EXISTENTIALLY CLOSED LOCALLY COFINITE GROUPS

by FELIX LEINEN

(Received 23rd March 1990)

Let \mathfrak{X} be a class of finite groups. Then a $c\mathfrak{X}$ -group shall be a topological group which has a fundamental system of open neighbourhoods of the identity consisting of normal subgroups with \mathfrak{X} -factor groups and trivial intersection. In this note we study groups which are existentially closed (e.c.) with respect to the class $Lc\mathfrak{X}$ of all direct limits of $c\mathfrak{X}$ -groups (where \mathfrak{X} satisfies certain closure properties). We show that the so-called locally closed normal subgroups of an e.c. $Lc\mathfrak{X}$ -group are totally ordered via inclusion. Moreover it turns out that every \forall_2 -sentence, which is true for countable e.c. $L\mathfrak{X}$ -groups, also holds for e.c. $Lc\mathfrak{X}$ -groups. This allows it to transfer many known properties from e.c. $L\mathfrak{X}$ -groups to e.c. $Lc\mathfrak{X}$ -groups.

1980 Mathematics subject classification (1985 Revision): 20E26, 20E18, 22A05.

1. Introduction

In this paper, \mathfrak{X} will always denote a class of finite groups, which is closed with respect to subgroups, homomorphic images, and extensions. In particular, we write \mathfrak{F} , \mathfrak{F}_n , $\mathfrak{F}_n \cap \mathfrak{G}$, \mathfrak{F}_p for the classes of all finite groups, finite π -groups, finite soluble π -groups, and finite *p*-groups (resp.); here π is a fixed set of primes. A great amount of information has been obtained about existentially closed (e.c.) groups in the class $L\mathfrak{X}$ of all locally \mathfrak{X} groups, especially in the cases when $\mathfrak{X} = \mathfrak{F}$ or $\mathfrak{X} = \mathfrak{F}_p$ (see [7], [14, § 6], [21], [15], [17], [18]). It was the original purpose of the present note to use this knowledge in studying e.c. locally residually \mathfrak{X} -groups ($LR\mathfrak{X}$ -groups). Here we cannot expect results as nice as in the $L\mathfrak{X}$ -case. The reason is that there exist 2^{\aleph_0} finitely generated (f.g.) $R\mathfrak{F}_p$ -groups ([5], [6]), hence also 2^{\aleph_0} countable e.c. $LR\mathfrak{X}$ -groups (see also Example 4.5), while we have unique countable e.c. objects in $L\mathfrak{F}$ and in $L\mathfrak{F}_p$. However, the close connection between the classes $L\mathfrak{X}$ and $LR\mathfrak{X}$ is demonstrated by the fact, that there exist countable e.c. $L\mathfrak{X}$ -groups, which are e.c. in $LR\mathfrak{X}$ (use the argument of [9, Satz 3.5]). If $\mathfrak{X} = \mathfrak{F}$ or $\mathfrak{X} = \mathfrak{F}_p$, then every e.c. $L\mathfrak{X}$ -group is e.c. in $LR\mathfrak{X}$ (copy the proofs of [21, Satz 6] and [17, Theorem 3.7]).

Unfortunately, the study of e.c. $LR\mathfrak{X}$ -groups is considerably complicated by the fact, that it seems to be very hard to find general constructions in order to produce sufficiently interesting $LR\mathfrak{X}$ -supergroups of given $LR\mathfrak{X}$ -groups. Here we are only able to use some ad hoc arguments. For example, HNN-extensions and free products of $LR\mathfrak{F}$ -groups stay in $LR\mathfrak{F}$, whenever the involved isomorphic subgroups are finite (see [1], [2]). The information obtained in this way is fairly weak.

Because of this situation, we put more emphasis on the profinite topologies living on each $R\mathfrak{X}$ -group. This leads to the following refinement or our considerations. We replace

 $R\mathfrak{X}$ by the class $c\mathfrak{X}$ of all co- \mathfrak{X} -groups in the sense of [8]. These arise as follows. Let $U \in R\mathfrak{X}$. Suppose that \mathscr{R} is a *residual system* in U, i.e., a set of normal subgroups in U satisfying

- (1) $U/N \in \mathfrak{X}$ for all $N \in \mathfrak{R}$,
- (2) for any $N_1, N_2 \in \mathscr{R}$ there exists $N_3 \in \mathscr{R}$ such that $N_3 \leq N_1 \cap N_2$, and
- (3) $\bigcap \mathscr{R} = 1.$

Then U becomes a Hausdorff topological space by requiring that \mathscr{R} be a basis of neighbourhoods of the identity (the reader is referred to [11] or [10, §2] for the standard facts about topological groups). The topological group U is now called a $c\mathfrak{X}$ -group. Thus, a $c\mathfrak{X}$ -group is just an $R\mathfrak{X}$ -group equipped with a certain fixed pro- \mathfrak{X} topology. In general, different residual systems on the same $R\mathfrak{X}$ -group lead to different $c\mathfrak{X}$ -groups.

If $U \leq V \in c\mathfrak{X}$, then U is a $c\mathfrak{X}$ -group via the topology induced by V. For this reason, an *embedding* $\phi: U \to V$ of $c\mathfrak{X}$ -groups shall be a group homeomorphism ϕ of U onto the $c\mathfrak{X}$ -subgroup $U\phi$ of V. Note that embeddings are always continuous. In order to prove that a monomorphism $\phi: U \to V$ of $c\mathfrak{X}$ -groups is an embedding, it suffices to find residual systems \mathcal{R}_U and \mathcal{R}_V which give the topologies on U resp. V such that, for every $N \in \mathcal{R}_V$ there exists some $M \in \mathcal{R}_V$ with $M \cap U\phi \leq N\phi$, and such that for every $M \in \mathcal{R}_V$ there exists some $N \in \mathcal{R}_U$ with $N\phi \leq M \cap U\phi$. Since \mathfrak{X} -groups can only carry the discrete pro- \mathfrak{X} topology, every monomorphism $\phi: U \to V$, where $U \in \mathfrak{X}$ and $V \in c\mathfrak{X}$, is an embedding. An $Lc\mathfrak{X}$ -group G is a direct limit of $c\mathfrak{X}$ -groups with respect to the direct limit topology, since multiplication in G need not be continuous [3, Appendix 2, I.9]. However, with each f.g. subgroup of G there is associated a unique topology. An *embedding* $\phi: G \to H$ of $Lc\mathfrak{X}$ -groups shall be a group monomorphism ϕ such that, for each f.g. subgroup U of G, the restriction $\phi \mid U$ is a homeomorphism of U onto $U\phi$. Again, monomorphisms $\phi: G \to H$, where $G \in L\mathfrak{X}$ and $H \in Lc\mathfrak{X}$, are embeddings.

By the standard argument [13, Proposition 1.3], every $Lc\mathfrak{X}$ -group G is embeddable into an e.c. $Lc\mathfrak{X}$ -group of cardinality max $\{\aleph_0, |G|\}$. As before, there exist countable e.c. $L\mathfrak{X}$ -groups which are e.c. in $Lc\mathfrak{X}$. If $\mathfrak{X} = \mathfrak{F}$ or $\mathfrak{X} = \mathfrak{F}_p$, then every e.c. $L\mathfrak{X}$ -group is e.c. in $Lc\mathfrak{X}$.

Clearly, the class $p\mathfrak{X}$ of all pro- \mathfrak{X} -groups is a subclass of $c\mathfrak{X}$. Note that continuous monomorphisms of $p\mathfrak{X}$ -groups are already embeddings [11, Proposition $10(\mathcal{T})$]. On the other hand, every $c\mathfrak{X}$ -group U is a subgroup of its pro- \mathfrak{X} completion \hat{U} [8, Lemmata 2.5/6]. Let \mathscr{L} be the local system of all f.g. subgroups in the $Lc\mathfrak{X}$ -group G. If $X, Y \in \mathscr{L}$ satisfy $X \leq Y$, then there exists an embedding α of \hat{X} into \hat{Y} such that the diagram

234

commutes [8, Theorem 2.1]. It follows, that G is embeddable into its Lp*x*-completion $\hat{G} = \lim \{\hat{X} \mid X \in \mathcal{L}\}$. Consequently, every e.c. Lp*x*-group is e.c. in Lc*x*, and the study of e.c. Lc*x*-groups comprises the study of e.c. Lp*x*-groups. Note also, that every e.c. Lc*x*-group is e.c. in its Lp*x*-completion.

Our basic amalgamation technique within $Lc\mathfrak{X}$ uses suitable factor groups of free products with amalgamation. A combination with embeddings of $c\mathfrak{X}$ -groups into cartesian products of \mathfrak{X} -groups then reduces the problem of solving finite systems of equations and inequalities over an e.c. $Lc\mathfrak{X}$ -group G to solving them over certain \mathfrak{X} sections of f.g. subgroups of G. As a valuable corollary we note, that every \forall_2 -sentence, which holds in every countable e.c. $L\mathfrak{X}$ -group, is also true in every e.c. $Lc\mathfrak{X}$ -group.

From this, we can immediately carry over a lot of information from e.c. $L\mathfrak{X}$ -groups to e.c. $Lc\mathfrak{X}$ -groups. For example, it follows that every e.c. $Lc\mathfrak{F}$ -group G is simple. And isomorphisms between finite subgroups of G are always induced by conjugation in G, while there can exist an element $g \in G$ of infinite order such that g is conjugate to g^n $(n \in \mathbb{Z})$ if and only if $n = \pm 1$ (see Section 6).

In the general case, we can carry over elementary properties like verbal completeness and triviality of centralizers of non-trivial normal subgroups. Also, unions and intersections of the so-called locally closed normal subgroups (see Section 3) of an e.c. $Lc\mathfrak{X}$ -group G are totally ordered via inclusion. However, it remains open whether every normal subgroup of G is such a union or intersection. In Section 4 we construct examples which show, that the $L\mathfrak{F}$ -residual of G can be a proper subgroup. The $L\mathfrak{F}$ radical and the factor group modulo the $L\mathfrak{F}$ -residual can be treated by methods used for e.c. $L\mathfrak{X}$ -groups (see Section 3).

