx., (4.2)

then put VX=V; otherwise, let VX=UX. It is now easy to find a descending chain
{Vxp\/}<co} of open normal subgroups of index pp in Vx such that {Uxp\fi-^nx}<^
{Uxn Vafi\p<co}. Unx = co, then we put Ua+l = Vx and Ux+up= VxP for all P<co. In this
case, (4.1) and (3) are satisfied, while (4) is empty. Otherwise, we identify Vx with the first
factor of Ux+1 = VxxVx, regard Ux+1 as a cgp-group via the product topology, and
define

\V xV if

where /„, is minimal with respect to £/„iBa = Ua n Fa v Then (3), (4) and (4.1) hold, and the
induction is completed.

(b) Fix some u,P<co and geUx—UxP, heUxp. We will show now that the system y
consisting only of the equation
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v

ft = TT [g, x,, v,l where v=(

has a solution in G. Clearly, y = Sfxy for some y<co. Let n = (a,y)%. Because of the
construction given in (a) it suffices to show that SP has a solution in some f.g. c5p-group
K^C/M satisfying (4.2).

Because of (4.1) there exists L^QU^ such that Lr\Ux = Uap. Therefore, ^ =
{M^o t/M| M ^L} is a residual system in t/M which gives the topology on U„. Since
every e.c. Lcgp-group is verbally complete, there exists a f.g. c5p-group P^<ft> such
that ft is a commutator in P. Applying Theorem 2.1 and Remark 2.2. to the amalgam
UxP u P | </i>, we obtain a f.g. cgp-group F ̂  l/aP such that ft is a commutator in F, and
such that

every N50 [/ap- is induced in U^ by some open normal subgroup of F. (4.3)

Let <r:Ua->UatV/rUJUal>£W = F'WrUJUai, be a Krasner-Kaloujnine embedding.
Denote the base group of W by fi. For K-£0F, let X : = { / e Q | l m / £ K } . Note that, for
M G ̂ , , we have

KnUaa=(MnUx)o if and only if KnUaP = MnUx0. (4.4)

In particular, if @W = {K\K.-300F with KnUxfi = MnUxP for some M e ^ } , then
^ n ( / , f f = ( ^ n [ / > . Put R = f)0lw, and regard H= W/R as a c5p-group under the
topology given by the residual system 0tH = 3HwIR. Then the composition of a andthe
canonical epimorphism W-*H embeds Ux into the c3p-group H. In the following, we
identify Ux with its image in H under this embedding. Now the proof of [16, Lemma
4.3(b)] actually shows that Sf has a solution in H. Our aim is to obtain the desired
group V from an application of Theorem 2.1 to the amalgam [/„ u H \ Ux.

To this end, regard some K-S0F and M e ^ with KnUxfi = M r\UxP. Because of
(4.3) and (4.4), we can find for any chief series of open normal subgroups in U^ which
refines lgMgL<t / / 1 , a chief series of open normal subgroups in H, which refines
l^K/R^Cl/R^H, such that both series induce the same on Ux. It thus follows from
[12] that the amalgam UJMuH/N\UaM/M = UaN/N, where N = R/R, is contained in
an gp-group. This shows that we may apply Theorem 2.1 and Remark 2.2 to find a f.g.
cgp-group V containing the amalgam U^ u H | Ux, and satisfying

whenever M^o V^ and N^0H are such that MnUx = NnUx and such that amalgam
UJMvHIN\U,MIM = UaNIN is contained in an gp-group, then there exists K-S0V
with Knt/ , , = M and KnH = N. (4.5)

It remains to prove that V satisfies (4.2).
To this end, fix ocgjcga. From (4.1) there exists a descending chain {Mx\k<co} of

open normal subgroups in [/„ which induces {UKX\k<co) in UK, and hence also
{Uxp,\P'^nx} in Ux. Therefore, (4.3) and (4.4) yield a descending chain of open normal
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subgroups in H which induces [Ux^ |/?'^na} in Ux. Now (4.5) gives KX~SOV with
KxnUll = Mx. Suppose now that K<OL. By the above argument, there exists a
descending chain {Kx\X^nK} of open normal subgroups in V which induces { C / K A | A ^

nK} in UK. If k>nK, then (3) and (4) yield UKX^Uxfi, and using (4.1) we can extend
{Kxn t / ^ | l ^ n K } to a descending chain {Mx\X<a>} of open normal subgroups in U^,
which induces {UKX\X<OJ} in UK, and which satisfies Mxe0$ll for all !>nK. Again,
(4.3H4.5) apply.

