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Abstract

In this work, we study discrete-time Markov decision processes (MDPs) with constraints
when all the objectives have the same form of expected total cost over the infinite time
horizon. Our objective is to analyze this problem by using the linear programming
approach. Under some technical hypotheses, it is shown that if there exists an optimal
solution for the associated linear program then there exists a randomized stationary policy
which is optimal for the MDP, and that the optimal value of the linear program coincides
with the optimal value of the constrained control problem. A second important result
states that the set of randomized stationary policies provides a sufficient set for solving
this MDP. It is important to note that, in contrast with the classical results of the literature,
we do not assume the MDP to be transient or absorbing. More importantly, we do not
impose the cost functions to be nonnegative or to be bounded below. Several examples
are presented to illustrate our results.
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1. Introduction

We consider a Markov decision process (MDP) with constraints under the total expected cost
optimality criterion. MDPs are a general family of controlled stochastic processes, which are
suitable for the modeling of several sequential decision-making problems under uncertainty.
They arise in many applications, such as engineering, computer science, telecommunications,
finance, among others. From a theoretical point of view, discrete-time MDPs have been
extensively studied (see, e.g. [1], [3], [4], [8], [9], [10], [13], [14], and [15]) by using several
techniques such as the dynamic programming and the linear programming approaches, among
others. The latter technique has proved to be a very powerful tool for solving MDPs with
constraints. A significant list of references on this research field can be found in [1], [5],
[13], and the references therein. The key idea is to reformulate the original sequential decision-
making problem as an infinite-dimensional static optimization problem over a space of measures
where the admissible solutions are the so-called expected state-action frequencies or occupation
measures of the controlled process. The significance and the attraction of this method lie mainly
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in the following two points. Firstly, it gives an alternative approach to study theoretically and to
solve numerically MDPs. Secondly, control problems with constraints can be easily analyzed
with this method in contrast to the dynamic programming technique.

The linear programming approach for MDPs has been studied in great detail under a large
variety of cost criteria and fairly general state and action spaces. These include the finite horizon
cost, the infinite time horizon discounted cost, the cost up to exit time, the ergodic pathwise
cost. However, it must be emphasized that the linear programming technique when applied to
the expected total cost (ETC) criterion has received less attention in the literature, the reason
being that the ETC criterion is very demanding from a technical point of view and yields some
pathological behaviors as pointed out in [5, pp. 357–358] and [10, pp. 92–94]. These latter
difficulties are twofold. The first important issue is that the expected state-action frequency
may not be finite for some or all policies. The second point is related to the fact that an
admissible solution of the linear program (LP) may not correspond to any expected state-action
frequency of the process. The classical way used in the literature to overcome the first point is
to impose suitable conditions on the model as the so-called transient and absorbing conditions.
Roughly speaking, these conditions ensure that, for any stationary policy, the controlled process
is absorbed at a particular state guaranteeing that the expected state-action frequency is finite for
all other states and stationary policies. However, even in the transient case, some occupation
measures may not be generated by a stationary control policy as explained in [5, p. 358],
meaning that the sufficiency of stationary policies is under question.

In the current paper, we investigate the ETC criterion with constraints by using the linear
programming formulation. We work under the hypotheses that the state space is a general
Borel space and the action space is a compact metric space. Moreover, it is assumed that the
stochastic kernel and the cost functions are continuous in the action variable and that the value
of the unconstrained LP associated to each cost function is finite. Finally, our last hypothesis
consists of ensuring the existence of a reference probability measure with respect to which the
stochastic kernel is absolutely continuous.

One of our main results is to show that if µ∗ is an optimal solution of the constrained
LP then there exists a randomized stationary policy ϕ∗ which is optimal for the MDP under
consideration and that the optimal value of the LP coincides with the optimal value of the
constrained control problem (see Theorems 4.2 and 5.2). A second important result states that
the set of randomized stationary policies provides a sufficient set for solving this optimization
problem (see Corollaries 4.1 and 5.2). Similar results have been obtained in [7] in a considerably
simpler framework where the cost functions are assumed to be nonnegative. Clearly, the
approach developed in [7] strongly relies on the positiveness of the cost functions. In this work
we deal with general cost functions that may take negative values. This general context induces
important technical difficulties that cannot be dealt with using the technique presented in [7].
This issue imposes the development of a new and radically different approach to deal with our
general framework.

It is important to emphasize that our assumptions are very weak and do not exclude the two
issues described before. In particular, we do not impose the MDP to be transient or absorbing.
The (optimal) occupation measures of the constrained control problem are not necessarily
finite and an admissible solution of the LP may not correspond to any occupation measure of
the controlled process. More importantly, we do not require the cost functions to be nonnegative
or bounded below. Several examples presented in Section 6 will illustrate the necessity of the
hypotheses that have been made. One example is dedicated to the presentation of a possible
application of the results developed in the paper. To the best of our knowledge, the book [1]
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is the only reference in the literature that analyses the ETC criterion with constraints by using
the linear programming formulation under the hypotheses that the state and action spaces are
discrete and the model is transient or absorbing. One can also mention the references [6], [7],
[11], and [12], where MDPs under the assumption that the cost function is nonnegative are
studied. Consequently, our results appear to be very general compared to those existing in the
literature.

Actually, for the sake of clarity of exposition, we consider in two independent sections the
case of a finite action space and the case of a compact action space. Although the results derived
in the context of a finite action space can be obtained from the more general case where the
action space is compact, we believe that the section dedicated to the finite action space is of
interest by itself mainly because the proofs are simpler, more natural, and more intuitive.

The rest of the paper is organized as follows. In Section 2 we present the control problem
that will be considered throughout this work. Preliminary results are derived in Section 3. Our
main results and the analysis of the LP are presented in Section 4 in the case of a finite action
space, and in Section 5 in the general case of a compact action space. Finally, Section 6 is
dedicated to the presentation of several examples illustrating some theoretical issues if our set
of assumptions is not satisfied and to the presentation of a possible application of the results
developed in the paper.

2. Problem formulation

The main goal of this section is to introduce the notation, definitions, and problem formula-
tion that will be used throughout the paper. The following notation will be used in this paper:
N is the set of natural numbers, N

0 = N ∪{0}, R denotes the set of real numbers, R+ denotes
the set of nonnegative real numbers, and R̄+ denotes R+ ∪{+∞}. For any q ∈ N, Nq is the set
{1, . . . , q}. If (Bλ)λ∈� is a family of sets, we write

∑
λ∈� Bλ instead of

⋃
λ∈� Bλ to indicate that

Bλ ∩Bλ′ = ∅ for any λ �= λ′. Let A be an arbitrary set, and let B and C be subsets of A. Then
the difference of the sets B and C is denoted by B \C = B ∩Cc and the symmetric difference
is denoted byB�C = (B \C)∪(C \B). Let f be a real-valued mapping defined on a setE, the
positive (respectively negative) part of f is given by f+(x) = max(0, f (x)) (respectively
f−(x) = max(0,−f (x))). The term measure will always refer to a countably additive,
R̄+-valued set function. Let X be a Borel space, and denote by B(X) its associated Borel
σ -algebra. For any set A, IA denotes the indicator function of the set A. The set of measures
defined on (X,B(X)) is denoted by M(X)+. For any point x ∈ X, δx denotes the Dirac
measure defined by δx(�) = I�(x) for any � ∈ B(X). For two measures (γ1, γ2) ∈ M(X)2+,
γ1 ≤ γ2 means that γ1(�) ≤ γ2(�) for any � ∈ B(X). The setwise convergence of a sequence
of measures (γn)n∈N to a measure γ∞ is denoted by limn→∞ γn = γ∞. The set of bounded,
real-valued, continuous functions defined on X is denoted by C(X). Let f be a real-valued
measurable function defined on X, and let η ∈ M(X)+; the integral

∫
X
f (y)η(dy) is denoted

by η(f ) provided it is well defined. LetX and Y be Borel spaces. IfW is a stochastic kernel on
X given Y then, for any real-valued measurable function f , the integral

∫
X
f (x)W(dx | y) for

any y ∈ Y is denoted by Wf (y) provided it is well defined. For any measure η on (Y,B(Y )),
ηW is the measure defined on (X,B(X)) by ηW(�) = ∫

Y
W(� | y)η(dy) for any � ∈ B(X).

Letµ be a measure in M(X×Y )+ and� ∈ B(Y ). Thenµ� denotes the measure defined onX
by µ�(�) = µ(� ×�) for any � ∈ B(X). If � = {y} then we will write µy instead of µ{y}.

Definition 2.1. Let X be a Borel space. If µ and ν are σ -finite measures in M(X)+ such
that µ ≤ ν then (ν − µ) is the σ -finite measure in M(X)+ defined for any � ∈ B(X) by

https://doi.org/10.1239/aap/1377868541 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868541


840 F. DUFOUR AND A. B. PIUNOVSKIY

(ν − µ)(�) = ∑∞
k=1[ν(� ∩Bk)− µ(� ∩Bk)], where X = ∑∞

k=1 Bk and ν(Bk) < ∞ (this
definition does not depend on the choice of (Bk)k∈N).

In order to define an MDP, we consider, as in Section 2 of [9], a five-tuple (X,A,Q, r)
consisting of

(a) a Borel space X representing the state space,

(b) a Borel space A representing the control or action set,

(c) a stochastic kernel Q on X given X × A,

(d) a measurable function r0 : X × A → R representing the running cost,

(e) measurable functions rθ : X × A → R representing the constraints for θ ∈ �, where �
is an arbitrary set (without loss of generality, assume that 0 /∈ �).

