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OPERATOR ALGEBRAS 
WITH CONTRACTIVE APPROXIMATE IDENTITIES 

YIU-TUNG POON AND ZHONG-JIN RUAN 

ABSTRACT. We study operator algebras with contractive approximate identities and 
their double centralizer algebras. These operator algebras can be characterized as L°°-
Banach algebras with contractive approximate identities. We provide two examples, 
which show that given a non-unital operator algebra A with a contractive approximate 
identity, its double centralizer algebra M (A) may admit different operator algebra matrix 
norms, with which M (A) contains A as an M-ideal. On the other hand, we show that there 
is a unique operator algebra matrix norm on the unitalization algebra A1 of A such that 
A1 contains A as an M-ideal. 

1. Introduction. Given a Hilbert space //, we let B(H) denote the space of all 
bounded linear operators on H with the operator norm. For each n G N, the set of natural 
numbers, there is a natural norm 11 • 11 „ on the space Mn (B(H)) of all n x n matrices on B(H) 
obtained by identifying Mn(B(H)) with B{Hn), where Hn is the direct sum of n copies 
of H. We call this family of norms {|| • ||n} the operator matrix norm on B(H). A norm 
closed subspace (resp., a norm closed subalgebra) of B(H) together with the operator 
matrix norm is called a concrete operator space (resp., a concrete operator algebra). A 
concrete operator algebra is called unital if it contains the identity operator on the Hilbert 
space. 

Operator matrix norms play an important role in the study of operator spaces and oper­
ator algebras. In [Rul] and [BRS], we have succeeded in characterizing concrete operator 
spaces and concrete unital operator algebras as L°°-matricially normed spaces and unital 
L°°-Banach algebras (or equivalently, unital L°°-Banach pseudo-algebras), respectively. 
For the convenience of the reader, let us recall these results. 

An L°°-matricially normed space is a vector space V over the complex numbers C 
together with a norm || • ||„ on each matrix space Mn(V) such that the following conditions 
are satisfied: 

(Ml) \\x®y\\n+m = max{||*||/i, \\y\\m} 

(M2) \\axPWn < H I \\x\\n\\(3\\ 
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398 Y.-T. POON AND Z.-J. RUAN 

for all x G Mn(V), y G Mm(V) and <x,(3 e Mn(C) (cf. [Ef] and [Rul]). In this paper, we 
assume that all L°°-matricially normed spaces are norm complete, i.e., Mn(V) is a Banach 
space for each n G N. 

Given L°°-matricially normed spaces V and W and a linear map tp: V —> W, there is a 
natural map ipn: Mn(V) —̂  Mn(W) defined by 

We let \\(f\\cb = sup{||(^w|| : n G N}. The map tp is called completely bounded (resp., 
completely contractive, completely isometric) if ||^||cb < +co (resp., ||^||Cb £ 1, each 
(fn is an isometry). We will use B(V, W) (resp., CB(V, W)) to denote the space of all 
bounded maps (resp., the space of all completely bounded maps) from V into W. 

It is easy to see that every concrete operator space is an L^-matricially normed space. 
On the other hand, we have 

THEOREM 1.1 [Rul]. Every L°°-matricially normed space is completely isometri-
cally linearly isomorphic to a concrete operator space. 

Theorem 1.1 characterizes operator spaces as L°°-matricially normed spaces. Re­
cently, we have found an extremely simple proof of this theorem in [ER6]. 

An L°°-Banach algebra is an associative algebra A over the complex number C such 
that 

1) A is an L^-matricially normed space, i.e., an (abstract) operator space 
2) the associative multiplication m:A x A —^ A is a completely contractive bilinear 

map. 
We recall that a bilinear map m: A x A —» A is completely contractive (cf. [CS]) if it 

satisfies 
i l r n in 

\\mn([aijl[bjk])\\n = \\\J2m(aV'bjk)\\\ < | | [ÛI/] | | /I | | [^] | | /I 
I I L 7 = 1 J l i n 

for all [ay], [bjk] G Mn(A) and n G N. We note that condition 2) is equivalent to the 
following: for each n G N, the matrix algebra Mn(A) is a Banach algebra with respect to 
the multiplication mn and the norm || • ||„. 

An L°°-Banach algebra A is called unital if it has a multiplicative unit e of norm one, 
i.e., it has a distinguished element e of norm one such that 

m(a, e) = a = m(e, a) 

for all a G A. An L°°-Banach algebra A is said to have a contractive approximate identity 
if there is a net {aa : a G A} of contractive elements in A such that 

\\m(aa,a) — a\\—> 0, \\m(a, aa) — a\\—>0 

for all a e A. 
In the above définition of L°°-Banach algebras, we assume that the algebras are asso­

ciative. If we drop the associativity, we get the definition of L°°-Banach pseudo-algebras. 
It is easy to see that every concrete unital operator algebra is a unital L°°-Banach algebra, 
and thus a unital L°°-Banach pseudo-algebra. Conversely, we have 
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CONTRACTIVE APPROXIMATE IDENTITIES 399 

THEOREM 1.2 [BRS]. Every unital L°°-Banach pseudo-algebra is completely iso-
metrically unital isomorphic to a concrete unital operator algebra. 