(c) Clearly, (4.1) ensures that every Uxp, /?<co, is a G-subgroup of Ux. Conversely, if
N~^G Ua, then N has finite index in Ux. Therefore, N is not contained in f] {Uxfi\P<(o}.
Choose p minimal with respect to N<£Uxj+l. If geN — Ux ^+ 1 , then (b) and Lemma
3.2 yield that t / ^ + i <<gG> nUx^(NG>nUx = N^Uxl!. It follows that N = Uxfi. This
shows that (2) hoids.

(d) Finally, let us prove (1). Suppose, that if is a finite system of equations and
inequalities with coefficients gl,...,g,eG and a solution /i it..., hs in some
Lcgp-supergroup H of G. Choose a<cu such that gu...,gTeUat. Then y = 5^y for some
y<<y. Let ^ = (a,y)7, and regard F = <l//J,/i1,...,/is>. By the construction given in (a), y
will have a solution in Ull + l^G if, for all K^/X, X<a>, there exists AT^0K such that
UKX = N n C/K. But this is true, since the VKX are the only G- and hence also the only
//-subgroups of UK (Corollary 4.2). •

Corollary 4.4. Let U be an infinite f.g. c%p-group. If {Nx\<x<a>} is a descending chain
of open normal subgroups of index p" in U, then U is contained in a countable e.c.
Lc'&p-group G such that the Nx are precisely the G-subgroups in U.

Construction 4.3 enables us to build various examples of countable e.c. LcJ5p-groups.

Example 4.5. Each of the following properties is shared by 2Xo (pairwise non-
isomorphic) non-periodic countable e.c. Lc^p-groups G: G* = G, 1 # G/G* e L^p, G/G* 4

Proof. Regard the free group Uo of rank two as a cSP-group under the topology
given by the residual system of all N^U0 of p-power index. Since the commutator
factor group of every subgroup of finite index in Uo is free abelian of rank ^ 2 [20,
Proposition 1.3.9], there exist 2*° descending chains of subgroups {UOp-\f}<a>} of index
pP in Uo with f] {UOff\&<(£>} = 1. An application of Construction 3.4 to these chains
clearly yields 2Ko countable e.c. Lc3p-groups G, which are not isomorphic as
Lcgp-groups, since they contain Uo in too many non-compatible ways. Choose na = 0
(resp. na = co) for all a to establish G* = G (resp. GIG*$L$P). Moreover, if 0<n0<a>,
then nx+i = mx for all a leads to 1 ^G/G*eL3rp, since UOtno_lG*/G* is a minimal
normal subgroup in G/G* in this case. •

5. Ex. Lcgp-groups

In the case when 3t = 3 p , we can make more progress by considering further

https://doi.org/10.1017/S0013091500005514 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500005514


EXISTENTIALLY CLOSED LOCALLY COFINITE GROUPS 249

applications of Corollary 2.5 to e.c. Lcgp-groups. To this end we will have to regard
specific V2-sentences. For any reduced word w(£lt...,£v)^l, we define the term tw(g,x)
as follows.

) (5.1)
i = 0 /

Then the V2-sentence (j)w is given by

cj>w = Vg, h lx [ V *=**• tjg, x) v"\/g = hk- tJLh, x ) l . (5.2)
|_* = o *=o J

Lemma 5.1. Every e.c. Lc%p-grouup satisfies the above V\-sentences <f>w.

Proof. Note that [xu,x2_/] = [(6,/),xw,x2j-] actually holds for all je{l,...,m} in the
proof of [16, Lemma 4.3(b)]. Therefore, a detailed analysis of the proof of [16, Theorem
4.7] shows that the unique countable e.c. Lgp-group satisfies each <pw. Now Corollary
2.5 applies. •

Lemma 5.1 provides the key for the proof of the following theorem.

Theorem 5.2. Every e.c. Lc%p-group G has a unique chief series E. The chief factors of
G are central and cyclic of order p, and the order type of X is a dense order without
endpoints.

Proof. Regard any K,L^G. Suppose that there exists geK — L. From g^Lv/e have
g$(hG} for every heL. Therefore it follows from Lemma 5.1 that /ie<gG> for every
heL, whence L^K. This shows that the normal subgroups of G are totally ordered via
inclusion. Equivalently, G has a unique chief series.