Definition 2.2. The set of all stochastic kernels ϕ on A given X is denoted by�, and F stands
for the set of all measurable functions f : X → A.

To introduce the optimal control problem we are concerned with, it is necessary to introduce
different classes of control policies.

Definition 2.3. Define H0 = X and Ht = X × A × Ht−1 for t ≥ 1. A control policy is
a sequence π = (πt )t∈N0 of stochastic kernels πt on A given Ht . Let � be the class of all
policies. A policy π = {πt } is said to be

• a randomized stationary policy if there exists ϕ ∈ � such that πt (· | ht ) = ϕ(· | xt ),
• a deterministic Markov policy if there exists a sequence (ft )t∈N0 ⊂ F such that
πt (· | ht ) = δft (xt )(·),

• a deterministic stationary policy if there exists f ∈ F such that πt (· | ht ) = δf (xt )(·),
where ht = (x0, a0, . . . , xn−1, at−1, xt ).

According to the standard convention, we identify F (respectively �) with the class of all
deterministic (respectively randomized) stationary policies. Therefore, F ⊂ � ⊂ �. If π is a
randomized stationary policy generated by ϕ ∈ � (according to Definition 2.3), we will write
ϕ instead of π ; similarly, if π is a deterministic stationary policy generated by f ∈ F, we will
write f instead of π .

Let (�,F ) be the canonical space consisting of the sample path � = (X × A)∞ and
the associated σ -algebra F . For any policy π ∈ � and any initial distribution ν on X,
it can be defined a probability, labeled P

π
ν , and a stochastic process {(xt , at )}t∈N0 , where

{xt }t∈N0 is the state process and {at }t∈N0 is the control process satisfying, for any B ∈ B(X),
C ∈ B(A), and ht ∈ Ht with t ∈ N

0, P
π
ν (x0 ∈ B) = ν(B), P

π
ν (at ∈ C | ht ) = πt (C | ht ), and

P
π
ν (xt+1 ∈ B | ht , at ) = Q(B | xt , at ); see, for example, [9, Chapter 2] for such a construction.

The expectation with respect to P
π
ν is denoted by E

π
ν . If ν = δx for x ∈ X, we write P

π
x for P

π
ν

and E
π
x for E

π
ν .

Next, we define our Markov control problem. Suppose that we are given an initial dis-
tribution ν on X, and constraint limits (Rθ )θ∈� such that Rθ ∈ R. For any θ ∈ �∪{0},
the integral E

π
ν [∑∞

t=0 rθ (xt , at )] is said to be well defined if either E
π
ν [∑∞

t=0 r
+
θ (xt , at )] or
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E
π
ν [∑∞

t=0r
−
θ (xt , at )] is finite. A policy π ∈ � is said to be feasible if the integrals

E
π
ν [∑∞

t=0rθ (xt , at )] are well defined for any θ ∈ �∪{0} and if

vθ (ν, π) := E
π
ν

[ ∞∑
t=0

rθ (xt , at )

]
≤ Rθ (2.1)

for any θ ∈ �. The set of feasible policies is denoted by �c.
The optimization problem we consider consists in minimizing the cost function

v(ν, π) := E
π
ν

[ ∞∑
t=0

r0(xt , at )

]
, (2.2)

over the set of feasible control policies �c. The optimal value function is denoted by

V ∗(ν) := inf
π∈�c

v(ν, π). (2.3)

For a policyπ ∈ �, let us introduce the following expected state-action frequency or occupation
measure induced by π ∈ �:

µπ(�) =
∞∑
t=0

P
π
ν ((xt , at ) ∈ �)

for any � ∈ B(X × A). According to Lemma 9.4.3 of [10], for any stationary policy ϕ ∈ �,
µ
ϕ
A is a solution of the equation

γ (·) = ν(·)+
∫
X×A

Q(· | y, a)ϕ(da | y)γ (dy), (2.4)

with γ ∈ M(X)+. Moreover, a careful inspection of the proof of Lemma 9.4.3 of [10] shows
that µϕA is the minimal positive solution of (2.4) and µϕ is given by

µϕ(� ×�) = µ
ϕ
�(�) =

∫
�

ϕ(� | y)µϕA(dy), (2.5)

and so µϕ is a solution of the equation

µA = ν + µQ, (2.6)

with µ ∈ M(X × A)+.
We now introduce the LP related to the control problem defined by (2.1)–(2.3).

Definition 2.4. The constrained linear program LP associated with the constrained control
problem (2.3) is defined as

(LP)

{
minimize µ(r0)

subject to µ ∈ Lc,

where
Lc = {µ ∈ L : µ(rθ ) ≤ Rθ for θ ∈ �}
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with L = ⋂
θ∈�∪{0} Lθ and

Lθ = {µ ∈ M(X × A)+ : µA = ν + µQ and for which µ(rθ ) is well defined}.
Associated to the constrained linear program LP, we introduce the family of auxiliary
unconstrained linear programs LPθ for θ ∈ �∪{0}, as

(LPθ )

{
minimize µ(rθ )

subject to µ ∈ Lθ .

A measure µ is said to be admissible for LP if µ ∈ Lc. A measure µ is said to be optimal
for LP if µ is admissible and if µ(r0) ≤ γ (r0) for any admissible γ . The value of the linear
program LP (respectively LPθ for θ ∈ �∪{0}) is said to be finite if infµ∈Lc

µ(r0) (respectively
infµ∈Lθ

µ(rθ )) is finite.

3. Preliminary results

In this section we establish some preliminary results to obtain a decomposition of the state
space in order to ensure that, for any µ ∈ M(X × A)+ satisfying the linear equation (2.6), the
measure µA is σ -finite on some subset of the space X. In particular, we introduce the concept
of (nearly) perfect sets (see Definitions 3.1 and 3.2). Roughly speaking, for two arbitrary
measures λ and µ on B(X), a λ/µ-perfect set W is a maximal set for the inclusion having the
property that either λ(�) = 0 orµ(�) = ∞ for any subset� ofW . Several technical properties
of these sets are derived (see Lemma 3.1, Proposition 3.1, and Theorem 3.1). An important
result which is a cornerstone of the paper is presented at the end of this section. It states that,
for any measure µ ∈ M(X)+ and under the assumption that λ is a probability measure, there
exists a λ/µ-perfect set having the property thatµ is σ -finite on the complement of this set (see
Theorem 3.2).

Definition 3.1. Consider two measures µ and λ on B(X). A set W in B(X) is said to be
λ/µ-perfect if

(a) for any � ∈ B(W), either λ(�) = 0 or µ(�) = ∞,

(b) for any set V ∈ B(X) such thatW ⊂ V and λ(V \W) > 0, (a) is violated, that is, there
exists � ∈ B(X) with � ⊂ V such that λ(�) > 0 and µ(�) < ∞.

Remark 3.1. IfW is λ/µ-perfect then Definition 3.1(b) can be replaced by the following.

(b′) For any setU ∈ B(X) such that λ(U \W) > 0, there exists� ∈ B(X)with� ⊂ U \W
such that λ(�) > 0 and µ(�) < ∞.

Indeed, if U ∈ B(X) is such that λ(U \W) > 0 then the set V = U ∪W satisfiesW ⊂ V and
V \W = U \W , and so λ(V \W) > 0. So, from (b), there exists � ∈ B(X) with � ⊂ V

such that λ(�) > 0 and µ(�) < ∞. Introduce the set� = � ∩[U \W ]. Then µ(�) < ∞ and
λ(�) > 0. The last inequality comes from the fact that � = �∪[� ∩W ] and so if λ(�) = 0
then λ(� ∩W) > 0 and since µ(� ∩W) < ∞ that would lead to a contradiction with (a).

Definition 3.2. Consider two measures µ and λ on B(X). A set W in B(X) is said to be
λ/µ-nearly perfect if, for any � ∈ B(W), either λ(�) = 0 or µ(�) = ∞.

Remark 3.2. It is important to observe that if a setW in B(X) is a subset of a λ/µ-perfect set
then it is λ/µ-nearly perfect.
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Definition 3.3. Consider W and W̃ in B(X). The sets W and W̃ are said to be λ-equivalent if

λ(W�W̃ ) = 0. This is denoted by W
λ W̃ .

Clearly,W
λ W̃ if and only if IW = IW̃ , λ-a.e. and so the relation ‘

λ’is reflexive, symmetric,

and transitive. Moreover, if W1
λ W̃1 and W2

λ W̃2, we have W1 ∪W2
λ W̃1 ∪ W̃2 and

Wc
1
λ W̃ c

1 . The next three technical results present some properties of perfect sets that will be
used repeatedly in the next sections.

Lemma 3.1. Consider two measuresµ andλ on B(X). Assume thatW and W̃ areλ/µ-perfect.

Then W
λ W̃ .

Proof. Suppose that λ(W̃ \W) > 0. Then introduce the set Ŵ = W̃ ∪W . Note that
W ⊂ Ŵ and λ(Ŵ \W) > 0. Since W is perfect, it follows that there exists � ∈ Ŵ such
that λ(�) > 0 and µ(�) < ∞. Consequently, µ(� ∩W) < ∞ and so λ(� ∩W) = 0 since
W is perfect. However, λ(� ∩ W̃ ) = λ(� ∩ Ŵ ) = λ(�) > 0. This implies that W̃ cannot be
perfect becauseµ(� ∩ W̃ ) ≤ µ(�) < ∞, leading to a contradiction and so λ(W̃ \W) = 0. By
symmetry we obtain λ(W \ W̃ ) = 0 and the result follows.

