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Abstract

In this work, we study discrete-time Markov decision processes (MDPs) with constraints
when all the objectives have the same form of expected total cost over the infinite time
horizon. Our objective is to analyze this problem by using the linear programming
approach. Under some technical hypotheses, it is shown that if there exists an optimal
solution for the associated linear program then there exists a randomized stationary policy
which is optimal for the MDP, and that the optimal value of the linear program coincides
with the optimal value of the constrained control problem. A second important result
states that the set of randomized stationary policies provides a sufficient set for solving
this MDP. It is important to note that, in contrast with the classical results of the literature,
we do not assume the MDP to be transient or absorbing. More importantly, we do not
impose the cost functions to be nonnegative or to be bounded below. Several examples
are presented to illustrate our results.
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1. Introduction

We consider a Markov decision process (MDP) with constraints under the total expected cost
optimality criterion. MDPs are a general family of controlled stochastic processes, which are
suitable for the modeling of several sequential decision-making problems under uncertainty.
They arise in many applications, such as engineering, computer science, telecommunications,
finance, among others. From a theoretical point of view, discrete-time MDPs have been
extensively studied (see, e.g. [1], [3], [4], [8], [9], [10], [13], [14], and [15]) by using several
techniques such as the dynamic programming and the linear programming approaches, among
others. The latter technique has proved to be a very powerful tool for solving MDPs with
constraints. A significant list of references on this research field can be found in [1], [5],
[13], and the references therein. The key idea is to reformulate the original sequential decision-
making problem as an infinite-dimensional static optimization problem over a space of measures
where the admissible solutions are the so-called expected state-action frequencies or occupation
measures of the controlled process. The significance and the attraction of this method lie mainly
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in the following two points. Firstly, it gives an alternative approach to study theoretically and to
solve numerically MDPs. Secondly, control problems with constraints can be easily analyzed
with this method in contrast to the dynamic programming technique.

The linear programming approach for MDPs has been studied in great detail under a large
variety of cost criteria and fairly general state and action spaces. These include the finite horizon
cost, the infinite time horizon discounted cost, the cost up to exit time, the ergodic pathwise
cost. However, it must be emphasized that the linear programming technique when applied to
the expected total cost (ETC) criterion has received less attention in the literature, the reason
being that the ETC criterion is very demanding from a technical point of view and yields some
pathological behaviors as pointed out in [5, pp. 357-358] and [10, pp. 92-94]. These latter
difficulties are twofold. The first important issue is that the expected state-action frequency
may not be finite for some or all policies. The second point is related to the fact that an
admissible solution of the linear program (LP) may not correspond to any expected state-action
frequency of the process. The classical way used in the literature to overcome the first point is
to impose suitable conditions on the model as the so-called transient and absorbing conditions.
Roughly speaking, these conditions ensure that, for any stationary policy, the controlled process
is absorbed at a particular state guaranteeing that the expected state-action frequency is finite for
all other states and stationary policies. However, even in the transient case, some occupation
measures may not be generated by a stationary control policy as explained in [5, p. 358],
meaning that the sufficiency of stationary policies is under question.

In the current paper, we investigate the ETC criterion with constraints by using the linear
programming formulation. We work under the hypotheses that the state space is a general
Borel space and the action space is a compact metric space. Moreover, it is assumed that the
stochastic kernel and the cost functions are continuous in the action variable and that the value
of the unconstrained LP associated to each cost function is finite. Finally, our last hypothesis
consists of ensuring the existence of a reference probability measure with respect to which the
stochastic kernel is absolutely continuous.

One of our main results is to show that if u* is an optimal solution of the constrained
LP then there exists a randomized stationary policy ¢* which is optimal for the MDP under
consideration and that the optimal value of the LP coincides with the optimal value of the
constrained control problem (see Theorems 4.2 and 5.2). A second important result states that
the set of randomized stationary policies provides a sufficient set for solving this optimization
problem (see Corollaries 4.1 and 5.2). Similar results have been obtained in [7] in a considerably
simpler framework where the cost functions are assumed to be nonnegative. Clearly, the
approach developed in [7] strongly relies on the positiveness of the cost functions. In this work
we deal with general cost functions that may take negative values. This general context induces
important technical difficulties that cannot be dealt with using the technique presented in [7].
This issue imposes the development of a new and radically different approach to deal with our
general framework.