Theorem 1.2 charaterizes concrete unital operator algebras as unital L°°-Banach 
pseudo-algebras. It also shows that unital L°°-Banach pseudo-algebras are automatically 
associative and thus can be identified with unital L°°-Banach algebras. We can simply 
regard these algebras as (abstract) unital operator algebras, and call their matrix norms 
unital operator algebra matrix norms. 

There is no doubt that unital operator algebras are the most important operator alge­
bras in our study. But many interesting operator algebras fail to have units. For example, 
norm closed two-sided ideals of operator algebras usually have no units. But some "nice" 
ideals, i.e., M-ideals in unital operator algebras have contractive approximate identities 
(cf. [ER2] and [PR]). This motivated us to study a more general class of operator alge­
bras, i.e., operator algebras with contractive approximate identities. 

In §2, we begin by studying the double centralizer algebras of L°°-Banach algebras. 
We show that for any L°°-Banach algebra A with a contractive approximate identity, 
there is a canonical matrix norm {||| • |||„} on its double centralizer algebra M(A). With 
this matrix norm, M(A) is a unital L°°-Banach algebra containing A as an M-ideal (The­
orem 2.3). It follows from Theorem 1.2 that M(A) is completely isometrically unital 
isomorphic to a unital concrete operator algebra on a Hilbert space. As a consequence, 
A is completely isometrically isomorphic to a concrete operator algebra (Theorem 2.4). 
Furthermore, we show that A can be identified with a concrete non-degenerate operator 
algebra on a Hilbert space (Proposition 2.5). 

In §3, we study some properties of the double centralizer algebras of operator algebras 
with contractive approximate identities. We show in Theorem 3.1 that if A is a non-
degenerate operator algebra on a Hilbert space H, and if we let B — {x G B(H) : xA Ç 
A and Ax Ç A} be the double multiplier algebra of A on H, then M (A) is completely 
isometrically unital isomorphic to B. Furthermore, we show in Proposition 3.2 that M(A) 
is completely isometrically unital isomorphic to a unital subalgebra of A**, where the 
latter is the second dual of A. 

It is known that for any C*-algebra A, there is a natural C*-algebra matrix norm on 
A. With this C*-algebra matrix norm, A is an operator algebra with a contractive approx­
imate identity and its double centralizer algebra M(A) has a unique unital C*-algebra 
matrix norm such that M(A) contains A as an M-ideal. But this is not necessarily true for 
operator algebras. Given an operator algebra A with a contractive approximate identity, 
there might exist different unital operator algebra matrix norms on M(A), with which 
M (A) contains A as an M-ideal. 

In §4, we study the unital operator algebra matrix norm structure on the double cen­
tralizer algebras of operator algebras with contractive approximate identities. We will 
discuss two examples, Example 4.3 and Example 4.4. In Example 4.3, we show that 
there is a unital operator algebra matrix norm {||| • |||^} on £°°(N), the double centralizer 
algebra of co(N), which is different from the canonical unital operator algebra (in fact, 
C*-algebra) matrix norm {||| • |||w} on £°°(N). In this case, we acturally get ||| -\\\\ ^ ||| • III i • 
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For non-self adjoint operator algebras, it is possible to construct different unital operator 
algebra matrix norms {111 • 111 f

n} on their double centralizer algebras such that 111 • 111 \ = \\\'\\\\ 
(see Example 4.4). 

In §5, we study the unitalization algebras of non-unital operator algebras with con­
tractive approximate identities. The main result, Theorem 5.2, in this section shows that 
for every such operator algebra A, there is a unique unital operator algebra matrix norm 
on the unitalization algebra A1 of A such that A1 contains A as an M-ideal. 

2. Double centralizer algebras. The theory of double centralizers, or double mul­
tipliers was first studied by G. Hochschild in [Ho] for associative algebras over a field 
k. It was also studied by S. Helgason in [He] for certain commutative Banach algebras, 
by B. Johnson in [Jo] for Banach algebras with bounded approximate identities, and by 
R. Busby in [Bu] for C*-algebras. We begin this section by recalling the définition of 
double centralizers for associative algebras in [Ho]. We will delete the multiplication m 
in our notation unless it is necessary. 

Let A be an associative algebra over a field k. A double centralizer of A is a pair (S, T) 
of linear maps S and T on A which satifies the following conditions: 

(DC1) aS(b) = T(a)b 

(DC2) S(ab) = S(a)b 

(DC3) T(ab) = aT(b) 

for all a, b G A. 
If A is an L°°-Banach algebra with a contractive approximate identity, any maps S and 

T satisfying (DC1) are automatically linear and bounded, and satisfy conditions (DC2) 
and (DC3) (cf. [Jo]). In this case, the double centralizers of A can be defined as follows. 