Proposition 3.1. Suppose that the set W is λ/µ-perfect. Then W̃ is λ/µ-perfect if and only if

W
λ W̃ .

Proof. The only if part was proved in Lemma 3.1. Suppose that W
λ W̃ . Let us show that

items (a) and (b) of Definition 3.1 are satisfied. Regarding item (a), assume that there exists
� ∈ B(X) such that � ⊂ W̃ with λ(�) > 0 andµ(�) < ∞. Thenµ(� ∩W) < ∞. Moreover,

λ(� ∩W) = λ(� ∩ W̃ ) since W
λ W̃ . Consequently, λ(� ∩W) = λ(�) > 0 implies that W

is not λ/µ-perfect, leading to a contradiction.
In order to show item (b), let us proceed by contradiction. Suppose that there exists a

set Ŵ ∈ B(X) with W̃ ⊂ Ŵ and λ(Ŵ \ W̃ ) > 0 such that, for all � ∈ Ŵ , either λ(�) = 0

or µ(�) = ∞. Define U = Ŵ ∪(W�W̃ ). Clearly, W ⊂ U . Since W
λ W̃ , we have

λ(U) = λ(Ŵ ). Recalling that λ(Ŵ \ W̃ ) > 0, it follows that λ(U) > λ(W̃ ) and so λ(U) >
λ(W). Consequently, λ(U \ W) > 0. However, λ([U \W ] ∩ Ŵ ) = λ(U \W) > 0; hence,
µ([U \W ] ∩ Ŵ ) = ∞, implying that µ(U \W) = ∞. This shows thatW is not λ/µ-perfect,
leading to a contradiction. This gives the result.

Theorem 3.1. Suppose that µ = µ1 + µ2 and W (respectively W1, W2) is a λ/µ-perfect

(respectively λ/µ1-perfect, λ/µ2-perfect) set. Then W1 ∪W2
λ W and W1 ∪W2 is

λ/µ-perfect.

Proof. The proof of the first statement consists in showing that λ([W1 ∪W2] \ W) = 0
and λ(W \ [W1 ∪W2]) = 0. Let us first show that λ(W1 \ W) = 0, then by symmetry
we have λ(W2 \ W) = 0, giving λ([W1 ∪W2] \ W) = 0. Suppose that λ(W1 \ W) > 0.
Then, from Remark 3.1, there exists � ∈ B(X) such that � ⊂ W1 \ W , λ(�) > 0, and
µ(�) < ∞ since W is λ/µ-perfect. However, µ1(�) ≤ µ(�) < ∞, implying that W1 is not
λ/µ1-perfect. Consequently, λ(W1\W) = 0, giving the first part of the proof. Now suppose that
λ(W \[W1 ∪W2]) > 0. Then there exists� ∈ B(X) such that� ⊂ W \[W1 ∪W2] with λ(�) >
0 and µ1(�) < ∞ by using the fact that W1 is λ/µ1-perfect. Define Ŵ = � ∪W2. Since
W2 ⊂ Ŵ and λ(Ŵ \W2) = λ(� \W2) = λ(�) > 0, there exists �̃ ∈ B(X) such that �̃ ⊂ �

withλ(�̃) > 0 andµ2(�̃) < ∞ sinceW2 isλ/µ2-perfect. Therefore, �̃ ⊂ W andλ(�̃) > 0 and
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µ1(�̃) ≤ µ1(�) < ∞. Recalling that µ2(�̃) < ∞, we have µ(�̃) = µ1(�̃)+ µ2(�̃) < ∞,
so thatW is not λ/µ-perfect, leading to a contradiction. Consequently, λ(W \[W1 ∪W2]) = 0,

giving the second part of the proof and showing that W1 ∪W2
λ W .

Now applying Proposition 3.1, we obtain the second statement and the result follows.

The following theorem shows how to construct perfect sets.

Theorem 3.2. Let λ be a probability measure, and let µ be an arbitrary measure on X. Let us
consider the construction of the following sets (Xi,0)i∈N.

0. Put i = 1, j = 1, and define X1,0 = X.

1. If there exists � ∈ B(X) with � ⊂ Xi,j−1 such that λ(�) ≥ 1/2i and µ(�) < ∞ then
define Xi,j = Xi,j−1 \ �. Otherwise, put Xi,j = Xi,j−1 and go to step 3.

2. If j < 2i , increase j by 1 and repeat step 1.

3. Increase i by 1 and define Xi,0 = Xi−1,j . Put j = 1 and go to step 1.

The set
⋂
i∈N

Xi,0 is λ/µ-perfect. Moreover, the measure µ is σ -finite on (
⋂
i∈N

Xi,0)
c

Proof. Clearly, Xi+1,0 ⊂ Xi,0. Note that if � ∈ B(X) with � ⊂ Xi,0 and λ(�) ≥ 1/2i−1

for some i ≥ 2, then necessarilyµ(�) = ∞. Let us show that items (a) and (b) in Definition 3.1
are satisfied. Regarding item (a), let us proceed by contradiction and assume that there exists
� ∈ B(X) such that � ⊂ W , λ(�) > 0, and µ(�) < ∞. Let i∗ be an integer satisfying
λ(�) ≥ 1/2i

∗−1
. Since � ⊂ Xi∗,0, the previous comment implies that µ(�) = ∞, leading to

a contradiction. Consequently, Definition 3.1(a) holds. Now consider V ∈ B(X) such that
W ⊂ V and λ(V \W) > 0. Since µ is σ -finite on Wc, it is σ -finite on V \W . Consequently,
there exists � ⊂ V \W such that λ(�) > 0 and µ(�) < ∞, showing Definition 3.1(b). Since,
the set (

⋂
i∈N

Xi,0)
c consists of no more than a countable number of sets � with µ(�) < ∞

as described in item 1 of the algorithm then the measure µ is σ -finite on (
⋂
i∈N

Xi,0)
c, giving

the result.

4. Finite action space

In this section we restrict our attention to the case where the action set A = {a1, . . . , aM}
is finite. In the next section, our results will be generalized to the case of a compact action
space. The objective of the current section is to show that if the linear program LP admits
an optimal solution µ∗ then there exists a feasible randomized stationary policy ϕ∗ ∈ �c
which is optimal for the control problem defined in (2.1)–(2.3) and that the optimal value
of the LP coincides with the optimal value of the control problem (see Theorem 4.2). As a
consequence, we show that the set of randomized stationary policies is a sufficient class of
policies for the control problem under consideration (see Corollary 4.1). The proof of our main
results strongly relies on the following key property: for any nearly perfect measure µ (see
Definition 4.1 for a precise statement), one can construct a randomized stationary policy ϕ
such that the occupation measure µϕ associated with ϕ is smaller than µ (see Theorem 4.1).
We introduce the following assumptions: there exists a probability measure q on B(X) with
respect to which the stochastic kernel Q is absolutely continuous and the values of LPθ for
any θ ∈ �∪{0} are finite (see Assumption 4). The former hypothesis is not very restrictive
as explained in item (b) of Remark 4.1. Moreover, it appears necessary to impose the latter
hypothesis. Indeed, if this assumption is violated then some examples presented in Section 6
show that the optimal solution of the linear program LP may have no meaning.
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We first introduce a special class of measures called nearly perfect.

Definition 4.1. A measure µ ∈ M(X×A)+ is said to be nearly perfect if it satisfies the linear
equation (2.6) and if, for any a ∈ A, there exists a µA/µa-nearly perfect set Va such that µA
is σ -finite on V cA, where VA = ⋃

a∈A Va .

In the above definition, there is no loss of generality to assume that Vai ∩Vaj = ∅ for i �= j .

Definition 4.2. If µ is nearly perfect then consider a stochastic kernel on A given X, labeled
ϕ, such that, for any � ∈ B(V cA), µa(�) = µ(� × {a}) = ∫

�
ϕ({a} | x)µA(dx) and, for any

x ∈ Va , ϕ(· | x) = δa(·). The randomized stationary policy generated by ϕ will be said to be
induced by µ.

Sufficient conditions for the existence of nearly perfect measures is given in Lemma 4.4
below. In the following theorem we derive an important property of nearly perfect measures.

Theorem 4.1. Let µ ∈ M(X × A)+ be nearly perfect, and let ϕ be its induced randomized
stationary policy. Then µϕ ≤ µ.

Proof. Introduce the mapping T defined on M(X)+ by

T γ (�) = ν(�)+
∑
a∈A

∫
X

Q(� | y, a)ϕ({a} | y)γ (dy).

Define the sequence of measures (γn)n∈N in M(X)+ by γ0 = 0 and γn+1 = T γn for n ∈ N.
Since the operator T is monotone, it follows easily by induction that the sequence (γn)n∈N

is increasing and converges to µϕA which is the minimal positive solution of γ = T γ with
γ ∈ M(X)+.