The theory becomes much more satisfactory in the case when $\mathfrak{X} = \mathfrak{F}_p$ (see Section 5). Here we can use our corollary about \forall_2 -sentences directly to show, that every e.c. $Lc\mathfrak{F}_p$ -group has a unique chief series Σ , that the factors of Σ are central and cyclic of order p, and that the order type of Σ is a dense order without endpoints. If $K \cong G$ satisfies $K \neq \langle g^G \rangle$ for all $g \in G$, then K is e.c. in G. However, it seems to be unlikely that such a K is in general e.c. in $Lc\mathfrak{F}_p$ (as one might expect from the theory of e.c. $L\mathfrak{F}_p$ -groups). We will show, that every subnormal subgroup of G is already normal in G. Also, the results about embeddings of $L\mathfrak{F}_p$ -groups into e.c. $L\mathfrak{F}_p$ -groups [15, §3] and about conjugacy of finite subgroups of e.c. $L\mathfrak{F}_p$ -groups [17, Theorem 6.1] remain true for e.c. $Lc\mathfrak{F}_p$ -groups. As in the $Lc\mathfrak{F}$ -case, conjugacy of infinite f.g. subgroups of G is more delicate. Although we can give a quite satisfactory necessary and sufficient condition (which shows for example, that an element $g \in G$ of infinite order is conjugate to g^n $(n \in \mathbb{Z})$ if and only if $n \equiv 1 \pmod{p}$), it remains open whether an isomorphism $\phi: A \to B$ between f.g. subgroups of G is induced by conjugation in G if and only if $a^{-1} \cdot a\phi \in N$ for all $a \in (A \cap M) - N$ and all chief factors M/N of G.

2. Constructions within LcX

In the sequel, if $U \in c\mathfrak{X}$, then $N \cong_0 U$ will denote that N is an open normal subgroup of U. The following amalgamation theorem is the foundation of this note.

Theorem 2.1. An amalgam $G \cup H | U$ of $Lc\mathfrak{X}$ -groups over the f.g. common subgroup U is embeddable into an $Lc\mathfrak{X}$ -group if and only if there exist local systems \mathscr{L}_G in G and \mathscr{L}_H in H consisting of f.g. subgroups which contain U such that, for every pair $(X, Y) \in \mathscr{L}_G \times \mathscr{L}_H$, the topologies on X and Y are given by residual systems $\mathscr{R}_{X,Y}$ in X resp. $\mathscr{R}_{Y,X}$ in Y such that, for every $L \in \mathscr{R}_{X,Y}$ (resp. $L \in \mathscr{R}_{Y,X}$), there exist $M \in \mathscr{R}_{X,Y}$ and $N \in \mathscr{R}_{Y,X}$ satisfying

- (1) $M \leq L$ (resp. $N \leq L$) and $M \cap U = L \cap U = N \cap U$, and
- (2) the amalgam $X/M \cup Y/N | UL/L$ (where UM/M and UN/N are identified with UL/L via $uM \equiv uL \equiv uN$ for all $u \in U$) is contained in an \mathfrak{X} -group.

Proof. Suppose first that the amalgam is contained in an $Lc\mathfrak{X}$ -group W. Let \mathscr{L}_W , \mathscr{L}_G and \mathscr{L}_H be the local systems of all f.g. subgroups in W, G resp. H containing U. For every $V \in \mathscr{L}_W$, denote by \mathscr{R}_V the residual system of all $L \cong_0 V$. If $(X, Y) \in \mathscr{L}_G \times \mathscr{L}_H$, then let $\mathscr{R}_{X,Y} = \mathscr{R}_{\langle X,Y \rangle} \cap X$ and $\mathscr{R}_{Y,X} = \mathscr{R}_{\langle X,Y \rangle} \cap Y$. Since X and Y are $c\mathfrak{X}$ -subgroups of $\langle X, Y \rangle$, the topologies on X and Y are given by the residual systems $\mathscr{R}_{X,Y}$ resp. $\mathscr{R}_{Y,X}$. Now every $M \in \mathscr{R}_{X,Y}$ (resp. $N \in \mathscr{R}_{Y,X}$) is induced by some $K \in \mathscr{R}_{\langle X,Y \rangle}$. Put $N = K \cap Y \in \mathscr{R}_{Y,X}$ (resp. $M = K \cap X \in \mathscr{R}_{X,Y}$). Then $M \cap U = N \cap U$, and the amalgam $X/M \cup Y/N \mid UM/M \equiv UN/N$ is embedded canonically in the \mathfrak{X} -group $\langle X, Y \rangle/K$.

Conversely, fix some $(X, Y) \in \mathscr{L}_G \times \mathscr{L}_H$ and regard the free product with amalgamation $F_{X,Y} = X_U^* Y$. Let

$$\mathscr{R}_{X,Y}^* = \{ K \trianglelefteq F_{X,Y} \mid F_{X,Y} / K \in \mathfrak{X}, \quad K \cap X \trianglelefteq_0 X, \quad K \cap Y \trianglelefteq_0 Y \}.$$

Denote epimorphic images modulo $\bigcap \mathscr{R}^*_{X,Y}$ by bars. Then $\overline{F}_{X,Y} \in c\mathfrak{X}$ with the topology given by the residual system $\overline{\mathscr{R}}^*_{X,Y}$. We will show:

An embedding of the amalgam $X \cup Y \mid U$ into $\overline{F}_{X,Y}$ is given by $z \rightarrow \overline{z}$ for all $z \in X \cup Y$. (2.1)

If $X \leq V \in \mathscr{L}_G$ and $Y \leq W \in \mathscr{L}_H$, then $\mathrm{id}: F_{X,Y} \to F_{V,W}$ induces an embedding of $\overline{F}_{X,Y}$ into $\overline{F}_{V,W}$. (2.2)

Once (2.1) and (2.2) are proved, the discovered embeddings form commuting diagrams

and therefore, the amalgam $G \cup H | U$ is embeddable into the direct limit of the $c\mathfrak{X}$ -groups $\overline{F}_{X,Y}$ with respect to the embeddings given in (2.2).

To see (2.1), suppose that $1 \neq x \in X$. Then $x \notin L$ for some $L \in \mathscr{R}_{X,Y}$. By hypothesis, there exist $M \in \mathscr{R}_{X,Y}$ and $N \in \mathscr{R}_{Y,X}$ with $M \leq L$ and $M \cap U = L \cap U = N \cap U$, and such that the amalgam $X/M \cup Y/N | UL/L$ is contained in an \mathfrak{X} -group *P*. Let *K* be the kernel of the canonical homomorphism $F_{X,Y} \to P$. Clearly, $K \leq F_{X,Y}$ with \mathfrak{X} -factor group such that $K \cap X = M \leq_0 X$ and $K \cap Y = N \leq_0 Y$. Now $K \in \mathscr{R}_{X,Y}^*$ and $x \notin K$. It follows that $X \cap [\bigcap \mathscr{R}_{X,Y}^*] = 1$, and so the canonical map $\phi: X \to X$ is a group isomorphism. By definition of $\mathscr{R}_{X,Y}^*$, the map ϕ is continuous. The above argument also shows that we can find for every $L \in \mathscr{R}_{X,Y}$ some $K \in \mathscr{R}_{X,Y}^*$ with $K \cap X \leq L$, whence ϕ is open.

In order to prove (2.2), it suffices to show:

$$\check{K} \cap F_{\chi, \gamma} \in \mathscr{R}^*_{\chi, \gamma}$$
 for every $\check{K} \in \mathscr{R}^*_{V, W}$. (2.3)

For every $K \in \mathscr{R}^*_{X,Y}$ there exists $\check{K} \in \mathscr{R}^*_{V,W}$ such that $\check{K} \cap F_{X,Y} \leq K$. (2.4)

The assertion (2.3) is an immediate consequence of the definition of $\mathscr{R}_{X,Y}^*$ and $\mathscr{R}_{V,W}^*$, and of the fact that the topology on X resp. Y is induced by the topology on V resp. W. It remains to prove (2.4).

Let $K \in \mathscr{R}_{X,Y}^*$. Since $\mathscr{R}_{V,W} \cap X$ and $\mathscr{R}_{W,V} \cap Y$ are residual systems in X resp. Y which induce the topology on X resp. Y, there exist $L_1 \in \mathscr{R}_{V,W}$ and $L_2 \in \mathscr{R}_{W,V}$ such that $L_1 \cap X \leq K \cap X$ and $L_2 \cap Y \leq K \cap Y$. From hypothesis, we obtain $M_i \in \mathscr{R}_{V,W}$ and $N_i \in \mathscr{R}_{W,V}$ such that $M_1 \leq L_1$, $N_2 \leq L_2$, and $M_i \cap U = L_i \cap U = N_i \cap U$, and such that the amalgam $V/M_i \cup W/N_i | UL_i/L_i$ is contained in an \mathfrak{X} -group P_i . Plainly, $M \cap U = N \cap U$ for $M = M_1 \cap M_2$ and $N = N_1 \cap N_2$. Denote epimorphic images modulo M resp. N by $\tilde{\cdot}$. Then an embedding α of the amalgam $\tilde{V} \cup \tilde{W} | \tilde{U}$ into $P_3 = P_1 \times P_2 \in \mathfrak{X}$ is given by $\tilde{v}\alpha = (vM_1, vM_2)$ for all $v \in V$ and $\tilde{w}\alpha = (wN_1, wN_2)$ for all $w \in W$. Put $Q = F_{X,Y}/K$, and regard $\tilde{X} \cup \tilde{Y} | \tilde{U}$ as an amalgam in $P_4 = Q \times P_3$ via $\tilde{z} \equiv (zK, \tilde{z}\alpha)$ for all $z \in X \cup Y$. We will now embed the amalgam $\tilde{V} \cup P_4 \cup \tilde{W}$, where $\tilde{V} \cap P_4 = \tilde{X}$ and $P_4 \cap \tilde{W} = \tilde{Y}$, into an \mathfrak{X} -group.

To this end, let $P_5 = Q \operatorname{Wr} P_3 \in \mathfrak{X}$, and denote by $\pi_1: P_4 \to P_3$ and $\pi_2: P_5 \to P_3$ the canonical projections. Because of $\tilde{X} \cap Q = 1$, we obtain from [12, Lemma 1] an embedding $\sigma: P_4 \to P_5$ satisfying $\sigma \pi_2 = \pi_1$ and $\sigma|_{\mathfrak{X}} = \pi_1|_{\mathfrak{X}} = \alpha|_{\mathfrak{X}}$. Lift σ to an embedding of the amalgam $\tilde{V} \cup P_4 | \tilde{X}$ into P_5 via $\sigma|_{\mathfrak{P}} = \alpha|_{\mathfrak{P}}$. Regard the amalgam $P_5 \cup \tilde{W}\sigma | \tilde{Y}\sigma$, where $\tilde{W}\sigma$ is an artificial copy of \tilde{W} . Denote the base group of P_5 by Ω , and put $P_6 = \Omega \operatorname{Wr} P_3 \in \mathfrak{X}$. Since $\tilde{Y}\sigma \cap \Omega = 1$, a further application of [12, Lemma 1] leads to an embedding $\tau: P_5 \to P_6$ such that $\sigma\tau|_{\mathfrak{P}} = \sigma\pi_2|_{\mathfrak{P}} = \pi_1|_{\mathfrak{P}} = \alpha|_{\mathfrak{P}}$. Extend τ to an embedding of the amalgam $P_5 \cup \tilde{W}\sigma | \tilde{Y}\sigma$ into P_6 via $\sigma\tau|_{\mathfrak{W}} = \alpha|_{\mathfrak{W}}$. Now $\sigma\tau$ embeds the amalgam $\tilde{V} \cup P_4 \cup \tilde{W}$ into the \mathfrak{X} -group P_6 .