It is important to emphasize that our assumptions are very weak and do not exclude the two
issues described before. In particular, we do not impose the MDP to be transient or absorbing.
The (optimal) occupation measures of the constrained control problem are not necessarily
finite and an admissible solution of the LP may not correspond to any occupation measure of
the controlled process. More importantly, we do not require the cost functions to be nonnegative
or bounded below. Several examples presented in Section 6 will illustrate the necessity of the
hypotheses that have been made. One example is dedicated to the presentation of a possible
application of the results developed in the paper. To the best of our knowledge, the book [1]
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is the only reference in the literature that analyses the ETC criterion with constraints by using
the linear programming formulation under the hypotheses that the state and action spaces are
discrete and the model is transient or absorbing. One can also mention the references [6], [7],
[11], and [12], where MDPs under the assumption that the cost function is nonnegative are
studied. Consequently, our results appear to be very general compared to those existing in the
literature.

Actually, for the sake of clarity of exposition, we consider in two independent sections the
case of a finite action space and the case of a compact action space. Although the results derived
in the context of a finite action space can be obtained from the more general case where the
action space is compact, we believe that the section dedicated to the finite action space is of
interest by itself mainly because the proofs are simpler, more natural, and more intuitive.

The rest of the paper is organized as follows. In Section 2 we present the control problem
that will be considered throughout this work. Preliminary results are derived in Section 3. Our
main results and the analysis of the LP are presented in Section 4 in the case of a finite action
space, and in Section 5 in the general case of a compact action space. Finally, Section 6 is
dedicated to the presentation of several examples illustrating some theoretical issues if our set
of assumptions is not satisfied and to the presentation of a possible application of the results
developed in the paper.

2. Problem formulation

The main goal of this section is to introduce the notation, definitions, and problem formula-
tion that will be used throughout the paper. The following notation will be used in this paper:
N is the set of natural numbers, NY = N U{0}, R denotes the set of real numbers, R, denotes
the set of nonnegative real numbers, and R, denotes R U{+00}. Forany g € N, Ny is the set
{1,...,q}). I (By)sen is afamily of sets, we write ), ., Bj instead of [ J, ., Bj toindicate that
B, N By = @ forany A # A’. Let A be an arbitrary set, and let B and C be subsets of A. Then
the difference of the sets B and C is denoted by B\ C = B N C¢ and the symmetric difference
is denoted by BAC = (B\ C) U(C\ B). Let f be areal-valued mapping defined on a set E, the
positive (respectively negative) part of f is given by f1(x) = max(0, f(x)) (respectively
f~(x) = max(0, —f(x))). The term measure will always refer to a countably additive,
R -valued set function. Let X be a Borel space, and denote by B(X) its associated Borel
o-algebra. For any set A, 14 denotes the indicator function of the set A. The set of measures
defined on (X, 8(X)) is denoted by M(X)+. For any point x € X, 6, denotes the Dirac
measure defined by §,(I") = Ir(x) for any I' € B(X). For two measures (y1, y2) € M(X)2,
y1 < y2 means that y; (I") < y»(I") forany I' € B(X). The setwise convergence of a sequence
of measures (;,),eN tO a measure Yoo is denoted by lim,,_, o ¥ = Yoo- The set of bounded,
real-valued, continuous functions defined on X is denoted by C(X). Let f be a real-valued
measurable function defined on X, and let n € M(X).; the integral [ x S ()n(dy) is denoted
by n(f) provided it is well defined. Let X and Y be Borel spaces. If W is a stochastic kernel on
X given Y then, for any real-valued measurable function f, the integral | x S(OW(dx | y) for
any y € Y is denoted by W (y) provided it is well defined. For any measure 1 on (¥, 8(Y)),
nW is the measure defined on (X, B(X)) by nW (') = fY W( | y)n(dy) forany I' € B(X).
Let 1 be ameasure in MI(X x Y)4 and A € B(Y). Then up denotes the measure defined on X
by ua(I') = (I x A) forany I' € B(X). If A = {y} then we will write , instead of ).