DEFINITION 2.1. Let A be an L°°-Banach algebra with a contractive approximate 
identity. A double centralizer of A is a pair (S, T) of maps S and T on A which satisfies 
condition (DC 1). 

We let M(A) denote the set of all double centralizers of A. With the operations defined 
by 

(Si,r1) + (52,72) = (5 i+s 2 , r 1 + r2) 

a(S, T) = (<xS, aT) 

(SuTl)o(S29T2) = (SioS2,T2oTl) 

for all (S, T) and (Si, T{) G M(A) and scalars a, M(A) is an associative unital algebra with 
unit (id^, id^), which is called the double centralizer algebra of A. In the following, we 
will show that there is a natural operator matrix norm on M (A) such that M (A) is a unital 
L°°-Banach algebra. 
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LEMMA 2.2. Let A be an L°°-Banach algebra with a contractive approximate iden­
tity. For any (S, T) G M (A), the linear maps S and T are completely bounded with 

l|5||cb = ||5|| = ||7'|| = ||r||cb. 

Furthermore, for any [(Sy, 7̂ -)] G Mn(M(A)\ we have 

||[si/]||cb = ||[5(,]|| = ||[r(?]|| = ||[7V]||cb. 

PROOF. Let {aa}aeA be a contractive approximate identity for A. For each a G A, 
~aa 0 

n G N, define^ = . Then {a£}aGA is clearly a contractive approximate 

0 aa 

identity for Mn(A). Given any (S, T) G M (A), we have 

| |%b = sup{||[S(û iy)]||„:||K-]||„<l} 

= sup{||<[5(^)]||n : IlK-lHn < U 6 A } 

- sup{||[att5(al7)]|U
 : I IMI* < U e A } 

= sup{||[r(«a)^-]||„ : ||[aiy]||n < l, a G A} 

< l|r||. 

Similarly, we can show that ||r||Cb < ||5||. Thus S and T are completely bounded and 

l|s||cb = l|s|| = ||r|| = ||r|U. 

Given any element [(Sy, Ty)] € M„(M(A)), we have 

[Sij] and [7^] € Mn(B(A,A)) ^ B(A,M„(A)). 

A similar argument shows that 

||[S&-]||cb=||[5«,]|| = ||t7V]|| = ||[7'(,-]||cb. -

By Lemma 2.2, we can define a norm ||| • |||n on each Mn(M(A)) by 

|||[(Sff,7(,-)]|||„ = ||[5ff]|| ( = | I M | ) 

for all [(Sy, Ttj)] G Mn(M(A)}. We call {||| • |||n} the canonical matrix norm on M(A). 

THEOREM 2.3. Let A be an L°°-Banach algebra with a contractive approximate 
identity. The double centralizer algebra M (A) with the canonical matrix norm is a unital 
L°°-Banach algebra containing A as an M-ideal. 

PROOF. First we recall that B(A, A) is an L^-matricially normed space with the ma­
trix norm obtained by identifying Mn(B(A, A)) with B (A,Mn (A)) (cf. [ER1]). Then M(A) 
with the canonical matrix norm {||| • |||„} is an L°°-matricially normed space. 
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The multiplication m: M (A) x M (A) —> M (A) denned by 

m((s,,r1),(S2,72)) = (S ioS2 ,r 2 or 1 ) 

for all (5,-, Ti) G M(A) is unital and associative. The unit element (id^, id^) has norm one. 

It remains to show that m is a completely contractive bilinear map. 

For any [(SiJ9 7-,-)], [(Sf
jk, T'jk)\ G Mn(M(A)), we have 

l|mw([(̂ ,̂ )],[(̂ ,̂ )])|||̂  = | [ ( è ^ o ^ , x : ^ 0 ^ 

!|a|| < l, a G A 

|| < U G A } 

| K ^ ^ ) ] | l | i 

7=1 

7=1 

{il r n i 
= sup E f l A , 0 ^ W 

111 Ly=i J 

= sup{||[r(/(fla)][S;fc(fl)]||ll:||£i 

<I|[7V]|| | |[S/Jll = ll|[(5i/,7V)]| 

Thus M{A) is a unital L°°-Banach algebra. 

Next we show that the algebra A can be identified with an M-ideal in M (A). For any 

a G A, we let La (resp., Ra) be the left (resp., right) multiplication map defined by La(b) — 

ab (resp., Ra(b) — bd) for all b G A. Since A is an associative algebra, the pair (Lfl, Ra) of 

bounded maps belongs to M(A). Thus p,(a) — (La,Ra) for a G A defines a map /i: A —+ 

Af(A). Clearly /z is an algebraic homomorphism such that p,(A) is a two-sided ideal in 

M (A). Furthermore, we can show that /x is a complete isometry. 

To see this, for any [ay] G Mn(A), we have 

| | | [ (L . y , /^ ) ] | | | n = | |[L%] | | - sup{| |[^a] | |„ : ||<z|| < 1} < | | [%] | |„ . 