Let \check{K} be the kernel of the group homomorphism $F_{V,W} \to P_6$ induced from $\tilde{\sigma}\tau$. Then $\check{K} \cap V = M$ and $\check{K} \cap W = N$, whence $\check{K} \in \mathscr{R}^*_{V,W}$. Moreover, by choice of P_4 , we have $\check{K} \cap F_{X,Y} \leq K$.

Remark 2.2. Under the assumptions of Theorem 2.1, the amalgam $G \cup H | U$ is actually contained in an $Lc\mathfrak{X}$ -group W with the following property: For all f.g. $X \leq G$ and $Y \leq H$ containing U, if $M \cong_0 X$ and $N \cong_0 Y$ are such that $M \cap U = N \cap U$ and such that the amalgam $X/M \cup Y/N | UM/M \equiv UN/N$ is contained in an \mathfrak{X} -group, then there exists $K \cong_0 \langle X, Y \rangle \leq W$ such that $K \cap X = M$ and $K \cap Y = N$.

Proof. Since the amalgam is contained in an $Lc\mathfrak{X}$ -group, we may assume that \mathscr{L}_G and \mathscr{L}_H in Theorem 2.1 are the local systems of all f.g. subgroups in G resp. H which contain U. For $(X, Y) \in \mathscr{L}_G \times \mathscr{L}_H$, define $F_{X,Y}$ and $\mathscr{R}^*_{X,Y}$ as in the proof of Theorem 2.1. If $M \cong_0 X$ and $N \cong_0 Y$ satisfy the above assumptions, then the argument in the proof of (2.1) shows that there exists $K \in \mathscr{R}^*_{X,Y}$ with $K \cap X = M$ and $K \cap Y = N$.

Amalgams of \mathfrak{F} -groups are always contained in an \mathfrak{F} -group [22, Theorem 5.2]. Thus, if $\mathfrak{X} = \mathfrak{F}$, then the condition (2) in Theorem 2.1 becomes redundant. An amalgam $A \cup B | U$ of \mathfrak{F}_p -groups is contained in an \mathfrak{F}_p -group, if and only if there exist chief series in A and B which both induce the same chief series in U (see [12]). In particular, amalgams of \mathfrak{F}_p -groups over a common cyclic subgroup are always contained in an \mathfrak{F}_p -group. Moreover, every cyclic group U carries a unique pro- \mathfrak{F}_p topology, and if $U \leq V \in c\mathfrak{F}_p$, then the residual system of all $M \leq_0 V$ induces the residual system of all $N \leq_0 U$ in U. Therefore, Theorem 2.1 yields that every amalgam of $Lc\mathfrak{F}_p$ -groups over a common cyclic subgroup is embeddable into an $Lc\mathfrak{F}_p$ -group.

In the case when $\mathfrak{X} = \mathfrak{F}_p$, it is readily verified that the conditions in Theorem 2.1 are equivalent to the property that, for each pair $(X, Y) \in \mathscr{L}_G \times \mathscr{L}_H$, the topologies on X and Y are given by descending chains $\mathscr{M} = \{M_\alpha | \alpha \in \omega\}$ and $\mathscr{N} = \{N_\alpha | \alpha \in \omega\}$ of open normal subgroups $M_\alpha \cong X$, $N_\alpha \cong Y$ of index $\leq p^\alpha$ such that $\bigcap \mathscr{M} = 1 = \bigcap \mathscr{N}$ and $\mathscr{M} \cap U =$ $\mathscr{N} \cap U$. Therefore our criteria for amalgamation within $Lc\mathfrak{F}$ resp. $Lc\mathfrak{F}_p$ are in line with the criteria given in [23, Theorems 1.2 and 3.1] for the existence of the pro-\mathfrak{F} resp. pro-\mathfrak{F}_p amalgamated product. In fact, it follows from [8, Theorem 2.1], that the pro-\mathfrak{X} completion $E_{X,Y}$ of the group $\overline{F}_{X,Y}$ in the proof of Theorem 2.1 is the pro-\mathfrak{X} amalgamated product of $\hat{X} \cup \hat{Y} | \hat{U}$. In particular, the conditions in Theorem 2.1 ensure the existence of the pro-\mathfrak{X} amalgamated product of $\hat{X} \cup \hat{Y} | \hat{U}$. Moreover, (2.1)/(2.2) and [8, Theorem 2.1] lead to commuting diagrams

of the canonical embeddings, and so $\hat{G} \cup \hat{H} | \hat{U}$ is embedded canonically in $\lim E_{X,Y}$.

Theorem 2.1 allows us to deduce a necessary and sufficient criterion for the solvability of finite systems of equations and inequalities in e.c. $Lc\mathfrak{X}$ -groups.

Theorem 2.3. A finite system of equations and inequalities with coefficients c_1, \ldots, c_r , in the e.c. $Lc\mathfrak{X}$ -group G has a solution in G if and only if there exists a local system \mathscr{L} in G consisting of f.g. subgroups which contain $U = \langle c_1, \ldots, c_r \rangle$ such that, for every $X \in \mathscr{L}$, the topology on X is given by a residual system \mathscr{R}_X such that, for every $M \in \mathscr{R}_X$, the system \mathscr{L}/M (with coefficients c_1M, \ldots, c_rM) has a solution in some \mathfrak{X} -group $W_{X,M} \ge X/M$.

Proof. Suppose that g_1, \ldots, g_s is a solution to \mathscr{S} in G. Let \mathscr{L} be the local system of all f.g. subgroups of G which contain $V = \langle U, g_1, \ldots, g_s \rangle$. For $X \in \mathscr{L}$, denote by \mathscr{R}_X the residual system of all $M \cong_0 X$ such that $w(c_1, \ldots, c_r, g_1, \ldots, g_s) \notin M$ for every inequality $w(c_1, \ldots, c_r, x_1, \ldots, x_s) \neq 1$ in \mathscr{S} . Clearly, if $M \in \mathscr{R}_X$. then \mathscr{S}/M has the solution g_1M, \ldots, g_sM in $W_{X,M} = X/M$.

Conversely, let $\mathcal{M} = \{(X, M) \mid M \in \mathcal{R}_X, X \in \mathcal{L}\}$. Regard $H = \prod \{W_{X,M} \mid (X,M) \in \mathcal{M}\}$ as a $c\mathfrak{X}$ -group under the product topology (where each $W_{X,M}$ carries the discrete topology). Denote by $K_{X,M}$ the obvious direct complement to $W_{X,M}$ in H. An embedding $\phi: U \to H$ is given by

$$u\phi = (uM)_{(X,M)\in\mathscr{M}}$$
 for all $u\in U$,

since $K_{X,M} \cap U\phi = (M \cap U)\phi$ for all $(X, M) \in \mathcal{M}$. In the following, we suppress ϕ and regard U as a subgroup of H. Because H contains the componentwise solution to \mathcal{S} , and because G is e.c. in $Lc\mathfrak{X}$, it suffices to embed the amalgam $G \cup H | U$ into an $Lc\mathfrak{X}$ -group. To this end, we will check the conditions of Theorem 2.1.

Put $\mathscr{L}_G = \mathscr{L}$, and let \mathscr{L}_H be the local system in H of all f.g. subgroups containing U. For $(X, Y) \in \mathscr{L}_G \times \mathscr{L}_H$, choose $\mathscr{R}_{X,Y} = \mathscr{R}_X$ and $\mathscr{R}_{Y,X} = \{N \leq _0 Y | N \cap U \in \mathscr{R}_X \cap U\}$. If $L \leq _0 Y$, then there exists $M \in \mathscr{R}_X$ such that $M \cap U \leq L \cap U$, whence $N = L \cap K_{X,M} \in \mathscr{R}_{Y,X}$ satisfies $N \leq L$. This shows that $\mathscr{R}_{Y,X}$ is a residual system in Y which gives the topology on Y.

If $M \in \mathscr{R}_{X,Y}$, then $N = K_{X,M} \cap Y \in \mathscr{R}_{Y,X}$ satisfies $M \cap U = N \cap U$, and the amalgam $X/M \cup Y/N | UM/M \equiv UN/N$ can be embedded into $W_{X,M}$ via $xM \to xM$ for all $x \in X$ and $yK_{X,M} \to y_{X,M}$ for all $y \in Y$ (where $y_{X,M}$ denotes the component of $y \in H$ in $W_{X,M}$). Finally, regard some $L \in \mathscr{R}_{Y,X}$. Then $M \cap U = L \cap U$ for some $M \in \mathscr{R}_{X,Y}$, and $N = K_{X,M} \cap L \in \mathscr{R}_{Y,X}$ satisfies $N \leq L$ and $L \cap U = N \cap U$. Denote epimorphic images modulo M resp. N by bars. It remains to embed the amalgam $\overline{X} \cup \overline{Y} | \overline{U}$ into an \mathfrak{X} -group. Identify \overline{Y} with a subgroup of $P_1 = W_{X,M} \times Y/L \in \mathfrak{X}$ via $\overline{y} \equiv (y_{X,M}, yL)$ for all $y \in Y$. Since $\overline{U} \cap Y/L = 1$, we obtain from [12, Lemma 1] an embedding $\sigma: P_1 \to P_2 = Y/L$ Wr $W_{X,M} \in \mathfrak{X}$ satisfying $\overline{u}\sigma = \overline{u} \in W_{X,M}$ for all $u \in U$. Extend σ to an embedding of the amalgam $\overline{X} \cup \overline{Y} | \overline{U}$.

Lemma 2.4. Suppose that $\Re = \Re_1 \cup \Re_2$ is a residual system in the $R\mathfrak{X}$ -group U. Then \Re_1 or \Re_2 is a residual system in U which gives the same topology on U as \Re .

Proof. It suffices to show that one of the sets \mathscr{R}_1 and \mathscr{R}_2 contains for every $N \in \mathscr{R}$ some M such that $M \leq N$. Assume that there exists $N \in \mathscr{R}_1$ such that no $M \in \mathscr{R}_2$ is contained in N. Let $\tilde{\mathscr{R}} = \{M \in \mathscr{R} \mid M \leq N\}$. Clearly $\tilde{\mathscr{R}} \subseteq \mathscr{R}_1$, and thus \mathscr{R}_1 has the desired property.

Using the method of construction given in [9, Satz 3.5], every \mathfrak{X} -group can be embedded into a countable e.c. $L\mathfrak{X}$ -group, which is e.c. in $Lc\mathfrak{X}$. It is therefore possible to formulate the following corollary.

Corollary 2.5. The \forall_2 -sentences, which hold in every e.c. $Lc\mathfrak{X}$ -group, are precisely the \forall_2 -sentences, which hold in those countable e.c. $L\mathfrak{X}$ -group, which are e.c. in $Lc\mathfrak{X}$.

Note that the classes $L\mathcal{F}$ and $L\mathcal{F}_p$ contain a unique countable e.c. group.