Definition 2.1. Let X be a Borel space. If u and v are o-finite measures in M(X)y such
that 4 < v then (v — ) is the o-finite measure in M(X)4 defined for any I' € B(X) by
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(v =) =322, v(C'NBy) — u(T' N By)], where X =Y 2, Bx and v(By) < oo (this
definition does not depend on the choice of (By)ken)-

In order to define an MDP, we consider, as in Section 2 of [9], a five-tuple (X, A, Q,r)
consisting of

(a) a Borel space X representing the state space,

(b) a Borel space A representing the control or action set,

(c) astochastic kernel Q on X given X x A,

(d) a measurable function rp: X x A — R representing the running cost,

(e) measurable functions 75: X x A — R representing the constraints for 6 € ©, where ®
is an arbitrary set (without loss of generality, assume that 0 ¢ ©).

Definition 2.2. The set of all stochastic kernels ¢ on A given X is denoted by @, and FF stands
for the set of all measurable functions f: X — A.

To introduce the optimal control problem we are concerned with, it is necessary to introduce
different classes of control policies.

Definition 2.3. Define H) = X and H; = X x A x H;_1 for¢t > 1. A control policy is
a sequence w = (71;),cno Of stochastic kernels r; on A given H;. Let II be the class of all
policies. A policy m = {m;} is said to be

e arandomized stationary policy if there exists ¢ € @ such that 7; (- | h;) = @(- | x1),

e a deterministic Markov policy if there exists a sequence (fi),cyo C IF such that
7 (L he) =8 £ (),

e a deterministic stationary policy if there exists f € IF such that 77, (- | h;) = 8 r(x,) (),
where h; = (x0, a0, ..., Xn—1, Qr—1, Xt).

According to the standard convention, we identify I (respectively ®) with the class of all
deterministic (respectively randomized) stationary policies. Therefore, F C ® C I1. If v is a
randomized stationary policy generated by ¢ € ® (according to Definition 2.3), we will write
¢ instead of m; similarly, if 7 is a deterministic stationary policy generated by f € [F, we will
write f instead of .

Let (2, ) be the canonical space consisting of the sample path @ = (X x A)*® and
the associated o-algebra #. For any policy w € II and any initial distribution v on X,
it can be defined a probability, labeled P7, and a stochastic process {(x;, as)},cno, Where
{x:},eno 18 the state process and {a;},co is the control process satisfying, for any B € 8(X),
C € B(A),and h, € H, witht € N°,P7 (xg € B) = v(B),P"(a;, € C | h;) = m,(C | h;), and
PT (xi41 € B | hy, a;) = Q(B | x4, a); see, forexample, [9, Chapter 2] for such a construction.
The expectation with respect to P is denoted by E . If v = §; for x € X, we write P for [P}
and ET for E7.

Next, we define our Markov control problem. Suppose that we are given an initial dis-
tribution v on X, and constraint limits (Rg)gce such that Rg € R. For any 8 € © U{0},
the integral ET[> 0 rg(x;, a;)] is said to be well defined if either ET[Y 52, . (x;, a;)] or
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E’J[Z;ﬁor; (x¢,ay)] is finite. A policy # € II is said to be feasible if the integrals
Eﬁ[Zfiorg (x¢, ay)] are well defined for any 8 € ® U{0} and if

vo(v, ) == ET [Z ro(xr, a,)i| <Ry @2.1)

t=0

for any 6 € ©. The set of feasible policies is denoted by IT,.
The optimization problem we consider consists in minimizing the cost function

o0

v(v, ) :=ET [Z ro(xs, at)}, 2.2)

t=0

over the set of feasible control policies I1.. The optimal value function is denoted by

V*@) = inI_fI v(v, ). (2.3)

c

Forapolicy w € II, letus introduce the following expected state-action frequency or occupation
measure induced by & € IT:

W' ()= PI((xa)eTl)

t=0

forany I' € B(X x A). According to Lemma 9.4.3 of [10], for any stationary policy ¢ € &,
u‘z is a solution of the equation

Yy =v()+ OC | y,a)p(da | y)y(dy), (2.4)
XxA
with y € M(X). Moreover, a careful inspection of the proof of Lemma 9.4.3 of [10] shows

that ,uﬁ is the minimal positive solution of (2.4) and u? is given by

u? ([ x A) = p{ (1) = /Fw(A | yuf@y), 2.5)
and so u? is a solution of the equation

ma=v+pup0, (2.6)

with p € M(X x A),.
We now introduce the LP related to the control problem defined by (2.1)—(2.3).
Definition 2.4. The constrained linear program LP associated with the constrained control
problem (2.3) is defined as
minimize w(rg)

(LP) .
subject to u € L,

where
Le ={n el: u(rg) < Ry for 6 € B}
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with L = (g (o) Lo and
Lo ={n e M(X x A)+: ua = v+ uQ and for which u(rg) is well defined}.