Now, let us show that T µA ≤ µA. Indeed, for any � ∈ B(X),

T µA(�) = ν(�)+
∑
a∈A

∫
V cA

Q(� | y, a)ϕ({a} | y)µA(dy)

+
∑
a∈A

∫
VA

Q(� | y, a)ϕ({a} | y)µA(dy). (4.1)

However, since µ(� × {a}) = ∫
�
ϕ({a} | x)µA(dx) for any � ∈ B(V cA), we have, for any

� ∈ B(X),

µA(�) = ν(�)+
∑
a∈A

∫
V cA

Q(� | y, a)ϕ({a} | y)µA(dy)+
∑
a∈A

∫
VA

Q(� | y, a)µa(dy). (4.2)

Consider a fixed set � in B(X). Suppose that µA({y ∈ Vaj : Q(� | y, aj ) > 0}) > 0 for some
j ∈ NM . Then, since Vaj is µA/µaj -nearly perfect, µaj ({y ∈ Vaj : Q(� | y, aj ) > 0}) = ∞,
implying that ∑

a∈A

∫
VA

Q(� | y, a)µa(dy) ≥
∫
Vaj

Q(� | y, aj )µaj (dy) = ∞. (4.3)

Combining (4.1)–(4.3), we have T µA(�) ≤ µA(�).
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Now suppose that, for all j ∈ NM , µA({y ∈ Vaj : Q(� | y, aj ) > 0}) = 0. Then

∑
a∈A

∫
VA

Q(� | y, a)ϕ({a} | y)µA(dy) =
M∑
i=1

∫
Vai

Q(� | y, ai)µA(dy) = 0, (4.4)

and so combining (4.1), (4.2), and (4.4), we have T µA(�) ≤ µA(�).
In any case T µA ≤ µA. Consequently, it can be shown easily by induction that γn ≤ µA,

implying thatµϕA ≤ µA. Therefore, for any� ∈ B(V cA),µ(�×{a}) = ∫
�
ϕ({a} | x)µA(dx) ≥∫

�
ϕ({a} | x)µϕA(dx) = µϕ(� × {a}). Now consider any a ∈ A and � ∈ B(Va). Then, if

µa(�) < ∞, we haveµA(�) = 0 since Va isµA/µa-nearly perfect. SinceµϕA ≤ µA, we have
µϕ(� × {a}) ≤ µϕ(� × A) = 0, showing that µ(� × {a}) ≥ µϕ(� × {a}). This concludes
the proof.

Roughly speaking, we now introduce the difference, labeled �µ, between the measures µ
and µϕ and derive some technical results related to it.

Definition 4.3. Let µ ∈ M(X × A)+ be nearly perfect, and let ϕ be its induced randomized
stationary policy. Define the mapping �µ on B(X × A) by

�µ(�) = µ(�∩[VA × A])+ (µ− µϕ)(�∩[V cA × A]), (4.5)

where � ∈ B(X × A) (see Definition 2.1).

The dependence of �µ on ϕ is not explicitly mentioned because ϕ itself depends on µ.
Observe that, for any � ∈ B(X × A), (µ− µϕ)(�) is well defined since, from Theorem 4.1,
the measure µ is nearly perfect and µϕ ≤ µ.

Lemma 4.1. Let µ ∈ M(X × A)+ be nearly perfect, and let ϕ be its induced randomized
stationary policy. The mapping �µ is a measure in M(X × A)+ that satisfies

µ = µϕ +�µ. (4.6)

Proof. It is easy to check that �µ is a measure in M(X × A)+. Consider � ∈ B(V cA) and
a ∈ A. Then we clearly have µ(� × {a}) = µϕ(� × {a})+�µ(� × {a}) by the definition of
�µ, implying (4.6). According to Definition 4.1, VA = ∑

b∈A Vb, where Vb is a µA/µb-nearly
perfect set for any b ∈ A. Now consider a ∈ A and � ∈ B(Vb) for b ∈ A. From the definition
of�µ, we need to check thatµ(�×{a}) = µϕ(�×{a})+µ(�×{a}). Note thatµ(�×{b}) = 0
or µ(� × {b}) = ∞ since Vb is a µA/µb-nearly perfect. Consequently, if a = b then (4.6)
follows immediately since µϕ ≤ µ. If b �= a then µϕ(� × {a}) = ∫

�
ϕ({a} | y)µϕA(dy), but

ϕ({a} | y) = 0 for any y ∈ � ⊂ Vb and so µϕ(� × {a}) = 0, showing (4.6). This completes
the proof.

Lemma 4.2. Let µ ∈ M(X × A)+ be nearly perfect, and let ϕ be its induced randomized
stationary policy. Consider � ∈ B(X). We have

�
µ
A(�) ≥ �µQ(�). (4.7)

Moreover, if µϕA(�) < ∞ or � ⊂ V cA then we have an equality in the above formula.

Proof. From (4.6), we have µQ = µϕQ+�µQ and so µA = µ
ϕ
A +�µQ. Let � ∈ B(X)

be fixed. Let us consider two cases: µϕA(�) < ∞ and µϕA(�) = ∞. If µϕA(�) < ∞ then
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�µQ(�) = µA(�)− µ
ϕ
A(�). From (4.6) and since µϕA(�) < ∞, �µA(�) = µA(�)− µ

ϕ
A(�),

showing the equality in (4.7). Now, if µϕA(�) = ∞ and � ∈ B(V cA), then, by using the fact
that µϕA is σ -finite on V cA, this case reduces to the previous one, and so the equality holds
in (4.7). Finally, if µϕA(�) = ∞ and � ∈ B(Va), then µϕa (�) = ∫

�
ϕ({a} | y)µϕA(dy) = ∞ by

the definition of ϕ and (2.5). Consequently,�µA(�) ≥ �
µ
a (�) = µa(�) ≥ µ

ϕ
a (�) = ∞ and so

�
µ
A(�) = ∞, implying that inequality (4.7) is satisfied.

Lemma 4.3. Let µ ∈ M(X × A)+ be nearly perfect, and let ϕ be its induced randomized
stationary policy. Assume that γ ∈ M(X × A)+ and satisfies γA ≥ µ

ϕ
A and γA = ν + γQ.

Then the measure λ = γ +�µ satisfies λA = ν + λQ.

Proof. Let us consider � ∈ B(X) fixed. If µϕA(�) = ∞ then γA(�) = ∞. Consequently,
we have λA(�) = γA(�) + �

µ
A(�) = ν(�) + γQ(�) + �µQ(�) = ν(�) + λQ(�) = ∞,

showing the result. Now if µϕA(�) < ∞ then we have �µA(�) = �µQ(�) from Lemma 4.2.
Therefore, λA(�) = ν(�)+ λQ(�), completing the proof.

We need the following assumptions to derive our main results.

Assumption A. Suppose that

(A1) there exists a probability measure q ∈ M(X)+ such that Q(· | x, a) � q for any
(x, a) ∈ X × A,

(A2) the value of the linear program LPθ is finite for any θ ∈ �∪{0}.
Remark 4.1. (a) There is no loss of generality to assume that ν � q in assumption (A1).
Indeed, if there exists a probability measure q̃ ∈ M(X)+ such that Q(· | x, a) � q̃ for any
(x, a) ∈ X × A then the probability measure q = 1

2ν + 1
2 q̃ satisfies the required property.

(b) Assumption (A1) is not very restrictive. In many applications, the evolution of an MDP is
specified by a discrete-time equation of the form xt+1 = F(xt , at )+ξt , whereF is an R

n-valued
measurable mapping defined on R

n×A and (ξt )t∈N0 is an independent and identically distributed
sequence of random variables with density α with respect to the Lebesgue measure on B(Rn).
By using the change of variable formula, we obtain Q(A | x, a) = ∫

A
α(y − F(x, a)) dy.

Consequently, assumption (A1) is satisfied for q defined by the standard normal distribution
on B(Rn).

Moreover, assumption (A1) is automatically satisfied if X is finite or countable; in these
cases q can be defined as a geometric distribution.

The following lemma shows that hypothesis (A1) is a sufficient condition to ensure that any
measure satisfying the linear equation (2.6) is nearly perfect.

Lemma 4.4. Under assumption (A1), any measure µ ∈ M(X)+ satisfying the linear equation
(2.6) is nearly perfect.

Proof. Since q is a probability measure, from Theorem 3.2, there exists a q/µa-perfect
set, labeled Va for any a ∈ A. Moreover, µa is σ -finite on V ca . Consequently, the measure
µA = ∑

a∈A µa is σ -finite on (
⋃
a∈A Va)c. Furthermore, Va is q/µa-nearly perfect set. From

assumption (A1) and Remark 4.1(a), it can be easily shown that the measure µA is absolutely
continuous with respect toq and so it is easy to show thatVa isµA/µa-nearly perfect, completing
the proof.

We now present our two main results.
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Theorem 4.2. Suppose that Assumption A is satisfied. If µ∗ is an optimal solution of the
constrained linear program LP then the induced policy ϕ∗ is a solution of the constrained
control problem defined by (2.3) and the optimal value V ∗(ν) coincides with the optimal value
of the LP, that is,

v(ν, ϕ∗) = inf
π∈�c

v(ν, π) = inf
µ∈Lc

µ(r0) = µ∗(r0).

Proof. For any policy π ∈ �, the corresponding occupation measure satisfies the linear
equation (2.6) by Lemma 9.4.3 of [10]. The value of the constrained control problem defined
in (2.3) cannot be smaller than the value of the LP given by µ∗(r0). We will show that
µ∗(rθ ) ≥ µϕ

∗
(rθ ) for any θ ∈ �∪{0}. Suppose that, for some θ ∈ �,µ∗(rθ ) < µϕ

∗
(rθ ). Then

introduce �µ
∗

according to (4.5). From Lemma 4.3 and Theorem 4.1, the measure λn defined
by λn = µ∗ + n�µ

∗
for n ∈ N satisfies λnA = ν + λnQ and so λn(rθ ) = µ∗(rθ )+ n�µ

∗
(rθ ).