Proof. Let ψ be an \forall_2 -sentence, i.e., let $\psi = \forall \bar{x}(\phi_1(\bar{x}) \lor \cdots \lor \phi_n(\bar{x}))$ where $\phi_i(\bar{x})$ is a primitive formula for every *i*. Suppose that one of the countable e.c. $L\mathfrak{X}$ -group *E*, which are e.c. in $Lc\mathfrak{X}$, satisfies ψ . Regard any e.c. $Lc\mathfrak{X}$ -group *G* and some \bar{c} from *G*. Denote by \mathscr{L} the local system of all f.g. subgroups of *G* containing \bar{c} .

Fix some $X \in \mathscr{L}$. Let \mathscr{R}_i be the set of all $M \cong_0 X$ such that $\phi_i(cM)$ holds in some \mathfrak{X} -group containing X/M. If $M \cong_0 X$, then $X/M \times E \in LcX$, and so the group E contains a copy of X/M. Since $E \models \psi$, it follows that M lies in some \mathscr{R}_i . Hence Lemma 2.4 yields that one of the \mathscr{R}_i is a residual system in X which induces the topology on X.

This shows that $\mathscr{L} = \mathscr{L}_1 \cup \cdots \cup \mathscr{L}_n$ where \mathscr{L}_i is the set of all $X \in \mathscr{L}$ in which the topology is given by a residual system \mathscr{R}_X such that, for every $M \in \mathscr{R}_X$, there exists an \mathfrak{X} -group $W \ge X/M$ with $W \models \phi_i(cM)$. By [14, Lemma 1.A.10], one of the \mathscr{L}_i is a local system in G. Now Theorem 2.3 applied to this local system yields that $G \models \phi_i(c)$. This shows that $G \models \psi$.

As a second embedding technique within $Lc\mathfrak{X}$, we will adopt the construction of [18, §2] as far as possible.

Construction 2.6. Let $\overline{:}: G \to H$ be a homomorphism with kernel N. For every f.g. $X \leq G$, let $W_X = X \operatorname{Wr} H$ (unrestricted wreath product). Fix some f.g. $U \leq G$, and choose left transversals R of $U \cap N$ in U, and T of \overline{U} in H. Then a group monomorphism

$$\tau: G \longrightarrow W = \bigcup \{ W_X \mid X \leq G f.g. \}$$

is given by $g\tau = f_g \cdot \bar{g}$, where the function $f_g: H \to \langle g, U \rangle$ is defined via $(t_1 \bar{r}_1) f_g = r_1 g r_2^{-1}$ whenever $t_i \in T$, $r_i \in R$ satisfy $t_2 \bar{r}_2 = t_1 \bar{r}_1 \bar{g}$.

Theorem 2.7. Adopt the notation of Construction 2.6. Let \mathscr{L}_G and \mathscr{L}_H be the local systems of all f.g. subgroups in G resp. H. Suppose that $G \in Lc\mathfrak{X}$, $H \in L\mathfrak{X}$, and that

 $N \cap X \trianglelefteq_0 X$ for all $X \in \mathscr{L}_G$. Regard the base group Ω_X of W_X as a $c\mathfrak{X}$ -group under the product topology. The groups $W_{X,Y} = \Omega_X \times Y$, where $(X, Y) \in \mathscr{L}_G \rtimes \mathscr{L}_H$, form a local system in W. Each $W_{X,Y}$ is a $c\mathfrak{X}$ -group under the topology given by the residual system

$$\mathscr{R}_{X,Y} = \{ core_{W_X,Y}(K) \mid K \trianglelefteq_0 \Omega_X \} = \{ L \trianglelefteq_0 \Omega_X \mid L \trianglelefteq W_{X,Y} \}.$$

With these topologies, $\tau: G \rightarrow W$ becomes an embedding of $Lc\mathfrak{X}$ -groups.

Proof. If $(X_i, Y_i) \in \mathscr{L}_G \times \mathscr{L}_H$ with $X_1 \leq X_2$ and $Y_1 \leq Y_2$, then the topology on X_2 induces the topology on X_1 , and so the product topology on Ω_{X_2} induces the product topology on Ω_{X_1} . Therefore, $id: W_{X_1, Y_1} \to W_{X_2, Y_2}$ is an embedding. This shows that W is an $Lc\mathfrak{X}$ -group.

Now, fix some $X \in \mathscr{L}_G$ with $U \leq X$. It remains to show that $\tau|_X : X \to X \tau \leq W_{X, \bar{X}}$ is a homeomorphism. To this end, we consider the residual system $\mathscr{R}_X = \{M \leq _0 X \mid M \leq N \cap X\}$ in X. If $x \in N \cap X$, then $x\tau = f_x$ where $(t\bar{r})f_x = rxr^{-1}$ for all $t \in T, r \in R$. Therefore,

$$L_M = \{ f : H \to X \mid (\bar{X}) f \subseteq M \} \in \mathcal{R}_{X, \bar{X}}$$

satisfies $L_M \cap X\tau = M\tau$ for every $M \in \mathscr{R}_X$, and thus $\tau|_X$ is open. To see that $\tau|_X$ is continuous, let $L \in \mathscr{R}_{X,\bar{X}}$. Then there exist $h_1, \ldots, h_v \in H$ and $M_1, \ldots, M_v \leq 0 X$ such that

$$L \ge \{ f : H \to X \mid (h_i) f \in M_i \quad \text{for} \quad 1 \le i \le v \}.$$

Put $M = \bigcap \{M_i \mid 1 \leq i \leq v\} \leq _0 X$. Then $M\tau \leq L \cap X\tau$.

3. General results

Let us begin with some elementary applications of Corollary 2.5. We will denote by π the set of all primes which divide the order of some \mathfrak{X} -group.

Theorem 3.1. The following assertions hold for every e.c. $Lc\mathfrak{X}$ -group G.

- (a) G is verbally complete.
- (b) If $1 \neq N \trianglelefteq G$, then $\mathbb{C}_G(N) = 1$.
- (c) If U and V are f.g. subgroups of G, then $[U, V^g] = 1$ for some $g \in G$.
- (d) Every non-trivial normal subgroup of G contains for every π -number μ an element of order μ .
- (e) For each π -number μ , every element of G is in the normal closure of some element of order μ .

Proof. Let E be any countable e.c. $L\mathfrak{X}$ -group. Then parts (a)–(c) hold for E by [16, Theorem 2.1 and p. 212], and by the argument of [15, Lemma 2.2]. Note that (b) can be encoded by the \forall_2 -sentence $\forall g, h \exists x \ (g \neq 1 \neq h \rightarrow [g, h^x] \neq 1$). For the proof of (d) and (e), regard the \forall_2 -sentences

$$\forall g \exists x, y \left[\bigwedge_{k=1}^{\mu-1} x^k \neq 1 \land x^{\mu} = 1 \land (g \neq 1 \rightarrow x = [g, y]) \right]$$

and

$$\forall g \exists x, y, z \left[\bigwedge_{k=1}^{\mu-1} x^k \neq 1 \land x^{\mu} = 1 \land g = [x, y, z] \right]$$

These hold for E by the arguments of [16, Lemmata 2.5/4.3(b) and 3.3]. Therefore, Corollary 2.5 applies in all cases.

Because every f.g. $c(\mathfrak{F}_{\pi} \cap \mathfrak{G})$ -group H is hypoabelian, it follows from the argument of [14, Proposition 1.B.3] that minimal normal subgroups of $Lc(\mathfrak{F}_{\pi} \cap \mathfrak{G})$ -groups are abelian. Hence Theorem 3.1(b) implies that e.c. $Lc(\mathfrak{F}_{\pi} \cap \mathfrak{G})$ -groups have no minimal normal subgroups.

Next, let us extend the notion of a G-subgroup given in [21, p. 114] for $L\mathfrak{F}_p$ -groups. Suppose that \mathscr{L} is the local system of all f.g. subgroups of an $Lc\mathfrak{X}$ -group G. Then we say that N is a G-subgroup of $U \in \mathscr{L}$ ($N \cong_G U$), if every $V \in \mathscr{L}$ with $U \leq V$ contains some $M \cong_0 V$ such that $M \cap U = N$. Put $U_G^* = \bigcap \{N \mid N \cong_G U\} \cong U$. It is readily verified that $U \leq V \in \mathscr{L}$ and $N \cong_G V$ implies $N \cap U \cong_G U$, and so we may form

$$G^* = \bigcup \{ U^*_G \mid U \in \mathscr{L} \} \trianglelefteq G.$$

Note that $G^* \leq \bigcap \{N \cong G \mid N \cap U \cong_0 U$ for all $U \in \mathscr{L}\}$. A subgroup $\tilde{N} = \bigcup \{N_X \mid X \in \mathscr{L}\}$ is said to be a *locally closed* normal subgroup in G, if every N_X is a closed normal subgroup in X, and if $N_X \leq N_Y$ whenever $X \leq Y$. Every $N \cong G$ is contained in the locally closed normal subgroup $\tilde{N} = \bigcup \{N_X \mid X \in \mathscr{L}\}$, where $N_X = \bigcap \{K \cong_0 X \mid N \cap X \leq K\}$ is the closure of $N \cap X$ in X. Another kind of locally closed normal subgroup \tilde{N} can be obtained from each $N \cong_G U \in \mathscr{L}$ by choosing $N_X = \bigcap \{K \cong_0 X \mid K \cap U = X \cap N\}$. In the latter case $\tilde{N} \cap U = N$, and we immediately have:

Lemma 3.2. Let $N \trianglelefteq_G U$ where U is a f.g. subgroup of the $Lc\mathfrak{X}$ -group G. Then $\langle N^G \rangle \cap U = N$.

Theorem 3.3. Let $\tilde{N} = \bigcup \{N_X | X \in \mathcal{L}\}$ be a locally closed normal subgroup of the e.c. Lc \mathfrak{X} -group G. Then the following hold for every $g \in G - \tilde{N}$.

(a) Every finite system of equations and inequalities with coefficients from \tilde{N} , which is solvable in G, already has a solution in every verbal subgroup of $\langle g^G \rangle$. In particular, $\tilde{N} \leq \langle g^G \rangle$, the locally closed normal subgroups of G are totally ordered via inclusion, and the G-subgroups in each f.g. subgroup of G form a descending chain of length $\leq x$.

(b) If $0(\tilde{N}g) = n < \infty$, then any two elements in $\tilde{N}g$ of order n are conjugate in every verbal subgroup of $\langle g^G \rangle$.