On the other hand, we have 

\\[aij]\\„ = sup{||[a„ay]||„ : a G A} 

= sup{\\[Raij(aa)]\\n : a e A} 

< \\[Raa]\\ = HIK^./MIII». 

Hence, /x: A —> M(A) is a complete isometric injection, and A can be identified with an 

M-ideal, i.e., a norm closed two-sided ideal with a contractive approximate identity, in 

M(A) (cf. [ER2]). 

It follows from Theorem 1.2 and Theorem 2.3 that M(A) is completely isometrically 

unital isomorphic to a concrete unital operator algebra, which contains A as an M-ideal. 

As an immediate consequence, we have 

THEOREM 2.4. Every L°°-Banach algebra with a contractive approximate identity 

is completely isometrically isomorphic to a concrete operator algebra. 

Owing to Theorem 2.4, every L°°-Banach algebra A with a contractive approximate 

identity can be identified with a concrete operator algebra on a Hilbert space H. Let [AH] 
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be the linear subspace spanned by {<?£ : a G A, £ G H} and //o = [AH] the closure of 

[AH] in / / . It is clear that HQ is an A-invariant subspace of H. If H0 = H, we call A 

non-de generate on / / . If HQ ^ / / , we can restrict A to //o and get a new operator algebra 

matrix norm {|| • ||//0,n} on A. 

PROPOSITION 2.5. 77ie operator algebra matrix norm {|| • ||//0,w} coincides with the 

original operator algebra matrix norm {|| • ||„} <?/i A. TTÎWS ev^ry L°°-Banach algebra 

with a contractive approximate identity can be identified with a concrete non-de generate 

operator algebra on a Hilbert space. 

PROOF. For every (fixed) [atj] G Mn(A) (n G N), it is clear that 

IK-] \H(hn < IK-] 

On the other hand, we have 

|[tf,y]||,i = suplHfoytfcJH,, : a G A} 

sup< \\[aijaa] 
El 

s u p < K-l 

Un 
«a£l 

«a£n 

Uni 
Cl 

<IIKllk^ 

U , G / / , a G A 

1 , ^ G / / , a G A 

where {a a } is a contractive approximate identity for A. This shows that {|| • ||//0,n} = 

{|| • ||„} on A, and thus we can identify A with a non-degenerate operator algebra on the 

Hilbert space Ho. m 

We note that, in our proof of Theorem 2.3, the associativity of the algebras is essen­

tial. It allows us to identify any given algebra A with an ideal in its double centralizer 

algebra M (A). Recently, we have found a different proof of the characterization theorem 

(Theorem 2.4 and Proposition 2.5) by using the second dual approach in [Ru2]. In that 

case, it is not necessary to assume the associativity of the algebras. The result is still true 

for L°°-Banach pseudo-algebras. 

In the rest of this paper, we assume that all algebras are L°°-Banach algebras with 

contractive approximate identités. We identify these algebras with operator algebras with 

contractive approximate identities acting non-degenerately on Hilbert spaces. 

3. Some properties of double centralizer algebras. Given a non-degenerate op­

erator algebra A on a Hilbert space // , we let B be the double multiplier algebra of A 

defined by 

B = {xe B{H) : xA C A and Ax Ç A}. 
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It is clear that B is a unital operator algebra containing A as an M-ideal. For any x G B, 
the pair (LX,RX) of left and right multiplication maps is belong to M(A). This defines a 
map fi.B—* M (A) by letting 

£L(X) = (LX,RX). 

THEOREM 3.1. p is a completely isometric unital isomorphism from B onto M(A). 

PROOF. It is easy to see that ft is a completely contractive unital homomorphism 
from B into M(A). Given any [jCy] G Mn(B), we have 

||[*//]||/i = sup{||[Xy][^][^]| : |[a;*][£*]| < l,ajk e A^k G H) 

sup / j ®aXijQ'J iUjk K* : HMKJII < W G A,£* G //,a G Aj 

= sup{\\[RXij(aa)][ajkMk]\\ : | |[a^][^]| | < U ^ A , ^ G //, a G A} 

< | | [ ^ , ] | | = | | | [ ( ^ ,^ ) ] | | | n . 

Hence, //:/?—» M(A) is a complete isometry. 
Next we show that /x is onto. Given any (S,7) G M (A), we define an operator x on 

[AH] by 

^ i ' i 

for all £/ £*,-& G [A/f]. If £; ^ = E b £ G [A//], then 

X)S(ai)£i = Um^, aaS(aï)£i = \imJ2 T(aa)a^i = l im£r(a a ) fy£ 

a j j 

Therefore, x is a well-defined linear map, and we have 

i y " " / 

= lim 
a 

= lim 

= lim ]T aaS(ai)£i 

Y,T(aa)(adZi 
i 

T(aa)[J2a£i < I 711 X>& 

Hence, x extends to a bounded linear map on H = [AH], still denoted by x, with 

H<||71| = |||(S,D|||,. 