Associated to the constrained linear program LP, we introduce the family of auxiliary
unconstrained linear programs LIPy for 6 € ® U{0}, as

(LP minimize w(rg)
subjectto u € Lg.

A measure u is said to be admissible for PP if 4 € IL.. A measure u is said to be optimal
for LIP if u is admissible and if u(rg) < y (o) for any admissible . The value of the linear
program LLIP (respectively ILIPg for & € ® U{0}) is said to be finite if inf 1. 1 (rp) (respectively
inf e, p(rg)) is finite.

3. Preliminary results

In this section we establish some preliminary results to obtain a decomposition of the state
space in order to ensure that, for any u € M(X x A) satisfying the linear equation (2.6), the
measure i 4 is o-finite on some subset of the space X. In particular, we introduce the concept
of (nearly) perfect sets (see Definitions 3.1 and 3.2). Roughly speaking, for two arbitrary
measures A and p on B(X), a A/ u-perfect set W is a maximal set for the inclusion having the
property that either A(I") = 0 or w(I") = oo for any subset I of W. Several technical properties
of these sets are derived (see Lemma 3.1, Proposition 3.1, and Theorem 3.1). An important
result which is a cornerstone of the paper is presented at the end of this section. It states that,
for any measure . € M(X)+ and under the assumption that A is a probability measure, there
exists a A/ pu-perfect set having the property that u is o -finite on the complement of this set (see
Theorem 3.2).

Definition 3.1. Consider two measures p and A on B(X). A set W in B(X) is said to be
A/ u-perfect if

(a) forany I' € B(W), either A(I") = 0 or u(I") = oo,

(b) foranyset V € 8(X) suchthat W C V and L(V \ W) > 0, (a) is violated, that is, there
exists ' € B(X) with " C V such that A(I") > 0 and u(I") < oo.

Remark 3.1. If W is A/ u-perfect then Definition 3.1(b) can be replaced by the following.

(b") Forany set U € B(X) suchthat L(U \ W) > 0, there exists A € B(X) withA Cc U\ W
such that A(A) > 0 and u(A) < oc.

Indeed, if U € B(X) is such that (U \ W) > O thenthe set V = U U W satisfies W C V and
VAW =U\ W, and so A(V \ W) > 0. So, from (b), there exists I' € B(X) with[' C V
such that A(T") > 0 and u(I") < oco. Introduce the set A = I' N[U \ W]. Then u(A) < oo and
A(A) > 0. The last inequality comes from the fact that ' = A U[I’ N W] and so if A(A) =0
then A(I' N W) > 0 and since w(I' N W) < oo that would lead to a contradiction with (a).

Definition 3.2. Consider two measures p and A on B(X). A set W in B(X) is said to be
X/ u-nearly perfect if, for any I' € B(W), either A(I') = 0 or u(I") = oo.

Remark 3.2. It is important to observe that if a set W in 8(X) is a subset of a A/ u-perfect set
then it is A /u-nearly perfect.
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Definition 3.3. Consider W and W in B(X). The sets W and W are said to be A-equivalent if
A(WAW) = 0. This is denoted by W é w.

Clearly, W é W ifand onlyif]W = Iy, A-ae. and so the relation "AV’is reﬂexive symmetric,
and transitive. Moreover, if W; ~~ W1 and W2 W2, we have W; UW2 ~ W1 UWZ and

A~
Wi =~ W{. The next three technical results present some properties of perfect sets that will be
used repeatedly in the next sections.

Lemma 3.1. Considertwo measures |t and ). on B(X). Assume that W and W are ) / u-perfect.
A~
Then W >~ W.

Proof. Suppose that )L(W \ W) > 0. Then introduce the set W=WUuUWw. Note that
W C W and A(W\ W) > 0. Since W is perfect, it follows that there exists I' € W such
that A(T") > 0 and u(I") < oo. Consequentlfz u(INW) < ooand so A(I'N W) = 0 since
W is perfect. However, CACNW) =ATNWwW)=xT) >0. This implies that W cannot be
perfect because w(I"' N W) < u(I") < 00, leading to a contradiction and so A(W \ W) =0. By
symmetry we obtain A(W \ W) = 0 and the result follows.