Proof. (a) Let \mathscr{S} be a finite system of equations and inequalities with coefficients

 $c_1, \ldots, c_r \in \overline{N}$, unknowns x_1, \ldots, x_s , and a solution $g_1, \ldots, g_s \in G$. Fix any reduced word $v(\xi_1, \ldots, \xi_t) \neq 1$. Adjoin to \mathscr{S} the equations

$$x_i = v(\xi_{i1}, \dots, \xi_{it})$$
 and $\xi_{ij} = \prod_{k=1}^3 [g, y_{ijk}, z_{ijk}]$ $(1 \le i \le s, 1 \le j \le t)$

with coefficients g. In the case when $0(\tilde{N}g) = n < \infty$, let $h_1, h_2 \in \tilde{N}g$ with $n = 0(h_i)$, and adjoin the additional equations

$$h_1^{x_{s+1}} = h_2, \quad x_{s+1} = v(\xi_{s+1,1}, \dots, \xi_{s+1,t}), \text{ and}$$

 $\xi_{s+1,j} = \prod_{k=1}^3 [g, y_{s+1,j,k}, z_{s+1,j,k}] (1 \le j \le t)$

with coefficients g, h_1, h_2 . Denote the resulting system by \mathcal{T} .

Since \tilde{N} is locally closed, there exists a f.g. $V \leq G$ with $g_1, \ldots, g_s, g \in V$ and $c_1, \ldots, c_r \in Nv$ (and with $h_1, h_2 \in N_V g$ in the case when $n < \infty$). Let $\mathcal{L}_G = \{X \in \mathcal{L} \mid V \leq X\}$. Because N_X is closed in $X \in \mathcal{L}_G$, there exists $L_X \leq_0 X$ with $N_X \leq L_X$ and $g \notin L_X$ (and with $\langle h_i \rangle \cap L_X = 1$ in the case when $n < \infty$). Regard in X the residual system \mathscr{R}_X of all $M \leq_0 X$ satisfying $M \leq L_X$ and $w(c_1, \ldots, c_r, g_1, \ldots, g_s) \notin M$ for every inequality $w(c_1, \ldots, c_r, x_1, \ldots, x_s) \neq 1$ in \mathscr{S} . Fix some $M \in \mathscr{R}_X$. Since every e.c. $L\mathfrak{X}$ -group is verbally complete, we can find an \mathfrak{X} -group $F_{X,M} \geq X/M$ such that, for every $x \in X$, there exist elements $f_{x,l} \in F_{X,M}$ with $xM = v([f_{x,1}, f_{x,2}], \ldots, [f_{x,2t-1}, f_{x,2t}])$. Identify X/M with its image in L_X/M Wr $X/L_X \leq W_{X,M} = F_{X,M}$ Wr X/L_X under some Krasner-Kaloujnine embedding.

Let $m_X = 0(L_Xg)$, and choose a left transversal T of $\langle L_Xg \rangle$ in X/L_X . Then every $f:X/L_X \to F_{X,M}$ can be decomposed in $W_{X,M}$ into a product $f = f_1 f_2 f_3$, where

supp
$$f_1 \subseteq T$$
,
supp $f_2 \subseteq \bigcup \{T \cdot (L_X g^i) | i \in \{1, \dots, m_X - 1\} \text{ is odd}\},$
supp $f_3 \subseteq \bigcup \{T \cdot (L_X g^i) | i \in \{1, \dots, m_X - 1\} \text{ is even}\}.$

With this decomposition, the arguments of [16, Theorem 4.7 and Lemmata 4.2/4.3] actually show that the system \mathcal{T}/M with coefficients Mc_1, \ldots, Mc_r, Mg (and Mh_1, Mh_2) has a solution in $W_{X,M}$. Therefore, Theorem 2.3 yields that \mathcal{T} has a solution in G, whence \mathcal{S} (and the equation $h_1^x = h_2$) have a solution in the verbal subgroup of $\langle g^G \rangle$ generated by $v(\xi_1, \ldots, \xi_t)$.

Finally, if $h \in \tilde{N}$, then an application of the above to the system \mathscr{S} consisting only of the equation h = x with coefficient h shows that $h \in \langle g^G \rangle$. Hence $\tilde{N} \leq \langle g^G \rangle$.

Note, that Theorem 3.3 does in fact hold for unions and intersections of locally closed normal subgroups.

Question. Is every normal subgroup of an e.c. $Lc\mathfrak{X}$ -group the union or intersection of a chain of locally closed normal subgroups?

If $N \cong G \in Lc\mathfrak{X}$ is such that $N \cap U$ is closed in U for every f.g. $U \subseteq G$, then each $U/U \cap N$ is a $c\mathfrak{X}$ -group via the quotient topology. Note however, that this is in general not enough to ensure that $G/N \in Lc\mathfrak{X}$ since, for $U \subseteq V$, the canonical monomorphism $U/(U \cap N) \to V/(V \cap N)$ need not be an embedding [11, p. 23].

By combining Theorem 2.1 with [15, Theorem 2.1], we can apply the technique of [16, §2] in order to extend [16, Theorems 2.3-2.6] to the normal LF-subgroups of an e.c. $Lc\mathfrak{X}$ -group G. In particular, the normal LF-subgroups of G form a chain. We will now turn to the LF-quotients of G. Note that by Theorem 3.3, for every f.g. subgroup U of an e.c. $Lc\mathfrak{X}$ -group G, we have $G^* \cap U = U_G^*$ or $G^* \cap U \cong_G U$.

Theorem 3.4. Let G be e.c. in $Lc\mathfrak{X}$.

- (a) If $N \trianglelefteq G$, then $N \leqq G^*$ or $G^* \leqq N$.
- (b) If $G^* < N \supseteq G$, then $N \cap U \supseteq_G U$ for every f.g. $U \subseteq G$. In particular, $G/N \in L\mathfrak{X}$.
- (c) If G/G^* has a minimal normal subgroup, then (b) also applies to $N = G^*$.
- (d) $G^* = \bigcap \{N \supseteq G \mid N \cap U \supseteq_0 U \text{ for all f.g. } U \leq G\}$. In particular, G^* contains the LX-residual of G.
- (e) If for every infinite f.g. $U \leq G$ the chain of G-subgroups in U has length ω , then G^* is the LF-residual of G.

Proof. (a) Suppose that N is not in G^* . Fix some $g \in N - G^*$. Since G^* is a locally closed normal subgroup in G, Theorem 3.3 yields $G^* \leq \langle g^G \rangle \leq N$.

(b) Since $G^* < N$, we may assume that $G^* \cap U < N \cap U$. Choose $M \trianglelefteq_G U$ maximal with respect to $N \cap U \notin M$. Choose $g \in (N \cap U) - M$. Then Theorem 3.3 yields $M \leq \langle g^G \rangle \cap U \leq N \cap U$, whence $N \cap U \trianglelefteq_0 U$. Since this also holds for every f.g. $V \leq G$ containing U, we even obtain $N \cap U \bowtie_G U$.

(c) Let N/G^* be a minimal normal subgroup in G/G^* . Fix some $g \in N - G^*$. Regard any f.g. $U \leq G$ containing g. From (b) we have $N \cap U \cong_G U$. Choose $M \cong_G U$ maximal with respect to $G^* \cap U \leq M < N \cap U$. Now $\langle M^G \rangle \cap U = M$ by Lemma 3.2. Because N/G^* is minimal normal in G/G^* , we conclude from (a) that $\langle M^G \rangle \leq G^*$. But then $G^* \cap U = M \cong_G U$.

(d) We have already noted that $G^* \leq S = \bigcap \{N \leq G \mid N \cap U \leq_0 U \text{ for all f.g. } U \leq G\}$. Assume that $G^* < S$. Then (b) implies that S/G^* is a minimal normal subgroup in G/G^* . But now (c) leads to $S \leq G^*$, a contradiction.

(e) Let $N \cong G$ with $G/N \in L\mathcal{F}$. Then, for every infinite f.g. $U \leq G$, we have $|U:U \cap N| < \infty$. By our assumption, $U \cap N$ is therefore not contained in the intersection of all *G*-subgroups of *U*. Choose $M \cong_G U$ maximal with respect to $U \cap N \notin M$. As in (b), $U \cap N \cong_0 U$. The latter also holds for finite *U*. It thus follows from (d) that $G^* \leq N$. \Box

Theorem 3.4 enables us to apply Construction 2.6 to all normal subgroups of an e.c.

Lc \mathfrak{X} -group G which contain G^* (see Theorem 2.7). We can therefore extend most of the results from [15] and [18] about normal subgroups and chief factors of e.c. $L\mathfrak{X}$ -groups to normal subgroups and chief factors of G above G^* . Here is a list of theorems which can be transposed literally: [15, Theorems 2.3, 2.5 and 2.6], [18, Theorems 3.1-4.3]. Also, [15, §3] and the corresponding results about embeddings of countable supersoluble π -groups into e.c. $L(\mathfrak{F}_{\pi} \cap \mathfrak{G})$ -groups carry over (cf. [18, end]). As a slight extension of [15, Theorem 2.5] we note that, if $N \cong G$ contains an element h of infinite order, then so does each coset of N in G (apply Theorem 3.1(c) with $U = \langle x \rangle$ and $V = \langle h \rangle$; then $h^g x$ is the desired element in the coset Nx). Finally, [16, Theorem 5.1] about locally inner automorphisms of countable e.c. $L\mathfrak{X}$ -groups holds as well for countable e.c. $Lc\mathfrak{X}$ -groups.

4. G-subgroups

Up to now, we have not established the existence of proper G-subgroups in infinite f.g. subgroups of an $Lc\mathfrak{X}$ -group G. In fact, they need not exist, since we will show in Theorem 6.1 that e.c. $Lc\mathfrak{F}$ -groups are simple. However, the situation is not always so bad.

Theorem 4.1 Suppose that all simple \mathfrak{X} -groups are contained in a variety \mathscr{V} such that every free \mathscr{V} -group of finite rank has only finitely many subgroups of finite index. Then every infinite f.g. subgroup U of an Lc \mathfrak{X} -group G contains a descending chain of G-subgroups of length ω .

Proof. Suppose that $M \cong_G U$. Let \mathscr{N} be the set of all $N \cong_0 M$ containing $\mathscr{V}(M)$. Then \mathscr{N} is finite by hypothesis. Assume that \mathscr{N} contains no G-subgroup of U. Then we can find a f.g. $X \leq G$ such that $U \leq X$, and such that $L \cap U \notin \mathscr{N}$ for all $L \cong_0 X$. On the other hand, there exists $K \cong_0 X$ with $K \cap U = M$, and we can choose $L \cong_0 X$ maximal with respect to L < K. As a chief factor of $X/L \in \mathfrak{X}$, the factor K/L lies in \mathscr{V} . But now $L \cap U \in \mathscr{N}$, a contradiction. This shows that the desired chain can be constructed inductively.

Theorem 4.1 applies for example in the case when $\mathfrak{X} = \mathfrak{F}_{\pi} \cap \mathfrak{G}$ for a finite set π of primes. More generally, Theorem 4.1 holds whenever the exponents of the simple \mathfrak{X} -groups are uniformly bounded (use Zelmanov's solution of the restricted Burnside problem [24], [25]).

Because chief factors of \mathcal{F}_p -groups are cyclic of order p, Theorem 4.1 has the following Corollary.