Finally for any a G A and £ G //, we have (JC0)(£) = Jc(aQ = S(fl)£. This shows that 
S = Lx. Similarly, T = Rx. Thus we have x G B and /2(JC) = (5,7). Hence, /I is onto. • 

If A is an operator algebra acting non-degenerately on a Hilbert space //, then the 
matrix algebra Mn{A) is an operator algebra acting non-degenerately on Hn. Identifying 
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with M(A) = {x e B(H) : xA Ç A and Ax Ç A} (Theorem 3.1), we can easily get the 
completely isometric unital isomorphism 

Mn(M(A))^M(Mn(A)). 

We remark that one can directly prove this result for double centralizer algebras 
without using Theorem 3.1. To see this, let [(Sy,Tij)] € Mn(M(AJ). Define (S,T) G 
M(Mn(A)) by 

n 

S([a,y]) = [sijl where stj = J2 Sik(akj) 
k=\ 
n 

T([fl,y]) = [tijl where ttj = J^ Tkj(aik). 
k=\ 

Then [(Sy, Ttj)] —* (S, T) is a completely isometric unital isomorphism from Mn(M(A)^j 
onto Af (MW(A)). We leave the details for the reader. 

For any operator algebra A with a contractive approximate identity, it is known that 
both M(A) and A** are unital operator algebras containing A as an M-ideal (cf. Theo­
rem 2.3 and [ER2]). In the following proposition, we study the relation between M(A) 
and A**. 

PROPOSITION 3.2. Let A be an operator algebra with a contractive approximate 
identity. Then M(A) is completely isometrically unital isomorphic to a unital subalgebra 
of A**. 

PROOF. We identified A with an operator subalgebra of a C*-algebra B. Then A** is a 
weak* closed subalgebra of 5**. Letting {it,H} be the universal representation of B, we 
have 5** = B°', and thus A** = Aa on H. Since A has a contractive approximate identity 
{aa}, A** has a unit £ = lim aa, which is a projection in B(H). Without loss of generality, 
we can assume that e = In (replace H by eH if necessary). Thus A is non-degenerate on 
//and A** =Aa. 

By Theorem 3.1, we have 

M(A) = {xe B(H) : xA Ç A and AJC Ç A}. 

Since A is dense in M(A) with respect to the strictly strong topology (cf. [Bu]), and the 
strictly strong topology is stronger than the o-weak topology when A is non-degenerate 
on H, we have 

M(A)ÇÀa =A*\ m 

We remark that if K^H) is the C*-algebra of all compact operators on a separable 
Hilbert space //, then M^K^H)^ = B(H) = K^H)**. It is known among the people in 
this area that the similar result is true for nest algebras. Indeed, if R is a nest algebra on 
a separable Hilbert space //, then A = R n K^H) is an M-ideal in R and A** = R (cf. 
K. Davidson [Da]). Thus A is a non-degenerate operator algebra on //. Easy calculation 
shows that M(A) = R = A**. 
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4. Unital operator algebra matrix norms on M(A). Let A be an operator algebra 
with a contractive approximate identity. It has been shown in §2 that there is a canonical 
unital operator algebra matrix norm {||| • |||n} on its double centralizer algebra M(A) 
such that M(A) contains A as an M-ideal. In this section, we show that there might exist 
different unital operator algebra matrix norms on M(A) such that M(A) still contains A as 
an M-ideal. 

PROPOSITION 4.1. If{ \\\ • |||^} is any unital operator algebra matrix norm on M (A) 
such that {||| • |||^} = {||| • |||n} on A, then we have 

M • |||„ < HHIi; forallntH. 

PROOF. Let A Ç B(H) non-degenerately. By Theorem 3.1, we have 

(M(A), {||| • | | |4) = {x G B(H) \xaeA, ax e A for all a G A}. 

Hence, for any [xy] G Mn(M(A)) Ç Mn(B(HJ), we have 

\\\[xij]\\\n = mp{\\[xijà\\\n : a G A, ||a|| < 1} 

a 

:aeAA\a\\ < 1 

: f l € A , | | û | | < 1 

LEMMA 4.2. Let A be a unital algebra with unit 1, and let | { | | • ||n}£li k . be a 
sequence of unital operator algebra matrix norms on A. If for every non-zero element 
[ay] G Mn(A\ there exist positive numbers 0 < a < f3 < oo such that 

for all k G N, then 

a<\\[ay]\\k„<0 

\[aij]\\n = lim ||K-]||J 

determines a unital operator algebra matrix norm on A. 

PROOF. 1) It is clear from the hypothesis that for any [aij\ G Mn(A), 

H M U = ïïïH IIK-III* 
k—>oo 

is well defined and non-negative, and ||[<Zy]||n — 0 if and only if [a^] — 0. 
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2) For every a, (3 G Mn(C) and a = [a^] G M„(A), 

H««^iu = jnH i|a£i^ii* < His ncrii ii^ii^ii^ii 
k—>oo A;—>oo 

- ||a||(iiiH \\a\\k
n)\\p\\ = \\a\\ ||«||„||/3||. 