Regard a chief factor M/N in G. If geM-N then, from Lemma 3.2, Z must induce
the unique chain of G-subgroups in <g>, when g"eN. Therefore, exp(M/N) = p. Regard
the reduced word w(£) = <i;p and some g,heM — N. Then Lemma 5.1 yields that gehkN
or heg*N for some ke{l,...,p— 1}. This shows that M/N is cyclic of order p. Since G is
verbally complete, G has no finite epimorphic image, and so M/N must be central.

Lemma 5.1 applied to the word w(^1,^2) = [^1,<^2] yields that M' = N for every chief
factor M/N in G. Since G is also perfect and has trivial centre (Theorem 3.1), we may
deduce as in the proof of [19, Theorem B(d)] that Z has the desired order type. fj

Theorem 5.2 implies that every Lcgp-group has a chief series with central and cyclic
factors of order p. Note also, that the existence of a unique chief series with dense order
type and elementary-abelian factors could also be shown for e.c. LcC^n n ©)-groups,
where n is a finite set of primes, if there would exist a pendant to Lemma 5.1, i.e., if it
could be shown, for example, that there exists some fixed m<(o such that, for every
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chief factor M/N of a countable e.c. L(g*n©)-group, and for all g,heM — N, the
element Nh e G/N is a product of at most m conjugates of powers of Ng in G/N (cf. [16,
Theorem 4.9 and p. 214]).

Theorem 5.3. Let K^G, where G is e.c. in Lc%p, and suppose that K^(gG) for all
geG. Then the following hold.

(a) K is e.c. in G. In particular, every normal subgroup of K is already normal in G,
and conjugation with elements from G induces locally inner automorphisms on K.

(b) IfKeL%p, then K is e.c. in Lgp.

Proof. Let Sf be a finite system of equations and inequalities with coefficients c and
unknowns x.

(a) Denote by <p(c,x) the conjunction of all equations and inequalities from y.
Consider the V2-sentence

Vg, c, 3, yt 3h~, zj \g # 1 A <p(c, 3) A /\ c, = tjg, £ ) -> <f>(c, h~) A / \ h} = tjg, z}) \,

where w(<^1)̂ 2) = [^1,^2]- This sentence expresses that, whenever S? has coefficients c in
[g,G,GJ and a solution S in G, then there exists a solution K to Sf in <gG>'. It is
satisfied in the countable e.c. Lgp-group [16, Theorem 4.8]. Thus Corollary 2.5, Lemma
5.1 and Theorem 5.2 yield that the groups N in the chief factors M/N of G are e.c. in G.
It now follows from the arguments of [16, Theorem 4.8], that K satisfies (a).

(b) Suppose that y has coefficients in K and a solution in the Lgp-group H^K.
Then [/ = <c> is finite. Since K is e.c. in G, and since G is e.c. in Lc%p, it suffices to
embed the amalgam G u H | U into an Lcftp-group. To this end, we check the conditions
of Theorem 2.1. By (a), K has a unique chief series. So [21, Hilfssatz 1] yields the
existence of a finite group V ̂  U in K such that every chief series in V induces the K-
chief series in U. Let £fG and J£?H be the local systems in G resp. H of all f.g. subgroups
containing V. For (X, Y) e ifG x <£H, put ^ y = {M^ 0 Ar |Mn K=l} and ®YX = {\).
Then [12] ensures that, for all Me0lXiY, the amalgam X/M\JY\UM/M = U is
contained in an gp-group, since X/M^VM/M^V and Y^.V enforce that all chief
series in X/M and Y induce the /C-chief series in UM/M = U. •

It remains open, whether Theorem 5.3(b) can be extended to arbitrary K. Note that, if
K is the unique countable e.c. Lgp-group Ep, then G is contained canonically in the
group Loklnn(£p) of all locally inner automorphisms of Ep by Theorem 3.1(b).

Theorem 5.4. Let G be ex. in Lc%p. Then every subnormal subgroup of G is already
normal in G.