From assumption (A2), −∞ < µ∗(rθ ) and µ∗(rθ ) ≤ Rθ , and so µ∗(rθ ) is finite. Therefore,
we obtain µϕ

∗
(r+θ ) ≤ µ∗(r+θ ) < ∞ and µϕ

∗
(r−θ ) ≤ µ∗(r−θ ) < ∞ by using Theorem 4.1.

Consequently,µϕ
∗
(rθ ) is finite and we have�µ

∗
(rθ ) < 0 sinceµ∗(rθ ) = µϕ

∗
(rθ )+�µ

∗
(rθ ) <

µϕ
∗
(rθ ). This implies that the value of the auxiliary unconstrained linear program LPθ is

smaller than λn(rθ ) = µ∗(rθ )+ n�µ
∗
(rθ ) for any n ∈ N and, thus, equals −∞, leading to a

contradiction with assumption (A2). Therefore, for any θ ∈ �, µϕ
∗
(rθ ) ≤ Rθ . Now, it is also

obvious thatµ∗(r0) ≤ µϕ
∗
(r0), and it remains to prove thatµ∗(r0) = µϕ

∗
(r0). Ifµ∗(r0) = +∞

then necessarily µϕ
∗
(r0) = µ∗(r0) since ∞ = µ∗(r0) ≤ µϕ

∗
(r0). If µ∗(r0) < +∞ then, from

assumption (A2), −∞ < µ∗(r0) and so µ∗(r0) is finite. One can apply the same reasoning
presented above for θ ∈ � to show that µ∗(r0) = µϕ

∗
(r0). This completes the proof.

Corollary 4.1. Suppose that Assumption A is satisfied. The set of randomized stationary
policies is a sufficient set of policies for the optimization problem (2.1)–(2.3).

Proof. This result is a straightforward consequence of Theorem 4.2.

5. Compact action space

In this section, it is assumed that the action set A is compact. The main results we obtain
in this section may appear similar to those of the previous section. However, there are several
subtle differences that make the derivations more technical and complicated. The general idea
of the proof relies on some kind of discretization of the action space (see Lemma 5.1 and
Proposition 5.1). In this new context, we can still construct a randomized stationary policy ϕ
associated to any measureµ satisfying the linear equation (2.6). However, we cannot guarantee
that the occupation measure µϕ associated to ϕ is smaller than µ as in Theorem 4.1. Roughly
speaking, we can only prove that µϕ(g) ≤ µ(g) for any R+-valued measurable function g
defined on X × A such that g(x, ·) is continuous on A for any x ∈ X. However, since
the measures µ and µϕ are not σ -finite, we cannot conclude that µϕ ≤ µ. These technical
differences induce changes in the way we deal with the compact action space.

Assumption B. Suppose that

(B1) there exists a probability measure q ∈ M(X)+ such that Q(· | x, a) � q for any
(x, a) ∈ X × A,

(B2) the set A is compact; the metric on A will be denoted by ρ,

(B3) for any � ∈ B(X) and x ∈ X, the mapping Q(� | x, ·) is continuous on A,
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(B4) the value of the linear program LPθ is finite for any θ ∈ �∪{0},
(B5) for any θ ∈ �∪{0} and any x ∈ X, the mapping rθ (x, ·) is continuous on A.

Observe that if assumption (B1) holds then any measure µ ∈ M(X × A)+ that satisfies
the linear equation (2.6) can be considered as being absolutely continuous with respect to q
according to Remark 4.1. Moreover, it must be noted that assumptions (B3) and (B5) are
automatically satisfied in the case of a finite action space.

The next two technical results introduce some kind of discretization of the action space.

Lemma 5.1. Suppose that assumptions (B1)–(B2) are satisfied. Consider a measure µ ∈
M(X × A)+ satisfying the linear equation (2.6). There exists a sequence (Mn)n∈N in N, a
sequence (Ai,j )i∈N, j∈NMi

in B(A), and a sequence (Vi,j )i∈N, j∈NMi
in B(X) such that the

following assertions hold.

(a) A = ∑M1
j=1A1,j with ρ(a, b) < 1 for any (a, b) ∈ A1,j . The set V1,j is q/µA1,j -perfect

and µA1,j is σ -finite on V c1,j for any j ∈ NM1 .

(b) For n > 1, A = ∑Mn

j=1An,j with ρ(a, b) < 1/2n−1 for any (a, b) ∈ An,j . For any
j ∈ NMn , Vn,j is a q/µAn,j -perfect set. Moreover, there exists a partition of NMn ,
labeled (In,k)k∈NMn−1

, such that Vn−1,k = ⋃
j∈In,k

Vn,j and An−1,k = ∑
j∈In,k

An,j for
any k ∈ NMn−1 .

Proof. Part (a) is an easy consequence of Theorem 3.2 and the fact that A is compact.
Let us show part (b) by induction. Consider p ≥ 1, and assume that, for any n ≤ p,
(b) is satisfied. Since Ap,j is relatively compact for any j ∈ NMp , there exists a partition
of Ap,j into Np,j sets: Ap,j = ∑Np,j

k=1 Bj,k with ρ(a, b) < 1/2p for any (a, b) ∈ Bj,k .
Then combining Theorems 3.1 and 3.2, there exists a q/µBj,k -perfect set, labeled W̃j,k for
any k ∈ NNp,j such that Vp,j

q ⋃Np,j
k=1 W̃j,k . Now, we have Vp,j = ⋃Np,j

k=1 Wj,k with Wj,k =
[Vp,j \ ⋃Np,j

k=1 W̃j,k] ∪[Vp,j ∩ W̃j,k]. However, since Vp,j
q ⋃Np,j

k=1 W̃j,k , we have Wj,k

q
W̃j,k . Consequently, Wj,k is a q/µBj,k -perfect set according to Proposition 3.1. Defining
Mp+1 = ∑Mp

j=1Np,j and reordering the sets (Bj,k)j∈NMp , k∈NNp,j
and (Wj,k)j∈NMp , k∈NNp,j

,
we can easily show the existence of (Ap+1,j )j∈NMp+1

, (Vp+1,j )j∈NMp+1
, and (Ip+1,k)k∈NMp

,
satisfying the desired properties.

Proposition 5.1. Suppose that assumptions (B1)–(B2) are satisfied. Consider a measure µ ∈
M(X × A)+ satisfying the linear equation (2.6). There exists a sequence (Mn)n∈N in N, a
sequence (Ai,j )i∈N, j∈NMi

in B(A), and a sequence (V̂i,j )i∈N, j∈NMi
in B(X) such that the

following assertions hold.

(a) A = ∑M1
j=1A1,j with ρ(a, b) < 1 for any (a, b) ∈ A1,j . The set V̂1,j is q/µA1,j -nearly

perfect and µA1,j is σ -finite on V̂ c1,j for any j ∈ NM1 . The measure µA is σ -finite on V cA,

where VA = ∑M1
i=1 V̂1,i .

(b) For n > 1, A = ∑Mn

j=1An,j with ρ(a, b) < 1/2n−1 for any (a, b) ∈ An,j . For any
j ∈ NMn , V̂n,j is a q/µAn,j -nearly perfect set and VA = ∑Mn

j=1 V̂n,j . Moreover, for any
j ∈ NMn , there exists k ∈ NMn−1 such that V̂n,j ⊂ V̂n−1,k and An,j ⊂ An−1,k .

Proof. Part (a) follows from Lemma 5.1. Indeed, let us consider the sets (A1,j )1≤j≤M1

and (V1,j )1≤j≤M1 introduced in Lemma 5.1(a). Define V̂1,1 = V1,1 and, for j > 1, V̂1,j =
V1,j \ ⋃j−1

k=1 V1,k . Since V̂1,j ⊂ V1,j for j ∈ NM1 and according to Remark 3.2, V̂1,j is a
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q/µA1,j -nearly perfect set. Clearly, the sets (V̂1,j )j∈NM1
are pairwise disjoint and

⋃M1
i=1 V1,i =∑M1

i=1 V̂1,i . Moreover, from Lemma 5.1(a), µA is σ -finite on (
∑M1
i=1 V̂1,i )

c, showing part (a).
Using similar arguments as before and from Lemma 5.1(b), there exits a q/µAn,j -nearly perfect
set, labeled Ṽn,j for any j ∈ Mn, such that Vn−1,k = ∑

j∈In,k
Ṽn,j . Now the set V̂n,j defined

by V̂n,j = Ṽn,j ∩ V̂n−1,k for j ∈ In,k satisfies the required properties, completing the proof.

Remark 5.1. It is worth mentioning that the proofs of Lemma 5.1 and Proposition 5.1 only
required that q must be a probability measure. Actually, the second part of assumption (B1)
is not needed, that is, Q(· | x, a) � q for any (x, a) ∈ X × A. Moreover, observe that
assumption (B2) is only needed to ensure that each element of the partition (An,j )j∈NMn

of the
action space A has a diameter less than 1/2n−1.

Let µ be a measure in M(X×A)+ satisfying equation (2.6). According to Proposition 5.1,
there exists a stochastic kernel on A given V cA, labeled ψ , such that, for any � ∈ B(V cA × A),
µ(�) = ∫

�
ψ(da | x)µA(dx). Moreover, introduce, for any n ∈ N, the A-valued mapping fn

defined on VA by fn(x) = an,j if x ∈ V̂n,j , where an,j is an arbitrary fixed element in An,j .