3) For every a, b G M„(A), 

||a + b\\n = ÏÏS ||a + fc||J < ÏÎ5 ( H * + ||ft||J) 
A;—>oo A:—>OO 

<i î5 | | f l | | J+BS | | * | | J = iHi#I +11*11,,. 
A:—>oo k—>oo 

4) For every a G Mn(A), b € Mm(A), 

\\a © *||„+m = ÏÏÏH ||a © £||*+m = iiS max{||a||J, ||ft||* } 
k—>oo k—>oo 

= max{ÏÏrr.||a||* ÏÏS ||Z>||*} 
£—>oo A:—>oo 

= max{||a||n,||è||w}. 

5) || 1||! = liiru^oo II1IIÎ = 1-
6) For every a, b G Mn(A), 

\\ab\\„ = lim \\ab\\k„ < lim \\a\\k
n\\b\\n < «m NI* • Hm \\b\\k

n 
k—>oo k—KX> k—>oo k—>oo 

Hence, {|| • ||„} is a unital operator algebra matrix norm on A. • 

EXAMPLE4.3. Let £°°(N) (resp., co(N)) be the space of all bounded sequences (resp., 
the space of all sequences converging to 0). Thus £°°(N) with the canonical unital opera­
tor algebra (in fact, the C*-algebra) matrix norm {|| • ||n} is the double centralizer algebra 
of co(N). In this example, we construct a different unital operator algebra matrix norm 
(III ' III*} o n £0°(N) s u c h t h a t £0°(N) s t m contains c0(N) as an M-ideal. 

Let {et : / G N} be the canonical orthonormal basis of £2(N). Identifying elements 
a = {ai} G £°°(N) with the bounded operators a on l2(N) determined by a(e/) = aiei, 
we have 

c0(N) Ç £°°(N) Ç 5(£2(N)). 

For k, l G N, we let Ekj be the standard matrix elements in Z?(£2(N)), i.e., 

i- / \ i ek i f / — i 
EkAei) = L ,u • 

otherwise. 
For each K N , w e define Tk: £°°(N) —> B(f(N)) by 

Tk(a) = a + (ak- ak+x )EkMX, 

for all a = {ai} G £°°(N), and define unital operator algebra matrix norms {|| • ||^} on 
Mn(l°°(M)) by 

||[a"]||J = | | [W)] | | „ = ||[a^ + ( ^ - < 1 ) ^ + 1 ] | | n , 
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for all [sf] = [{of"}] G Mn{l°°(H)). It is clear that 

\Wq\\\n<\\Wq}t<nWn\\n-

It follows from Lemma 4.2 that the matrix norm defined by 

|||[aw]|||i= ÏÏE ||[a"*]||J 

is a unital operator algebra matrix norm on £°°(N). 
If we let a = {1, - 1 , 1, - 1 , . . . } G f°(N), 

|||a|||i = ï ïm{ | | a±2£ u + 1 | | }> ||a||i. 

Hende, the unital operator algebra matrix norm {||| • |||^} is different from the canonical 
unital operator algebra matrix norm {|| • ||n} on £°°(N). 

Finally for any a = {#;} ^ 0 ç co(N), there exists a sufficient large integer N such 
that for all / > N, 3|a/| < ||a||i. It follows that ||a||| = ||a + ( ^ — ak+\)EkM\\\\ = ||a||i 
for all k > N, and thus we have |||£ |̂|| i = ||a||i. Similar argument shows that |||[a^]|||^ = 
||[a^]||n for all [a^] G Af„(c0(N)). Therefore, we have {||| • |||^} = {||| • |||n} on c0(N). • 

EXAMPLE 4.4. Let A be the commutative unital operator subalgebra of Mi(C) gen­
erated by I,E\2, and £13, i.e., 

A = 
a (3 7 
0 a 0 
0 0 a 

a,/3,7 eC\ CAf3(C). 

Let {|| • ||n} be the natural unital operator algebra matrix norm on A, and let 
a matrix norm on A defined by 

I,',} be 

||[fl(,-]||i=||K] ,r||n = ||ta/i]||B 

for [ay] G Mn{A). Clearly, A with this matrix norm {|| • ||^} is an L^-matricially normed 
space and ||1|| ' , = ||l||i = 1. Since A is commutative, we have 

\\[a,j\[bjk]\\'n = \\[I*fakT\\n 

- ||[2^ay] , r||„ 

< \\[bjkn„ iiKfiin = i|[a,y]|i: wwt. 
Hence, {|| • ||^} is a unital operator algebra matrix norm on A. 

Now we consider the commutative operator algebra 

~a\ 
a2 0 

AQO — \ 

ak 

: ak eA,\\ak\ 

Ç5(C3(g)£2(N)). 
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It is easy to see that 

MiAoo) = 

x\ 
x2 0 

0 xk 

\xk GA,sup{||^||} < oo >. 