Corollary 4.2. Every f.g. subgroup U of an $Lc\mathfrak{F}_p$ -group G contains G-subgroups of every index $p^{\alpha} \leq |U| (\alpha \in \omega)$.

This of course generalizes the fact, that every chief series of an $L\mathfrak{F}_p$ -group induces a chief series on each of its finite subgroups. Conversely, we know from [15, Corollary

3.3], that every series of an \mathfrak{F}_p -group U is induced by the unique chief series of some countable e.c. $L\mathfrak{F}_p$ -group $G \ge U$. We will also extend this result to the $Lc\mathfrak{F}_p$ -case.

Construction 4.3. Let $(n_{\alpha})_{\alpha < \omega}$ be a sequence with $n_{\alpha} \leq \omega$. Suppose that U_0 is an infinite f.g. $c\mathfrak{F}_p$ -group, and that $\{U_{0\beta} | \beta < \omega\}$ is a descending chain of open normal subgroups of index p^{β} in U_0 . Then there exists an ascending chain $\{U_{\alpha} | \alpha < \omega\}$ of f.g. $c\mathfrak{F}_p$ -groups, and for every α a descending chain $\{U_{\alpha\beta} | \beta < \omega\}$ of open normal subgroups of index p^{β} in U_{α} such that

(1) $G = \bigcup \{ U_{\alpha} | \alpha < \omega \}$ is an e.c. $Lc\mathfrak{F}_{p}$ -group,

(2) $\{U_{\alpha\beta} | \beta < \omega\}$ is the unique chain of G-subgroups in U_{α} ,

(3) for every $\beta \leq n_{\alpha}$, there exists $\beta' < \omega$ such that $U_{\alpha\beta} = U_{\alpha} \cap U_{\alpha+1,\beta'}$, and

(4) if $n_{\alpha} < \omega$, and if m_{α} is minimal with respect to $U_{\alpha,n_{\alpha}} = U_{\alpha} \cap U_{\alpha+1,m_{\alpha}}$, then $U_{\alpha,n_{\alpha}} = U_{\alpha} \cap U_{\alpha+1,\beta'}$ for all $\beta' \ge m_{\alpha}$.

In the course of the construction it suffices to choose $n_{\alpha+1}$ after determining U_{α} and the chain $\{U_{\alpha\beta} | \beta < \omega\}$.

Proof. (a) Using Cantor's diagonal enumeration of $\omega \times \omega$ we can find a bijection $\chi: \omega \times \omega \to \omega$ such that $\alpha \leq (\alpha, \beta) \chi$ for all $\alpha, \beta < \omega$ (see also [9, Satz 3.5]). The construction is now performed inductively in such a way that,

for all
$$\alpha' \leq \alpha, \beta < \omega$$
, there exists $N \leq_0 U_{\alpha}$ such that $U_{\alpha'\beta} = N \cap U_{\alpha'}$. (4.1)

In the step $\alpha \rightarrow \alpha + 1$, let $\mathscr{G}_{\alpha\gamma}$, $\gamma < \omega$, be an enumeration of all finite systems of equations and inequalities with coefficients from U_{α} . Fix $i, j < \omega$ with $\alpha = (i, j)\chi$. Then $\alpha \ge i$, and \mathscr{G}_{ij} does already exist by induction. If \mathscr{G}_{ij} is solvable in a f.g. $c\mathfrak{F}_p$ -group $V \ge U_{\alpha}$ such that,

for all
$$\alpha' \leq \alpha, \beta < \omega$$
, there exists $N \leq_0 V$ such that $U_{\alpha'\beta} = N \cap U_{\alpha'}$, (4.2)

then put $V_{\alpha} = V$; otherwise, let $V_{\alpha} = U_{\alpha}$. It is now easy to find a descending chain $\{V_{\alpha\beta} | \beta < \omega\}$ of open normal subgroups of index p^{β} in V_{α} such that $\{U_{\alpha\beta} | \beta \le n_{\alpha}\} \subseteq \{U_{\alpha} \cap V_{\alpha\beta} | \beta < \omega\}$. If $n_{\alpha} = \omega$, then we put $U_{\alpha+1} = V_{\alpha}$ and $U_{\alpha+1,\beta} = V_{\alpha\beta}$ for all $\beta < \omega$. In this case, (4.1) and (3) are satisfied, while (4) is empty. Otherwise, we identify V_{α} with the first factor of $U_{\alpha+1} = V_{\alpha} \times V_{\alpha}$, regard $U_{\alpha+1}$ as a $c\mathfrak{F}_{p}$ -group via the product topology, and define

$$U_{\alpha+1,\beta} = \begin{cases} V_{\alpha\beta} \times V_{\alpha} & \text{if } \beta \leq l_{\alpha}, \\ V_{\alpha,l_{\alpha}} \times V_{\alpha,\beta-l_{\alpha}} & \text{if } \beta \geq l_{\alpha}, \end{cases}$$

where l_{α} is minimal with respect to $U_{\alpha, n_{\alpha}} = U_{\alpha} \cap V_{\alpha, l_{\alpha}}$. Then (3), (4) and (4.1) hold, and the induction is completed.

(b) Fix some $\alpha, \beta < \omega$ and $g \in U_{\alpha} - U_{\alpha\beta}$, $h \in U_{\alpha\beta}$. We will show now that the system \mathscr{S} consisting only of the equation

$$h = \prod_{j=1}^{\nu} [g, x_j, y_j] \quad \text{where} \quad \nu = O(U_{\alpha\beta}g)$$

has a solution in G. Clearly, $\mathscr{S} = \mathscr{S}_{\alpha\gamma}$ for some $\gamma < \omega$. Let $\mu = (\alpha, \gamma)\chi$. Because of the construction given in (a) it suffices to show that \mathscr{S} has a solution in some f.g. $c\mathfrak{F}_p$ -group $V \ge U_{\mu}$ satisfying (4.2).

Because of (4.1) there exists $L \leq_0 U_{\mu}$ such that $L \cap U_{\alpha} = U_{\alpha\beta}$. Therefore, $\mathscr{R}_{\mu} = \{M \leq_0 U_{\mu} | M \leq L\}$ is a residual system in U_{μ} which gives the topology on U_{μ} . Since every e.c. $Lc\mathfrak{F}_p$ -group is verbally complete, there exists a f.g. $c\mathfrak{F}_p$ -group $P \geq \langle h \rangle$ such that h is a commutator in P. Applying Theorem 2.1 and Remark 2.2. to the amalgam $U_{\alpha\beta} \cup P | \langle h \rangle$, we obtain a f.g. $c\mathfrak{F}_p$ -group $F \geq U_{\alpha\beta}$ such that h is a commutator in F, and such that

every $N \leq_0 U_{\alpha\beta}$ is induced in $U_{\alpha\beta}$ by some open normal subgroup of F. (4.3)

Let $\sigma: U_{\alpha} \to U_{\alpha\beta} \operatorname{Wr} U_{\alpha}/U_{\alpha\beta} \leq W = F \operatorname{Wr} U_{\alpha}/U_{\alpha\beta}$ be a Krasner-Kaloujnine embedding. Denote the base group of W by Ω . For $K \leq 0_0 F$, let $\check{K} = \{f \in \Omega \mid \operatorname{Im} f \leq K\}$. Note that, for $M \in \mathcal{R}_{\mu}$, we have

$$\check{K} \cap U_a \sigma = (M \cap U_a) \sigma \quad \text{if and only if} \quad K \cap U_{a\beta} = M \cap U_{a\beta}. \tag{4.4}$$

In particular, if $\mathscr{R}_W = \{\check{K} \mid K \leq_{0} \circ F$ with $K \cap U_{\alpha\beta} = M \cap U_{\alpha\beta}$ for some $M \in \mathscr{R}_{\mu}\}$, then $\mathscr{R}_W \cap U_{\alpha}\sigma = (\mathscr{R}_{\mu} \cap U_{\alpha})\sigma$. Put $R = \bigcap \mathscr{R}_W$, and regard H = W/R as a $c\mathfrak{F}_p$ -group under the topology given by the residual system $\mathscr{R}_H = \mathscr{R}_W/R$. Then the composition of σ and the canonical epimorphism $W \to H$ embeds U_{α} into the $c\mathfrak{F}_p$ -group H. In the following, we identify U_{α} with its image in H under this embedding. Now the proof of [16, Lemma 4.3(b)] actually shows that \mathscr{S} has a solution in H. Our aim is to obtain the desired group V from an application of Theorem 2.1 to the amalgam $U_{\mu} \cup H \mid U_{\alpha}$.

To this end, regard some $K \cong_0 F$ and $M \in \mathscr{R}_{\mu}$ with $K \cap U_{\alpha\beta} = M \cap U_{\alpha\beta}$. Because of (4.3) and (4.4), we can find for any chief series of open normal subgroups in U_{μ} , which refines $1 \le M \le L < U_{\mu}$, a chief series of open normal subgroups in H, which refines $1 \le \check{K}/R \le \Omega/R \le H$, such that both series induce the same on U_{α} . It thus follows from [12] that the amalgam $U_{\mu}/M \cup H/N \mid U_{\alpha}M/M \equiv U_{\alpha}N/N$, where $N = \check{K}/R$, is contained in an \mathfrak{F}_{p} -group. This shows that we may apply Theorem 2.1 and Remark 2.2 to find a f.g. $c\mathfrak{F}_{p}$ -group V containing the amalgam $U_{\mu} \cup H \mid U_{\alpha}$, and satisfying

whenever $M \trianglelefteq_0 U_{\mu}$ and $N \trianglelefteq_0 H$ are such that $M \cap U_{\alpha} = N \cap U_{\alpha}$ and such that amalgam $U_{\mu}/M \cup H/N | U_{\alpha}M/M \equiv U_{\alpha}N/N$ is contained in an \mathfrak{F}_p -group, then there exists $K \trianglelefteq_0 V$ with $K \cap U_{\mu} = M$ and $K \cap H = N$. (4.5)

It remains to prove that V satisfies (4.2).

To this end, fix $\alpha \leq \kappa \leq a$. From (4.1) there exists a descending chain $\{M_{\lambda} | \lambda < \omega\}$ of open normal subgroups in U_{μ} which induces $\{U_{\kappa\lambda} | \lambda < \omega\}$ in U_{κ} , and hence also $\{U_{\alpha\beta'} | \beta' \leq n_{\alpha}\}$ in U_{α} . Therefore, (4.3) and (4.4) yield a descending chain of open normal

subgroups in H which induces $\{U_{\alpha\beta'} | \beta' \leq n_{\alpha}\}$ in U_{α} . Now (4.5) gives $K_{\lambda} \leq 0$ V with $K_{\lambda} \cap U_{\mu} = M_{\lambda}$. Suppose now that $\kappa < \alpha$. By the above argument, there exists a descending chain $\{K_{\lambda} | \lambda \leq n_{\kappa}\}$ of open normal subgroups in V which induces $\{U_{\kappa\lambda} | \lambda \leq n_{\kappa}\}$ in U_{κ} . If $\lambda > n_{\kappa}$, then (3) and (4) yield $U_{\kappa\lambda} \leq U_{\alpha\beta}$, and using (4.1) we can extend $\{K_{\lambda} \cap U_{\mu} | \lambda \leq n_{\kappa}\}$ to a descending chain $\{M_{\lambda} | \lambda < \omega\}$ of open normal subgroups in U_{μ} , which induces $\{U_{\kappa\lambda} | \lambda < \omega\}$ in U_{κ} , and which satisfies $M_{\lambda} \in \mathscr{R}_{\mu}$ for all $\lambda > n_{\kappa}$. Again, (4.3)-(4.5) apply.