Proof. Assume that there exists a subnormal subgroup S of defect 2 in G. Because of
Theorem 5.3, there exists a chief factor M/N in G such that S < M < G , and such that S
is not in N. Regard the V2-sentence
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Vg, h, x 3y, z\h = tjg, x) ->• h = tv(g, y) A /\ y{ = tw(g, z,) ,

where u(^) = <̂  and w(^i, | 2) = [^1)<^2]. A detailed analysis of the proof of [16, Theorem
4.1 l(f)] shows that this sentence is satisfied by the countable ex. Lgp-group. Hence it
also holds in G by Corollary 2.5. Because of Lemma 5.1 and Theorem 5.2 we conclude
that N g [g, N, N] ^ S < M for any g e S - N. But this enforces S - N, a contradiction. •

We can also extend [15, §3] and [16, Theorems 4.1/2] literally to results about
embeddings of countable Lgp-groups into e.c. Lcgp-groups and to results about partial
complements to normal subgroups #<gG> in e.c. Lcgp-groups G (here, Go/N resp.
Go/K must be in Lgp). To this end we just transform the systems of equations and
inequalities used in the proofs of these theorems into suitable V2-sentences. Example 4.5
shows that the full generalization of the above embedding results (without restriction to
Lgp-groups) does not hold. As far as conjugacy of f.g. subgroups in e.c. Lcgp-groups is
concerned, we have the following result.

Theorem 5.5. Let G be an e.c. Lc%p-group.

(a) An isomorphism <f).A->B between f.g. subgroups of G is induced by conjugation in G,
if and only if there exists a local system ££ in G of f.g. subgroups which contain {A, B>
such that, in every Xe£C, there is a chief series {Na}a£lo of open normal subgroups such
that a~la<t>eNx+1for all ae(AnNa)-Nx + 1.

(b) An element geG of infinite order is conjugate in G to g" (ne Z), if and only if n = 1
(mod p).

Proof. Combine Theorem 2.3 with [15, Corollary 3.3(b)] and [17, Theorem 6.1]. •

It remains open whether every automorphism of G, which stabilizes the unique chief
series in G, is a locally inner automorphism (cf. [17, Theorem 6.1]).

6. E.c Z.cg-groups

The techniques developed in Section 2 yield the following informations about e.c.
Leg-groups.

Theorem 6.1. The following assertions hold for every e.c. Lc%-group G.

(a) Every isomorphism between finite subgroups of G is induced by conjugation in G.

(b) / / G u H | U is an amalgam of G with a countable L^-group H over a finite
subgroup U, then id:U-*G can be extended to an embedding H-*G.

(c) For all g,heG—l there exist x,yeG such that h=gxgy. In particular, G is simple.

(d) On every f.g. abelian subgroup of G, inversion is induced by conjugation in G. In
particular, every element in G is conjugate to its inverse.
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(e) Let wl7...,wn be words in unknowns xu...,xn and elements of G. Denote by d(j the
exponent sum of Xj in w,-. If det(d,j)#O, then the system of equations w, = l for
1 ^ i ̂  n has a solution in G.

Proof. The assertions (a), (c), (d), (e) can be encoded as V2-sentences and hold in
every ex. Lg-group by [14, Theorem 6.1] and [4, Theorem 2]. Moreover, (b) follows
from an iterated application of the corresponding statement for finite H, which in turn
can be expressed as an V2-sentence that holds in the unique countable e.c. Lg-group
[14, Theorem 6.1]. •

Of course, one is tempted to ask in how far the assertion (a) of Theorem 6.1 extends
to isomorphisms between infinite f.g. subgroups of an e.c. Leg-group G. We will show
now that it is hardly possible to make much progress in this direction.

Theorem 6.2. Let G be an e.c. Left-group.

(a) An isomorphism (j):A->B between f.g. subgroups of G is induced by conjugation in G,
if and only if there exists a local system S£ of f.g. subgroups of G which contain (A, B)
such that, for every X e S£, the topology on X is given by a residual system 0tx, such that
4> induces an isomorphism AN/N->BN/N for every N e3%x.

(b) An element geG of infinite order is conjugate in G to g" («eZ), if and only if
0(g"N) = 0(gN) for every N ^ o < g > . In particular, no element of infinite order in G is
conjugate to all of its non-trivial powers.

Proof, (a) follows from Theorem 2.3 and [7, Lemma 1].
(b) If 0(g"N)=0(gN) for every N^0U = (g}, then (a) implies that g is conjugate to

g". Conversely, suppose that 0{g"N)#0(gN) for some N-^oU. Then 0(g"Af)#0(gM) for
every M ^ o [/ with M^N. But every residual system in U contains some M^0U such
that M^N, whence (a) implies that g is not conjugate to g". •

Let C = (cy be the infinite cyclic group with the topology given by the residual system
of all N^ C of finite index. Then Theorem 6.2(b) shows that, in every e.c. Leg-group
G^.C, the element c is conjugate to c" (neZ) if and only if n= ± 1.
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