For every [xy] G Af„ (M(Aoo)), where Xy = 

can write (up to a unitary permutation) 

Kl 

fry] 

with jcf G A, we 

[4] 

[4] 

with [*•[] G M„(A) and sup{||[jcf]||„ : k e N} < +oo. Letting {||| • |||n} be the canonical 
unital operator algebra matrix norm on Af (AQQ), we have 

|||[^]|||n = sup{||[4"]||n: keN}. 

Define a new matrix norm {||| • |||^} on M(Aoo) by 

|||[.^]|| |; = max{|||[xy]|||n i i S | | [ ^ ] 0 . 
&—>oo 

It follows from Lemma 4.2 that {||| • |||^} is a unital operator algebra matrix norm on 
Af(Aoo). 

For every x — 
ak 

G M(AQO), with ak G A, we have 

lim H^lli = lim \\ak\\i <sup{| |^ | | i} 

Hence, |||JC|||I = |||*|||i for all x G M(Aoo). This shows that || 
Let [xij] be an element in M2[M(A00)^j given by 

IWIIi-

H^IMIhonMCAoo). 

~E\2 -Eu 

xn X2\ 

X\2 = *22 = 0. 
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We can write (up to a unitary permutation) 

~El2 0 
£,3 0 

It is clear that |||[xy]|||2 = 1. On the other hand, since 

En 0 
En 0 

£l2 ^13 
0 0 >/2, 

we get 
[Xij]\\\'2 = max{||[x,y]||2, lim ||[*jp||£} = ^ 2 > | | | [^] | | |2 . 

&—>oo 

This shows that the matrix norm {||| • |||^} is different from the canonical matrix norm 
{HHIIJonMCAoo). 

Finally for any [jty] G M„(Aoo), we can write (up to a unitary permutation) 

[*(/] 

[4] 

[4i 

with || [4] 0 as & 
|^} coincides with 

oo. It follows that 
• HIJonAoo. 

\[Xij] |[jCy]|||w. This shows that 

5. Unital operator algebra matrix norms on unitalization algebras. Through­
out this section, we assume that A is a non-unital operator algebra with a contractive 
approximate identity, and its double centralizer algebra M(A) has the canonical unital 
operator algebra matrix norm. Let A[ = A © C be the unitalization algebra of A with 
multiplication defined by 

(a, a)(b, (3) = (ab + ab + (5a, af3) 

for all (a, a), (b, (5) G A © C. In this case, the unit element e = (id^, id^) G M{A) is not 
contained in A. Thus we can identify A1 with the unital subalgebraA 0 Ce of M(A) and 
get a unital operator algebra matrix norm on A1. With this matrix norm, A1 is a unital 
operator algebra containing A as an M-ideal. The main result in this section is to show 
that this is the only such unital operator algebra matrix norm on A1. In our argument, we 
need some terminologies from the theory of operator spaces. 

Given an operator space V, there is a natural operator space structure on the dual space 
V* of V obtained by identifying Mn(V*) with CB(V,Mn), the space of all completely 
bounded maps from V into Mn (cf. [BP], [ER3]). The second dual V** of V is also an 
operator space which contains V as a weak*-dense subspace. Given two operator spaces 
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V and W, we will assume that V and W are norm closed subspaces of B(H) and B(K) for 
some Hilbert spaces H and K, respectively. Define the CM-direct sum of V and W as the 
operator space direct sum 

V®WCB(H®K). 

We note that this direct sum is independent of the choice of Hilbert spaces, and we denote 
this direct sum as V 0CM W (cf. [ER4]). A direct sum of operator subspaces V and W is 
called a CL-direct sum, denoted by V 0CL W, if we have a complete isometry 

( V 0 C L W ) * = V*®CMW*. 

This is equivalent to the universal property that for any complete contractions <f>:V—>X 
and ijj: W —>• X, the corresponding map <j> 0 ip: V 0CL W —> X defined by 

<j> 0 V>(v, w) = </>(v) + \j){w) 

is also a complete contraction (cf. [ER5]). 
Let V be an operator subspace of an operator space W. We call V a CL-summand in 

W if there is an operator subspace L in W such that W = L 0CL V. Let P: W —> V be 
the projection from W onto V given by P(x + y) = y for all x G L and y G V. We have 
P = 6 (& idy, where 6:L^ W is the zero map and idy: V c—> W is the embedding map. 
It follows that P is a complete contraction. We call P the CL-projection from W onto V. 
In this case, the subspace L is also a CL-summand in W and the CL-projection id^ — P 
from W onto L is also completely contractive. 

An operator subspace V of an operator space W is called a CM-ideal if V-11- = V™* is 
a CM-summand in W**. This is equivalent to say that V1 is a CL-summand in W*, i.e., 
there is an operator subspace L in W* such that 

W* = L 0 C L V-1. 

Since any CM-ideal (resp., CL-direct sum) is an M-ideal (resp., L-direct sum) when 
we regard the spaces as Banach spaces, it is known by K. Davidson [Da] that the Ba-
nach space L is isometrically isomorphic to V*. In the following theorem, we generalize 
K. Davidson's result to operator space case. 