(c) Clearly, (4.1) ensures that every $U_{\alpha\beta}$, $\beta < \omega$, is a G-subgroup of U_{α} . Conversely, if $N \trianglelefteq_G U_{\alpha}$, then N has finite index in U_{α} . Therefore, N is not contained in $\bigcap \{U_{\alpha\beta} | \beta < \omega\}$. Choose β minimal with respect to $N \notin U_{\alpha,\beta+1}$. If $g \in N - U_{\alpha,\beta+1}$, then (b) and Lemma 3.2 yield that $U_{\alpha,\beta+1} < \langle g^G \rangle \cap U_{\alpha} \le \langle N^G \rangle \cap U_{\alpha} = N \le U_{\alpha\beta}$. It follows that $N = U_{\alpha\beta}$. This shows that (2) holds.

(d) Finally, let us prove (1). Suppose, that \mathscr{S} is a finite system of equations and inequalities with coefficients $g_1, \ldots, g_r \in G$ and a solution h_1, \ldots, h_s in some $Lc\mathfrak{F}_p$ -supergroup H of G. Choose $\alpha < \omega$ such that $g_1, \ldots, g_r \in U_\alpha$. Then $\mathscr{S} = \mathscr{S}_{\alpha\gamma}$ for some $\gamma < \omega$. Let $\mu = (\alpha, \gamma)\chi$, and regard $V = \langle U_\mu, h_1, \ldots, h_s \rangle$. By the construction given in (a), \mathscr{S} will have a solution in $U_{\mu+1} \leq G$ if, for all $\kappa \leq \mu, \lambda < \omega$, there exists $N \leq _0 V$ such that $U_{\kappa\lambda} = N \cap U_{\kappa}$. But this is true, since the $U_{\kappa\lambda}$ are the only G- and hence also the only H-subgroups of U_{κ} (Corollary 4.2).

Corollary 4.4. Let U be an infinite f.g. $c\mathfrak{F}_p$ -group. If $\{N_\alpha \mid \alpha < \omega\}$ is a descending chain of open normal subgroups of index p^α in U, then U is contained in a countable e.c. $Lc\mathfrak{F}_p$ -group G such that the N_α are precisely the G-subgroups in U.

Construction 4.3 enables us to build various examples of countable e.c. $Lc\mathfrak{F}_n$ -groups.

Example 4.5. Each of the following properties is shared by 2^{\aleph_0} (pairwise non-isomorphic) non-periodic countable e.c. $Lc\mathfrak{F}_p$ -groups $G: G^* = G, 1 \neq G/G^* \in L\mathfrak{F}_p, G/G^* \notin L\mathfrak{F}_p$.

Proof. Regard the free group U_0 of rank two as a $c\mathfrak{F}_p$ -group under the topology given by the residual system of all $N \cong U_0$ of *p*-power index. Since the commutator factor group of every subgroup of finite index in U_0 is free abelian of rank ≥ 2 [20, Proposition I.3.9], there exist 2^{\aleph_0} descending chains of subgroups $\{U_{0\beta} | \beta < \omega\}$ of index p^{β} in U_0 with $\bigcap \{U_{0\beta} | \beta < \omega\} = 1$. An application of Construction 3.4 to these chains clearly yields 2^{\aleph_0} countable e.c. $Lc\mathfrak{F}_p$ -groups G, which are not isomorphic as $Lc\mathfrak{F}_p$ -groups, since they contain U_0 in too many non-compatible ways. Choose $n_{\alpha}=0$ (resp. $n_{\alpha}=\omega$) for all α to establish $G^*=G$ (resp. $G/G^*\notin L\mathfrak{F}_p$). Moreover, if $0 < n_0 < \omega$, then $n_{\alpha+1}=m_{\alpha}$ for all α leads to $1 \neq G/G^* \in L\mathfrak{F}_p$, since $U_{0,n_0-1}G^*/G^*$ is a minimal normal subgroup in G/G^* in this case.

5. E.c. LcF_p-groups

In the case when $\mathfrak{X} = \mathfrak{F}_{p}$, we can make more progress by considering further

applications of Corollary 2.5 to e.c. $Lc\mathcal{F}_p$ -groups. To this end we will have to regard specific \forall_2 -sentences. For any reduced word $w(\xi_1,\ldots,\xi_v) \neq 1$, we define the term $t_w(g,\bar{x})$ as follows.

$$t_{w}(g,\bar{x}) = w\left(\prod_{i=0}^{p-1} [g, x_{1,i}, x_{1,p+i}], \dots, \prod_{i=0}^{p-1} [g, x_{v,i}, x_{v,p+i}]\right).$$
(5.1)

249

Then the \forall_2 -sentence ϕ_w is given by

$$\phi_{\mathbf{w}} = \forall g, h \exists \bar{x} \left[\bigvee_{k=0}^{p-1} h = g^k \cdot t_{\mathbf{w}}(g, \bar{x}) \lor \bigvee_{k=0}^{p-1} g = h^k \cdot t_{\mathbf{w}}(h, \bar{x}) \right].$$
(5.2)

Lemma 5.1. Every e.c. $Lc\mathfrak{F}_p$ -grouup satisfies the above \forall_2 -sentences ϕ_w .

Proof. Note that $[x_{1j}, x_{2j}] = [(b, f), x_{1j}, x_{2j}]$ actually holds for all $j \in \{1, ..., m\}$ in the proof of [16, Lemma 4.3(b)]. Therefore, a detailed analysis of the proof of [16, Theorem 4.7] shows that the unique countable e.c. $L\mathfrak{F}_p$ -group satisfies each ϕ_w . Now Corollary 2.5 applies.

Lemma 5.1 provides the key for the proof of the following theorem.

Theorem 5.2. Every e.c. $Lc\mathfrak{F}_p$ -group G has a unique chief series Σ . The chief factors of G are central and cyclic of order p, and the order type of Σ is a dense order without endpoints.

Proof. Regard any $K, L \cong G$. Suppose that there exists $g \in K - L$. From $g \notin L$ we have $g \notin \langle h^G \rangle$ for every $h \in L$. Therefore it follows from Lemma 5.1 that $h \in \langle g^G \rangle$ for every $h \in L$, whence $L \subseteq K$. This shows that the normal subgroups of G are totally ordered via inclusion. Equivalently, G has a unique chief series.

Regard a chief factor M/N in G. If $g \in M - N$ then, from Lemma 3.2, Σ must induce the unique chain of G-subgroups in $\langle g \rangle$, when $g^p \in N$. Therefore, $\exp(M/N) = p$. Regard the reduced word $w(\xi) = \xi^p$ and some $g, h \in M - N$. Then Lemma 5.1 yields that $g \in h^k N$ or $h \in g^k N$ for some $k \in \{1, \dots, p-1\}$. This shows that M/N is cyclic of order p. Since G is verbally complete, G has no finite epimorphic image, and so M/N must be central.

Lemma 5.1 applied to the word $w(\xi_1, \xi_2) = [\xi_1, \xi_2]$ yields that M' = N for every chief factor M/N in G. Since G is also perfect and has trivial centre (Theorem 3.1), we may deduce as in the proof of [19, Theorem B(d)] that Σ has the desired order type.

Theorem 5.2 implies that every $Lc\mathfrak{F}_p$ -group has a chief series with central and cyclic factors of order p. Note also, that the existence of a unique chief series with dense order type and elementary-abelian factors could also be shown for e.c. $Lc(\mathfrak{F}_{\pi} \cap \mathfrak{G})$ -groups, where π is a finite set of primes, if there would exist a pendant to Lemma 5.1, i.e., if it could be shown, for example, that there exists some fixed $m < \omega$ such that, for every

chief factor M/N of a countable e.c. $L(\mathfrak{F}_{\pi} \cap \mathfrak{G})$ -group, and for all $g, h \in M - N$, the element $Nh \in G/N$ is a product of at most *m* conjugates of powers of Ng in G/N (cf. [16, Theorem 4.9 and p. 214]).

Theorem 5.3. Let $K \cong G$, where G is e.c. in $Lc\mathfrak{F}_p$, and suppose that $K \neq \langle g^G \rangle$ for all $g \in G$. Then the following hold.

- (a) K is e.c. in G. In particular, every normal subgroup of K is already normal in G, and conjugation with elements from G induces locally inner automorphisms on K.
- (b) If $K \in L\mathcal{F}_p$, then K is e.c. in $L\mathcal{F}_p$.

Proof. Let \mathscr{S} be a finite system of equations and inequalities with coefficients \bar{c} and unknowns \bar{x} .

(a) Denote by $\phi(\bar{c}, \bar{x})$ the conjunction of all equations and inequalities from \mathscr{S} . Consider the \forall_2 -sentence

$$\forall g, \bar{c}, \bar{d}, \bar{y}_i \exists \bar{h}, \bar{z}_j \left[g \neq 1 \land \phi(\bar{c}, \bar{d}) \land \bigwedge_i c_i = t_w(g, \bar{y}_i) \to \phi(\bar{c}, \bar{h}) \land \bigwedge_j h_j = t_w(g, \bar{z}_j) \right],$$

where $w(\xi_1, \xi_2) = [\xi_1, \xi_2]$. This sentence expresses that, whenever \mathscr{S} has coefficients \bar{c} in [g, G, G]' and a solution \bar{d} in G, then there exists a solution \bar{h} to \mathscr{S} in $\langle g^G \rangle'$. It is satisfied in the countable e.c. $L\mathfrak{F}_p$ -group [16, Theorem 4.8]. Thus Corollary 2.5, Lemma 5.1 and Theorem 5.2 yield that the groups N in the chief factors M/N of G are e.c. in G. It now follows from the arguments of [16, Theorem 4.8], that K satisfies (a).