Lemma 5.2. Suppose that assumptions (B1)–(B2) are satisfied. Then limn→∞ fn(x) exists for
any x ∈ VA.

Proof. Let x ∈ VA. For any n > 1, there exist k ∈ NMn−1 and j ∈ NMn such that
fn−1(x) ∈ An−1,k and fn(x) ∈ An,j with An,j ⊂ An−1,k according to Proposition 5.1.
Therefore, ρ(fn(x), fn−1(x)) ≤ 1/2n−2, showing that the (fn(x))n∈N is a Cauchy sequence in
the complete space A. This completes the proof.

Definition 5.1. Suppose that assumptions (B1)–(B2) are satisfied. Consider µ ∈ M(X×A)+
satisfying the linear equation (2.6). Let f be the A-valued measurable function defined on
VA by f (x) = limn→∞ fn(x), and let ϕ be the stochastic kernel defined on A given X by
ϕ(· | x) = IV cA

(x)ψ(· | x)+ IVA(x)δf (x)(·). The randomized stationary policy generated by
ϕ will be said to be induced by the measure µ.

Figure 1 illustrates the construction of (Ai,j )i∈N, j∈NMi
and (V̂i,j )i∈N, j∈NMi

obtained in
Lemma 5.1 and Proposition 5.1 and the associated mapping f introduced in Definition 5.1.

Lemma 5.3. Suppose that assumptions (B1)–(B2) are satisfied. Consider µ ∈ M(X × A)+
satisfying the linear equation (2.6), and let ϕ be its induced randomized stationary policy.

f x( )

x

a

V̂ 2n, V̂ n,Mn
V̂ n, 1

c
VA

an, 1

an, 2

a Mn, n

σµ is   -finite

An, 1

An, 2

n,MnA

Figure 1: Construction of the sets Ai,j and V̂i,j .
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Let g be an R+-valued measurable function defined onX×A such that g(x, ·) is continuous on
A for any x ∈ X. If

∫
VA×A g(y, a)µ(dy × da) < ∞ then

∫
VA

×Ag(y, a)µϕ(dy × da) =∫
VA
g(y, f (y))q(dy) = 0.

Proof. For ε > 0, n ∈ N, and j ∈ NMn , let us introduce Wε = {x ∈ VA : g(x, f (x)) ≥
ε}, Wε

n,j = {x ∈ V̂n,j : for all a ∈ An,j , g(x, a) ≥ ε}. According to Proposition 5.1, the sets
(Wε

n,j )j∈NMn
are pairwise disjoint. Define Wε

n = ∑Mn

j=1W
ε
n,j . Since A is a compact metric

space, any subset of A is separable. Therefore, we have Wε
n,j = ⋂

k∈N
{x ∈ X : G(x, ak) ≥

ε} ∩ V̂n,j , where (ak)k∈N is a dense subset of An,j since g(x, ·) is continuous for any x ∈ X.
Consequently, Wε

n,j ∈ B(X). Now let us show that Wε ⊂ ⋃
n∈N

W
ε/2
n . Indeed, consider

x ∈ Wε. Since g(x, ·) is continuous on the compact set A, there exists βx,ε > 0 such that
|g(x, a) − g(x, f (x))| ≤ ε/2 for any a satisfying ρ(a, f (x)) ≤ βx,ε. Now, for any n ∈ N,
we have x ∈ V̂n,jn,x and fn(x) ∈ An,jn,x for some jn,x ∈ NMn . According to Proposition 5.1
and Lemma 5.2, there exists nx,ε ∈ N such that, for any n ≥ nx,ε and a ∈ An,jn,x , we
have ρ(fn(x), a) ≤ βx,ε/2 and ρ(fn(x), f (x)) ≤ βx,ε/2. Consequently, for n ≥ nx,ε,
we have ρ(f (x), a) ≤ βx,ε for any a ∈ An,jn,x and so x ∈ Wε/2

n,jn,x
⊂ W

ε/2
n , showing that

Wε ⊂ ⋃
n∈N

W
ε/2
n .

Now assume that
∫
VA×A g(y, a)µ

ϕ(dy × da) > 0. Then
∫
VA×Ag(y, f (x))q(dy) > 0

according to the fact that µϕA(·) � q(·) and so there exists ε > 0 such that q(Wε) > 0.

Therefore, q(Wε/2
n,j ) > 0 for some n ∈ N and j ∈ NMn since Wε ⊂ ⋃

n∈N

⋃
j∈NMn

W
ε/2
n,j .

Observe that Wε/2
n,j is a q/µAn,j -nearly perfect set since it is a subset of V̂n,j . This implies

that µAn,j (W
ε/2
n,j ) = ∞. Finally,∫

VA×A
g(y, a)µ(dy × da) ≥

∫
W
ε/2
n,j ×An,j

g(y, a)µ(dy × da) ≥ ε

2
µAn,j (W

ε/2
n,j ) = ∞,

showing the contrapositive of the result.

Our next result is aimed towards comparing the measuresµ andµϕ . Clearly, in the context of
a general compact action space, we cannot guarantee that the occupation measureµϕ associated
to ϕ is smaller than µ as in Theorem 4.1. This is an important difference with respect to the
case of a finite action space. We can only prove that µϕ ≤ µ on B(V cA × A).

Theorem 5.1. Suppose that assumptions (B1)–(B3) are satisfied. Consider µ ∈ M(X × A)+
satisfying the linear equation (2.6), and let ϕ be its induced randomized stationary policy. Then
µ
ϕ
A ≤ µA and µϕ ≤ µ on B(V cA × A). Moreover, if g is an R+-valued measurable function

defined on X × A such that g(x, ·) is continuous on A for any x ∈ X then∫
VA×A

g(y, a)µϕ(dy × da) ≤
∫
VA×A

g(y, a)µ(dy × da). (5.1)

Proof. Introduce the mapping T defined on M(X)+ by

T γ (�) = ν(�)+
∫
X×A

Q(� | y, a)ϕ(da | y)γ (dy).

Define the sequence of measures (γn)n∈N in M(X)+ by γ0 = 0 and γn+1 = T γn for n ∈ N.
Since the operator T is monotone, it follows easily by induction that the sequence (γn)n∈N

is increasing and converges to µϕA which is the minimal positive solution of γ = T γ with
γ ∈ M(X)+.
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Now, let us show that T µA ≤ µA. Indeed, by the definition of ϕ, for any � ∈ B(X),

T µA(�) = ν(�)+
∫
V cA×A

Q(� | y, a)ϕ(da | y)µA(dy)

+
∫
VA

Q(� | y, f (y))µA(dy). (5.2)

However, since µ(�) = ∫
�
ϕ(da | x)µA(dx) for any � ∈ B(V cA × A), we have, for any

� ∈ B(X),

µA(�) = ν(�)+
∫
V cA×A

Q(� | y, a)ϕ(da | y)µA(dy)

+
∫
VA×A

Q(� | y, a)µ(dy × da). (5.3)

We study two cases. Assume first that
∫
VA×A Q(� | y, a)µ(dy × da) = ∞. ThenµA(�) = ∞

and we clearly haveT µA(�) ≤ µA(�). Now suppose that
∫
VA×AQ(� | y, a)µ(dy× da) <∞.

From assumption (B3) and Lemma 5.3, taking into account the fact that µA � q, it follows
that ∫

VA

Q(� | y, f (y))µA(dy) = 0, (5.4)

and so combining (5.2), (5.3), and (5.4), we have T µA ≤ µA.
Consequently, it can be shown easily by induction that γn ≤ µA, implying that µϕA ≤ µA.

Therefore, according to the definition of ϕ (see Definition 5.1),

µ(�) =
∫
�

ϕ(da | y)µA(dx) ≥
∫
�

ϕ(da | y)µϕA(dx) = µϕ(�)

for any � ∈ B(V cA × A). Moreover, (5.1) is a straightforward consequence of Lemma 5.3.
This completes the proof.

Given the measures µ and µϕ , we now give the definition of their difference.

Definition 5.2. Suppose that assumptions (B1)–(B3) are satisfied. Consider µ ∈ M(X×A)+
satisfying the linear equation (2.6), and letϕ be its induced randomized stationary policy. Define
the mapping �µ on B(X × A) by

�µ(�) = µ(�∩[VA × A])+ (µ− µϕ)(�∩[V cA × A]), (5.5)

where � ∈ B(X × A) (see Definition 2.1).

The dependence of �µ on ϕ is not explicitly mentioned because ϕ itself depends on µ.
Observe that, for any� ∈ B(V cA × A), (µ−µϕ)(�) is well defined since, from Proposition 5.1,
the measure µ is σ -finite on B(V cA × A) and µϕ ≤ µ on B(V cA × A). Our next result presents
some technical properties of �µ.

Lemma 5.4. Suppose that assumptions (B1)–(B3) are satisfied. Consider µ ∈ M(X × A)+
satisfying the linear equation (2.6), and let ϕ be its induced randomized stationary policy. If g
is an R+-valued measurable function defined on X × A such that g(x, ·) is continuous on A
for any x ∈ X then

µ(g) = µϕ(g)+�µ(g).
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Proof. Consider� ∈ B(V cA × A). Then we haveµ(�) = µϕ(�)+�µ(�) by the definition
of �µ and Theorem 5.1, which implies that∫

V cA×A
g(x, a)µ(dx, da) =

∫
V cA×A

g(x, a)µϕ(dx, da)+
∫
V cA×A

g(x, a)�µ(dx, da). (5.6)

Now, according to (5.5),∫
VA×A

g(x, a)µ(dx, da) =
∫
VA×A

g(x, a)�µ(dx, da).