THEOREM 5.1. Let V be a CM-ideal in an operator space W and let L be an operator 
subspace in W* such that W* = L 0CL V1. Then there is a complete isometry from L 
onto V*. 

PROOF. Let T: L —> V* be the restriction map given by 

T(<p) = (p\v 

for all (p G L. It is clear that T is a well-defined complete contraction and T is one-to-one 
since <p\,ip2 € L such that T(ip\) = T((f2) implies (f\ — (f2 £ LHV1 = {0}. 

Given any [̂ //] G Mn(V*) = CB(V,Mn), it follows from the Wittstock-Arveson 
Hahn-Banach extension theorem [Wil] [Wi2] that there exists an element [<£>#] G 
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Mn(W*) = CB(W, M„) such that ||[<^]||Cb = \\Wij]\\cb and [p^y] = [ ^ ] . Let G be 
the CL-projection from W* onto its CL-summand L. We have 

[Q(ifij)\v] = [<Pij\v] = 1/0//] 

and 

ll^iylllcb < ||[G(^)]||cb < llt^lllcb = ||[^]||cb. 

Thus [Q((fij)] is a norm preserving extension of [ipij] in Mn{L) such that 
^«([ÔC^//)]) — \$ij\- Finally, since T is one-to-one, it gives a complete isometry from L 
ontoV*. • 

Notice that for any ip G V*, there is, in fact, a unique norm preserving extension 
(p G W* of ip (cf. [Da]). In this case, one must have ip — Q(<p). But we do not know if 
this is true or not for general [xpij] £ Mn(V*). The difficulty is that we do not have "good" 
L-summand property for the norms on Mn(W*) when n > 1. 

Let A be an operator algebra with a contractive approximate identity and let A1 be 
its unitalization algebra with a fixed unital operator algebra matrix norm such that A1 

contains A as an M-ideal. Consider a linear functional r:Al —+ C defined by 

r(a, a) — a 

for all (a, a) G A1. The linear functional r is a unital homomorphism since r(0,1) = 1 
and 

T((A, <x)(b, pj) = r(ab + ab + /3a, a/3) = <*/? = r(a, a)r(/?, /3) 

for all (a, a), (&, (3) G A1. As kerT = A has co-dimension one in A1, r is bounded on A1. 
Furthermore, it follows from Banach algebra theory that r is contractive, and thus has 
norm one. Therefore, we have 

A1 - Cr. 

Since A is an M-ideal in A1, it is also a CM-ideal in A1 (c/. [ER4]), and thus there is a 
norm closed subspace L in (A1)* such that 

( A 1 ) * = L e C L A ± = L e c L C r . 

Owing to this fact and Theorem 5.1, we can show 

THEOREM 5.2. There is a unique unital operator algebra matrix norm on A1 such 
thatA[ contains A as an M-ideal. 

PROOF. It is clear that A1 with the canonical unital operator algebra matrix norm 
{||| • |||„} obtained from the double centralizer algebra M (A) is a unital operator algebra 
containing A as an M-ideal. If {||| • |||^} is another such unital operator algebra matrix 
norm on A1, an argument similar to that in Proposition 4.1 shows that ||| • |||n < ||| • |||̂  
for all n G N. 
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If we let Ai = (A1, {||| • H ^ a n d A ] , = (A\{\\\ • |||n}), the identity map idA:Al
A -* Al

M 

is a completely contractive unital isomorphism. By duality, 

* = idÇ[: (Al
MT = LM 0CL Cr-^ (A\f = LA 0 C L Cr 

is a complete contraction. It suffices to show that O - 1 is a complete contraction. 
By Theorem 5.1, both LM and LA are completely isometric to A*. Thus 0>\LM'- LM —• LA 

is a complete isometry. It follows that both O^ 1 : LA —* LM Q (AMT and idcT: Cr —> 
Cr Ç (Al

M)* are complete isometries. Thus 

®~l = *|ZJ e idCT: LA 0CL Cr -+ {AMf 

is a complete contraction. • 

Using Theorem 5.2, we can easily get the following result. 

PROPOSITION 5.3. Let A and B be two operator algebras with contractive approx­
imate identities, and let r:A—>Bbe a completely isometric isomorphism. The (unique) 
extension f ofr defined by 

f(a, a) = (r(a), a) 

is a completely isometric unital isomorphism from A1 onto Bl. 

PROOF. Given S G CB(A, A), we define f(S) G CB(#, B) by 

f(S)(r(a)) = T(S(O)) for all a G A. 

Thus if (5, T) e M(A), we have f(S9 T) = (f(S)9f(T)) G M(B). It is easy to see that 
f: M(A) —> M(5) is a completely isometric unital isomorphism. Since A1 (resp., Bl) with 
the unique unital operator algebra matrix norm is a unital operator subalgebra of M(A) 
(resp., M(B)), f restricted to A1 determines a completely isometric unital isomorphism 
from A1 ontoi?1 such that 

f(a, a) = \r(a), a) 

for all (a, a) G A1. • 
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