(b) Suppose that \mathscr{S} has coefficients in K and a solution in the $L\mathfrak{F}_p$ -group $H \ge K$. Then $U = \langle \bar{c} \rangle$ is finite. Since K is e.c. in G, and since G is e.c. in $L\mathfrak{CF}_p$, it suffices to embed the amalgam $G \cup H | U$ into an $L\mathfrak{CF}_p$ -group. To this end, we check the conditions of Theorem 2.1. By (a), K has a unique chief series. So [21, Hilfssatz 1] yields the existence of a finite group $V \ge U$ in K such that every chief series in V induces the Kchief series in U. Let \mathscr{L}_G and \mathscr{L}_H be the local systems in G resp. H of all f.g. subgroups containing V. For $(X, Y) \in \mathscr{L}_G \times \mathscr{L}_H$, put $\mathscr{R}_{X,Y} = \{M \le_0 X | M \cap V = 1\}$ and $\mathscr{R}_{Y,X} = \{1\}$. Then [12] ensures that, for all $M \in \mathscr{R}_{X,Y}$, the amalgam $X/M \cup Y | UM/M \equiv U$ is contained in an \mathfrak{F}_p -group, since $X/M \ge VM/M \cong V$ and $Y \ge V$ enforce that all chief series in X/M and Y induce the K-chief series in $UM/M \equiv U$.

It remains open, whether Theorem 5.3(b) can be extended to arbitrary K. Note that, if K is the unique countable e.c. $L\mathcal{F}_p$ -group E_p , then G is contained canonically in the group LokInn (E_p) of all locally inner automorphisms of E_p by Theorem 3.1(b).

Theorem 5.4. Let G be e.c. in LcF_p . Then every subnormal subgroup of G is already normal in G.

Proof. Assume that there exists a subnormal subgroup S of defect 2 in G. Because of Theorem 5.3, there exists a chief factor M/N in G such that $S \lhd M \lhd G$, and such that S is not in N. Regard the \forall_2 -sentence

$$\forall g, h, \bar{x} \exists \bar{y}, \bar{z}_i \left[h = t_w(g, \bar{x}) \to h = t_v(g, \bar{y}) \land \bigwedge_i y_i = t_w(g, \bar{z}_i) \right],$$

where $v(\xi) = \xi$ and $w(\xi_1, \xi_2) = [\xi_1, \xi_2]$. A detailed analysis of the proof of [16, Theorem 4.11(f)] shows that this sentence is satisfied by the countable e.c. $L\mathcal{F}_p$ -group. Hence it also holds in G by Corollary 2.5. Because of Lemma 5.1 and Theorem 5.2 we conclude that $N \leq [g, N, N] \leq S < M$ for any $g \in S - N$. But this enforces S = N, a contradiction. \Box

We can also extend [15, §3] and [16, Theorems 4.1/2] literally to results about embeddings of countable $L\mathfrak{F}_p$ -groups into e.c. $Lc\mathfrak{F}_p$ -groups and to results about partial complements to normal subgroups $\neq \langle g^G \rangle$ in e.c. $Lc\mathfrak{F}_p$ -groups G (here, G_0/N resp. G_0/K must be in $L\mathfrak{F}_p$). To this end we just transform the systems of equations and inequalities used in the proofs of these theorems into suitable \forall_2 -sentences. Example 4.5 shows that the full generalization of the above embedding results (without restriction to $L\mathfrak{F}_p$ -groups) does not hold. As far as conjugacy of f.g. subgroups in e.c. $Lc\mathfrak{F}_p$ -groups is concerned, we have the following result.

Theorem 5.5. Let G be an e.c. $Lc\mathfrak{F}_p$ -group.

(a) An isomorphism $\phi: A \to B$ between f.g. subgroups of G is induced by conjugation in G, if and only if there exists a local system \mathscr{L} in G of f.g. subgroups which contain $\langle A, B \rangle$ such that, in every $X \in \mathscr{L}$, there is a chief series $\{N_{\alpha}\}_{\alpha \in \omega}$ of open normal subgroups such that $a^{-1} \cdot a\phi \in N_{\alpha+1}$ for all $a \in (A \cap N_{\alpha}) - N_{\alpha+1}$.

(b) An element $g \in G$ of infinite order is conjugate in G to g^n $(n \in \mathbb{Z})$, if and only if $n \equiv 1 \pmod{p}$.

Proof. Combine Theorem 2.3 with [15, Corollary 3.3(b)] and [17, Theorem 6.1].

It remains open whether every automorphism of G, which stabilizes the unique chief series in G, is a locally inner automorphism (cf. [17, Theorem 6.1]).

6. E.c. LcF-groups

The techniques developed in Section 2 yield the following informations about e.c. LcF-groups.

Theorem 6.1. The following assertions hold for every e.c. LcF-group G.

- (a) Every isomorphism between finite subgroups of G is induced by conjugation in G.
- (b) If $G \cup H \mid U$ is an amalgam of G with a countable LF-group H over a finite subgroup U, then id: $U \rightarrow G$ can be extended to an embedding $H \rightarrow G$.
- (c) For all $g, h \in G-1$ there exist $x, y \in G$ such that $h = g^x g^y$. In particular, G is simple.
- (d) On every f.g. abelian subgroup of G, inversion is induced by conjugation in G. In particular, every element in G is conjugate to its inverse.

(e) Let w_1, \ldots, w_n be words in unknowns x_1, \ldots, x_n and elements of G. Denote by d_{ij} the exponent sum of x_j in w_i . If det $(d_{ij}) \neq 0$, then the system of equations $w_i = 1$ for $1 \leq i \leq n$ has a solution in G.

Proof. The assertions (a), (c), (d), (e) can be encoded as \forall_2 -sentences and hold in every e.c. LF-group by [14, Theorem 6.1] and [4, Theorem 2]. Moreover, (b) follows from an iterated application of the corresponding statement for finite H, which in turn can be expressed as an \forall_2 -sentence that holds in the unique countable e.c. LF-group [14, Theorem 6.1].

Of course, one is tempted to ask in how far the assertion (a) of Theorem 6.1 extends to isomorphisms between infinite f.g. subgroups of an e.c. $Lc\mathcal{F}$ -group G. We will show now that it is hardly possible to make much progress in this direction.

Theorem 6.2. Let G be an e.c. $Lc\mathcal{F}$ -group.

(a) An isomorphism $\phi: A \to B$ between f.g. subgroups of G is induced by conjugation in G, if and only if there exists a local system \mathcal{L} of f.g. subgroups of G which contain $\langle A, B \rangle$ such that, for every $X \in \mathcal{L}$, the topology on X is given by a residual system \mathcal{R}_X , such that ϕ induces an isomorphism $AN/N \to BN/N$ for every $N \in \mathcal{R}_X$.

(b) An element $g \in G$ of infinite order is conjugate in G to g^n $(n \in \mathbb{Z})$, if and only if $0(g^n N) = 0(gN)$ for every $N \leq _0 \langle g \rangle$. In particular, no element of infinite order in G is conjugate to all of its non-trivial powers.

Proof. (a) follows from Theorem 2.3 and [7, Lemma 1].

(b) If $0(g^n N) = 0(gN)$ for every $N \supseteq_0 U = \langle g \rangle$, then (a) implies that g is conjugate to g^n . Conversely, suppose that $0(g^n N) \neq 0(gN)$ for some $N \supseteq_0 U$. Then $0(g^n M) \neq 0(gM)$ for every $M \supseteq_0 U$ with $M \le N$. But every residual system in U contains some $M \supseteq_0 U$ such that $M \le N$, whence (a) implies that g is not conjugate to g^n .

Let $C = \langle c \rangle$ be the infinite cyclic group with the topology given by the residual system of all $N \cong C$ of finite index. Then Theorem 6.2(b) shows that, in every e.c. $Lc\mathfrak{F}$ -group $G \ge C$, the element c is conjugate to c^n $(n \in \mathbb{Z})$ if and only if $n = \pm 1$.

REFERENCES

1. B. BAUMSLAG, On the residual finiteness of generalized free products of nilpotent groups, *Trans. Amer. Math. Soc.* 106 (1963), 193-209.

2. B. BAUMSLAG and M. TRETKOFF, Residually finite HNN-extensions, Comm. Algebra 6 (1978), 179–194.

3. J. DUGUNDJI, Topology (Allyn and Bacon, Boston 1966).

4. M. GERSTENHABER and O. S. ROTHAUS, The solution of sets of equations in groups, *Proc. Nat. Acad. Sci USA* 48 (1962), 1531-1533.

5. E. S. GOLOD, On nil-algebras and finitely approximable p-groups, AMS Translations (2) 48 (1965), 103-106.

6. R. I. GRIGORCHUK, Construction of p-groups of intermediate growth that have a continuum of quotient groups, *Algebra and Logic* 23 (1984), 265–273.

7. P. HALL, Some constructions for locally finite groups, J. London Math. Soc. 34 (1959), 305-319.

8. B. HARTLEY, Profinite and residually finite groups, Rocky Mountain Math. J. 7 (1977), 193-217.

9. F. HAUG, Existenziell abgeschlossene LFC-Gruppen (Dissertation, Tübingen 1987).

10. E. HEWITT and K. A. Ross, Abstract harmonic analysis I (Springer, Berlin, 1963).

11. P. J. HIGGINS, An introduction to topological groups (LMS Lecture Note Series 15, Cambridge, 1974).

12. G. HIGMAN, Amalgams of p-groups, J. Algebra 1 (1964), 301-305.

13. J. HIRSCHFELD and W. H. WHEELER, Forcing, arithmetic, division rings (Springer Lecture Notes 454, Berlin, 1975).

14. O. H. KEGEL and B. A. F. WEHRFRITZ, Locally finite groups (North-Holland, Amsterdam, 1973).

15. F. LEINEN, Existentially closed groups in locally finite group classes, Comm. Algebra 13 (1985), 1991-2024.

16. F. LEINEN, Existentially closed LX-groups, Rend. Sem. Mat. Univ. Padova 75 (1986), 191-226.

17. F. LEINEN, Existentially closed locally finite p-groups, J. Algebra 103 (1986), 160-183.

18. F. LEINEN, Uncountable existentially closed groups in locally finite group classes, *Glasgow J. Math.* 32 (1990), 153-163.

19. F. LEINEN and R. E. PHILLIPS, Existentially closed central extensions of locally finite pgroups, *Math. Proc. Cambridge Philos. Soc.* 100 (1986), 281–301.

20. R. C. LYNDON and P. E. SCHUPP, Combinatorial group theory (Springer, Berlin, 1977).

21. B. MAIER, Existenziell abgeschlossene lokal endliche p-Gruppen, Arch. Math. 37 (1981), 113-128.

22. B. H. NEUMANN, On amalgams of periodic groups, Proc. Roy. Soc. London (A) 255 (1960), 477-489.

23. L. RIBES, On amalgamated products of profinite groups, Math. Z. 123 (1971), 357-364.

24. E. I. ZEL'MANOV, Solution of the restricted Burnside problem for groups of odd exponent, Math. USSR Izvestiya 36 (1991), 41-60.

25. E. I. ZEL'MANOV, Solution of the restricted Burnside problem for 2-groups, Mat. Sb., to appear.

Fachbereich 17-Mathematik Johannes Gutenberg-Universität Saarstr. 21 D-6500 Mainz Germany