Combining the above equality and Lemma 5.3, we obtain∫
VA×A

g(x, a)µ(dx, da) =
∫
VA×A

g(x, a)µϕ(dx, da)+
∫
VA×A

g(x, a)�µ(dx, da). (5.7)

From (5.6) and (5.7), the result follows.

Corollary 5.1. Suppose that assumptions (B1)–(B3) are satisfied. Consider µ ∈ M(X×A)+
satisfying the linear equation (2.6), and let ϕ be its induced randomized stationary policy. For
any � ∈ B(X), we have

�
µ
A(�) ≥ �µQ(�). (5.8)

Moreover, if µϕA(�) < ∞ or � ⊂ V cA then we have an equality in the above formula.

Proof. Let � ∈ B(X). According to assumption (B3), the mappingQ(� | ·, ·) satisfies the
hypothesis of Lemma 5.4 and so µQ(�) = µϕQ(�) + �µQ(�). Adding ν(�) to both sides
of the above equality yields

µA(�) = µ
ϕ
A(�)+�µQ(�). (5.9)

Applying Lemma 5.4 to g = I�×A we have

µA(�) = µ
ϕ
A(�)+�

µ
A(�). (5.10)

Consequently, if µϕA(�) < ∞ then combining (5.9) and (5.10) we get an equality in (5.8).
Now, if µϕA(�) = ∞ and � ∈ B(V cA), then, by using the fact that µϕA is σ -finite on V cA, this
case reduces to the previous case, and so the equality holds in (5.8). Finally, ifµϕA(�) = ∞ and
� ∈ B(VA), then, from Theorem 5.1 and by the definition of �µ, we obtain ∞ = µ

ϕ
A(�) ≤

µA(�) = �
µ
A(�), implying that inequality (5.8) is satisfied, showing the result.

Lemma 5.5. Suppose that assumptions (B1)–(B3) are satisfied. Consider µ ∈ M(X × A)+
satisfying the linear equation (2.6), and let ϕ be its induced randomized stationary policy.
Assume that γ ∈ M(X × A)+ and satisfies γA ≥ µ

ϕ
A and γA = ν + γQ. Then the measure

λ = γ +�µ satisfies λA = ν + λQ.

Proof. The proof of this result is similar to that of Lemma 4.3 by using Corollary 5.1 instead
of Lemma 4.2.

In the next theorem and corollary, we present our main results.

Theorem 5.2. Suppose that Assumption B holds. Ifµ∗ is an optimal solution of the constrained
linear program LP then the induced policy ϕ∗ is a solution of the constrained control problem
defined by (2.3) and the optimal value V ∗(ν) coincides with the optimal value of the LP.
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Proof. For any policy π ∈ �, the corresponding occupation measure satisfies the linear
equation (2.6) by Lemma 9.4.3 of [10]. The value of the constrained control problem defined
in (2.3) cannot be smaller than the value of the LP given by µ∗(r0). We will show that
µ∗(rθ ) ≥ µϕ

∗
(rθ ) for any θ ∈ �∪{0}. Suppose that, for some θ ∈ �, µ∗(rθ ) < µϕ

∗
(rθ ).

Then introduce �µ
∗

according to (5.5). From assumption (B3), −∞ < µ∗(rθ ). Moreover,
since µ∗ is a solution of the constrained linear program LP, µ∗(rθ ) ≤ Rθ and so µ∗(rθ )
is finite. According to assumption (B4) and Lemma 5.4, µ∗(r+θ ) = µϕ

∗
(r+θ )+�µ

∗
(r+θ ) and

µ∗(r−θ ) = µϕ
∗
(r−θ )+�µ

∗
(r−θ ), implying that µϕ

∗
(rθ ) and �µ

∗
(rθ ) are finite. Therefore, we

obtain µ∗(rθ ) = µϕ
∗
(rθ )+�µ

∗
(rθ ) and so �µ

∗
(rθ ) < 0 since it is assumed that µ∗(rθ ) <

µϕ
∗
(rθ ). From Theorem 5.1 and Lemma 5.5, the measure λn defined by λn = µ∗ + n�µ

∗

for n ∈ N satisfies λnA = ν + λnQ. Therefore, λ1(rθ ) = µ∗(rθ )+�µ
∗
(rθ ) is well defined

and finite and it can easily be shown by induction that λn(rθ ) = µ∗(rθ )+ n�µ
∗
(rθ ) is well

defined and finite for any n ∈ N. This implies that the value of the auxiliary unconstrained
linear program LPθ is smaller than λn(rθ ) = µ∗(rθ )+ n�µ

∗
(rθ ) for any n ∈ N and, thus,

equals −∞, leading to a contradiction with assumption (B3). Therefore, for any θ ∈ �,
µϕ

∗
(rθ ) ≤ Rθ . Now, it is also obvious that µ∗(r0) ≤ µϕ

∗
(r0), and it remains to prove that

µ∗(r0) = µϕ
∗
(r0). If µ∗(r0) = +∞ then necessarily µϕ

∗
(r0) = µ∗(r0). If µ∗(r0) < +∞

then, since µ∗(r0) > −∞, one can apply the same reasoning presented above for θ ∈ � to
show that µ∗(r0) = µϕ

∗
(r0). This completes the proof.

Corollary 5.2. Suppose that Assumption B holds. The set of randomized stationary policies is
a sufficient set of policies for the optimization problem (2.1)–(2.3).

Proof. This result is a straightforward consequence of Theorem 5.2.

6. Examples

6.1. Example 1

This example shows that assumption (A2) is important in Theorem 4.2 and, similarly,
assumption (B4) is important in Theorem 5.2.

We consider an uncontrolled model (A = {a}, dummy action) with a single constraint:
� = {1}; R1 = 1. The state space is X = {. . . ,−2,−1, 0, 1, 2, . . .} and the stochastic kernel
is defined by Q(0 | 0, a) = 1, Q(1 | − 1, a) = 1, and Q(i + 1 | i, a) = 1 for all i �= 0,−1.
Take r0(i, a) = r1(i, a) = 0 for all i ≤ 0 and r0(i, a) = −r1(i, a) = −( 1

2 )
i for all i > 0 and

choose ν(0) = 1.
Obviously, xt ≡ 0 and v(ν, π) = v1(ν, π) = 0 for the (single) control policy π . The

corresponding occupation measure is given by µπ(0, a) = ∞ and µπ(i, a) = 0 for i �= 0.
Observe that in this example µA(i) = µ(i, a), which will be denoted by µ(i) for notational
convenience. The linear program LP has the form

minimize −
∑
j≥1

µ(j)

(
1

2

)j
subject to ∑

j≥1

µ(j)

(
1

2

)j
≤ R1 = 1,

µ(i) = µ(i − 1) for all i < 0 and i > 1,

µ(1) = µ(−1), µ(0) = 1 + µ(0).
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Clearly, µ(0) = ∞ and µ(1) = µ(2) = · · · = M , where one can take any M ≥ 0. The
optimal solution to LP is given by M = 1, the minimal value is −1, but this solution does not
correspond to any control policy. In this example, the value of LP0 equals −∞, corresponding
to M = +∞.

6.2. Example 2

This example shows that condition (B2) and the continuity conditions (B3) and (B5) are
crucial in Theorem 5.2. At the same time, in Theorem 4.2, it is critical that the control set A is
finite.

We consider the unconstrained case: � = ∅. The state space is X = {0, 1, 2, . . .}, the
action space is A = {1, 2, . . .}, the stochastic kernel is defined by Q(a | 0, a) = ( 1

2 )
a−1,

Q(0 | 0, a) = 1 − ( 1
2 )
a−1 for all a ∈ A, and Q(0 | i, a) ≡ 1 for all i > 0, a ∈ A. Take

r0(0, a) = ( 1
2 )
a−1 and r0(i, a) = −1 for all i > 0, a ∈ A, and choose ν(0) = 1. This model is

presented in Figure 2. Observe that, for any µ ∈ M(X ×A)+, µ(r+0 ) = ∑
a∈A µ(0, a)( 1

2 )
a−1

and µ(r−0 ) = ∑
i≥1 µA(i). Consequently, µ(r0) is well defined if

∑
a∈A µ(0, a)( 1

2 )
a−1 < ∞

or
∑
i≥1 µA(i) < ∞. For such feasible measures, the linear program LP has the form

minimize µ(r0) =
∑
a∈A

µ(0, a)

(
1

2

)a−1

−
∑
i≥1

µA(i)

subject to

µA(0) = 1 +
∑
a∈A

µ(0, a)

[
1 −

(
1

2

)a−1]
+

∑
i≥1

µA(i),

µA(i) =
(

1

2

)i−1

µ(0, i), i ≥ 1.

These equations show that µ(r0) is well defined if and only if
∑
a∈A µ(0, a)( 1

2 )
a−1 < ∞. One

can easily see that in this case µA(0) = 1 + µA(0) and so µA(0) = ∞. The particular
values µ(i, a) for i ≥ 1 are of no importance; one can take µ(i, a) = δi({a})µA(i) =
δi({a})( 1

2 )
i−1µ(0, i). Moreover, it is easy to see that µ(r0) = 0 and so the optimal value

of LP equals zero.
For this problem, any stationary policy is unfeasible. Indeed, if ϕ(a | 0) > 0 then µ(r+0 ) =

µ(r−0 ) = ∞ and so µ(r0) is not well defined since the running costs +( 1
2 )
a−1 and −1 appear

r0 = –1 r0 = –1 r0 = –1

1 2 ... ...

0

i

(a) (b) (c)

Q=[1–(_12)
a–1]

(a) a=1, Q=1, r0 =1

(b) a=2, Q= _1
2 , r0 = _1

2

(c) a= i, Q=(_12)
i–1, r0 =(_12)

i–1

Figure 2: Illustration to Example 2.
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infinitely many times with positive probability. On the one hand, it is clear that V ∗(ν) ≥ 0
since the optimal value of LP equals 0, and on the other hand, one can check that v(ν, π∗) = 0,
where

π∗(a | ht ) =

⎧⎪⎨⎪⎩
1 if xt = 0 and a equals the number of 0s in the history ht ,

or if a = xt �= 0,

0 otherwise.

For this policy, the occupation measure is given byµπ
∗
(0, a) = 1 andµπ

∗
(i, a)= δi({a})( 1

2 )
i−1

for any (i, a) ∈ N × A.
In this example, one cannot construct the induced policy ϕ∗ for the measure µ∗ = µπ

∗
(and

for any other feasible measure) because it is not nearly perfect. Assumption (A1) holds for
instance for the geometric distribution q(x) = ( 1

2 )
x+1 on the state space X, but Lemma 4.4

does not hold because the action space A is not finite. Indeed, according to Definition 4.1, all
sets Va should be empty, because µ∗

A(i) > 0 and µ∗
a(i) = µ∗(i, a) < ∞ for all i ∈ X, a ∈ A.

However, the measure µ∗
A is not σ -finite on X since µ∗

A(0) = ∞.
If we consider the discrete topology for the spacesX andA then assumptions (B3) and (B5)

hold, but Theorem 5.2 cannot be applied because one cannot construct the induced policy since
Lemma 5.2 requires the action space A to be compact. According to Remark 5.1, one can still
construct a partition for the action spaceA as in Proposition 5.1, but we cannot ensure that each
element of the partition (An,j )j∈NMn

of the action spaceAwill have a diameter less than 1/2n−1.
Namely, for an arbitrary fixed n ∈ N , we define Mn = n. For n > 1, put An,j = {j} for j ∈
Nn−1 and An,n = An,Mn = {n, n+ 1, n+ 2, . . .}. If n = 1, put A = A1,1. The corresponding
subsets V̂n,j , which must be q/µ∗

An,j
-nearly perfect, are all empty except forVA = V̂n,Mn = {0}

because the geometric distribution takes positive values and µ∗
An,j

(X) = 1 + ( 1
2 )
j−1 < ∞ for

all j < Mn. On the other hand, µ∗
An,Mn

({0}) = ∞. The measure µ∗
An,j

is finite on X for
all j ∈ NMn−1. The measure µ∗

An,Mn
is σ -finite on V̂ cn,Mn

= V cA = {1, 2, . . .} and µ∗
A is also

σ -finite on V cA. We can introduce the mapping fn on VA = {0} as fn(0) = n ∈ V̂n,Mn , but the
limit limn→∞ fn(0) does not exist.

A way to overcome these difficulties is to use a one-point compactification of the action
space A. We add the point 0 to A and fix the following metric:

ρ(a, b) = ∣∣IN(a)( 1
2

)a − IN(b)
( 1

2

)b∣∣.
Assumptions (B3) and (B5) are satisfied if we put Q(0 | x, 0) = 1 for all x ∈ X. Now
Lemma 5.2 and Theorem 5.2 can be applied. Starting from the measure µ∗ (or from any
other feasible measure), one can build the induced policy ϕ∗: limn→∞ fn(0) = 0, so that
ϕ(· | x) = δx(·) (see Definition 5.1). This policy is optimal for the problem (2.3).

6.3. Example 3

The following meaningful example describes the process of selling a property. Suppose
that a landlord plans to sell the house and, once a month, receives the offers from the random
market, denoted as 1, 2, . . . ,M . The actual value of offer i is f (i) (thousand pounds). We
assume that the offers change according to an (uncontrolled) Markov chain with transition
matrix P = (pij ), i, j = 1, 2, . . . ,M . If a tenant currently rents the house, the landlord is not
allowed to sell it, but the tenant may leave before the next offer with probability pl . In case
there is no tenant and the landlord does not accept the current offer, he/she can wait until the
next month or can invite a new tenant who will appear by the next month with probability pa .
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Every month, the landlord pays the maintenance fee c ≥ 0 (thousand pounds); the monthly
revenue from a tenant is d ≥ 0 (thousand pounds). Assume that the expected time for the whole
selling period should not exceed a fixed constantR1 (months). Moreover, the total maintenance-
revenue cost should not exceed R2 (thousand pounds). The goal is to elaborate a selling policy
maximizing the expected value of the accepted offer under the imposed constraints. A similar
example was solved in [2, Example 10.3.1] using the dynamic programming approach, but the
problem was unconstrained and the authors considered the finite horizon case. A version of
this example also appears in [7], where a pure positive MDP was studied.

To formulate the MDP, we introduce the state space X = {(i, N), (j, Y ), i, j = 1, 2, . . . ,
M}∪{�}, where the components i, j represent the current offer and the letterN (respectively Y )
means that there is no tenant currently (respectively there is a tenant). The state � means the
house is sold. The action space is given by A = {s, t, w}, where s means ‘accept the offer (sell
the house)’, t means ‘invite a tenant’, w means ‘wait’. The transition kernel is given by

Q(� | �, a) ≡ 1, Q(� | (i, l), a) =
{

1 if l = N, a = s,

0 otherwise,

Q((j, k) | (i, l), a) = pij ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

pl if l = Y, k = N ,

1 − pl if l = Y, k = Y ,

pa if l = N, a = tk = Y ,

1 − pa if l = N, a = tk = N ,

1 if l = N, a = wk = N ,

0 otherwise.

The cost and constraint functions are defined by

r0(�, a) = r0((i, Y ), a) = 0,

r0((i, N), a) =
{
f (i) if a = s,

0 otherwise,

r1(x, a) = I{x �=�},
r2(�, a) = r2((i, N), s) = 0,

r2((i, l), a) =
{
c if l = N, a �= s,

c − d if l = Y .

Here � = {1, 2}.
Below, we solve numerically the LP for the following data: M = 6; f (i) = 100+20(i−1):

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0 0

1
4

1
2

1
4 0 0 0

0 1
4

1
2

1
4 0 0

0 0 1
4

1
2

1
4 0

0 0 0 1
4

1
2

1
4

0 0 0 0 1
2

1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, pl = 0.66, pa = 0.2, c = 0.5, d = 1.

Suppose that ν((1, N)) = 1, that is, there is no tenant and the first offer is 1 at the beginning.
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Remark 6.1. 1. One can easily reformulate the problem as a minimization problem by changing
the sign of the function r0.

2. Assumption A is satisfied: one can take q as the uniform distribution; the values of the
linear programs LP0 and LP1 are obviously finite (the maximum of LP0 equals f (6) = 200,
the minimum of LP1 equals 1). The value of LP2 equals 0 because the expected maintenance-
revenue cost coming from r2 increases with time.

3. In the case pl < pa the expected maintenance-revenue cost decreases with time and the
value of LP2 is −∞. Therefore, Assumption A is not satisfied and the results of the present
paper cannot be used.

LetR1 = 24 andR2 = 10. Thenµ∗(r0) = 167.1 (thousand pounds),µ∗(r1) = 24 (months),
and µ∗(r2) = 10 (thousand pounds), so that both constraints are active. The optimal policy
solving the constrained control problem (see (2.3)) is as follows:

• accept offer numbers 5 and 6 if there is no tenant,

• offer number 4 should be accepted with probability 0.31, or the landlord should simply
wait with the complementary probability 0.69,

• reject offer numbers 2 and 3 and just wait,

• if the landlord receives offer number 1 and there is no tenant then he/she should invite a
tenant with probability 0.82 and wait with the complementary probability 0.18.

The optimal occupation measures are presented in Table 1. The values of µ∗((6, N), s) and
µ∗((6, Y ), w) are negligible but positive (approximately 0.0001).

If we combine together all the monetary objectives, i.e. replace r0 with r0 − r2, then, under
the same constraint µ(r1) ≤ R1 and with the same values of the parameters, the optimal policy
prescribes to invite a tenant in states (1, N), (2, N), and (3, N) and accept the offers in states
(5, N) and (6, N). In the state (4, N), one should invite a tenant with probability 0.57 or accept
the offer with probability 0.43. Under this policy, µ∗(r0) = 160.7; µ∗(r1) = 24.

We emphasize that this model coming from a real-life situation is not transient: for the
policy ‘never accept the offer’, the expected time to the absorption at cemetery � equals +∞.
Of course, this policy is far from optimal, the corresponding occupation measure equals +∞
at most of the state-action pairs, and all the performance functionals equal +∞. The theory
developed in [1] is not applicable here. Moreover, since the cost function r2 takes positive and
negative values, and the running cost r0, to be maximized, is positive, the results of [7] are also
not applicable here.

Table 1.

x
a

(1, N) (2, N) (3, N) (4, N) (5, N) (6, N) (1, Y ) (2, Y ) (3, Y ) (4, Y ) (5, Y ) (6, Y )

s 0 0 0 0.643 0.357 0 0 0 0 0 0 0
t 4.950 0 0 0 0 0 0 0 0 0 0 0
w 1.092 8.686 5.352 1.420 0 0 0.672 0.742 0.077 0.008 0.001 0
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