Proposition 3.1. Suppose that the set W is )/ u-perfect. Then W is A /u-perfect if and only if
A~
W ~Ww.
A~
Proof. The only if part was proved in Lemma 3.1. Suppose that W >~ W. Let us show that
items (a) and (b) of Deﬁngion 3.1 are satisfied. Regarding item (a), assume that there exists
I' e B(X)suchthatI' ¢ W with A(I") > Oand u(I") < co. Then u(I' N W) < co. Moreover,

AMICNW) =xTnN W) since W é W. Consequently, A(I' " W) = A(I") > 0 implies that W
is not A /u-perfect, leading to a contradiction.

In order to show item (b), let us proceed by contradiction. Suppose that there exists a
set W e B(X) with W C W and AW\ W) > 0 such that, for all " € W e1ther AT =0

or u(I') = oo. Define U = WU(WAW) Clearly, W C U. Since W N W we have
AU) = A(W) Recalling that A(W \ W) > 0, it follows that A(U) > A(W) and so A(U) >
A(W). Consegllently, AU\ W) > 0. However, A([U \ W]N W) = A(U \ W) > 0; hence,
w([U\ WINW) = oo, implying that (U \ W) = oo. This shows that W is not A /u-perfect,
leading to a contradiction. This gives the result.

Theorem 3.1. Suppose that 1 = @1 + w2 and W (respectively Wy, W») is a \/u-perfect

A
(respectively M\/ui-perfect, \/ua-perfect) set. Then Wi UW, =~ W and Wi UW; is
A/ u-perfect.

Proof. The proof of the first statement consists in showing that A([Wy U W>]\ W) = 0
and A(W \ [WiUW,]) = 0. Let us first show that A(W; \ W) = 0, then by symmetry
we have A(Wp \ W) = 0, giving A([W; U W,] \ W) = 0. Suppose that A(W; \ W) > 0.
Then, from Remark 3.1, there exists I' € B(X) such that ' ¢ Wy \ W, A(I") > 0, and
w() < oo since W is A/u-perfect. However, 1 (I') < u(I') < oo, implying that W is not
A/ u1-perfect. Consequently, A(W1\ W) = 0, giving the first part of the proof. Now suppose that
AWA\[WiUW:]) > 0. Thenthereexists I' € B(X) suchthatI’ C W\[W U W2 ] with A(I") >
0 and pu1(I') < oo by using the fact that W is A/u;-perfect. Define W=TUW,. _Since
W, C W and A(W \ W2) = A"\ W2) = A(T") > 0, there exists r € B(X) such that Fcr
with A(F) > Oand,uz(l") < oo since W is A/ up-perfect. Therefore, Tc Wandk(r‘) > OQand
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MI(F) < u1(I') < co. Recalling that ,uz(F) < 00, we have ,u(F) = MI(F) + ,u,z(I:) < 00,
so that W is not A / u-perfect, leading to a contradiction. Consequently, A(W \ [W; U W2]) =0,

2
giving the second part of the proof and showing that Wi U W, >~ W.
Now applying Proposition 3.1, we obtain the second statement and the result follows.

The following theorem shows how to construct perfect sets.

Theorem 3.2. Let A be a probability measure, and let i be an arbitrary measure on X. Let us
consider the construction of the following sets (X; 0)ieN-

0. Puti =1, j =1, and define X1,0 = X.

1. If there exists I' € B(X) with ' C X; j_1 such that A(I") > 1/2" and u(T") < oo then
define X; j = X; j—1 \ I'. Otherwise, put X; ; = X; j—1 and go to step 3.

2. If j < 2!, increase j by 1 and repeat step 1.
3. Increase i by 1 and define X; o = X;_1,j. Put j = 1 and go to step 1.
The set mieN X o is A/ u-perfect. Moreover, the measure |4 is o -finite on (mieN Xio0)f

Proof. Clearly, X; 1.0 C X;0. Note thatif ' € B8(X) with ' C X; 0 and A(I") > 1/2/~1
for some i > 2, then necessarily u(I") = co. Let us show that items (a) and (b) in Definition 3.1
are satisfied. Regarding item (a), let us proceed by contradiction and assume that there exists
I' e B(X)suchthat ' ¢ W, A(T) > 0, and (') < oco. Let i* be an integer satisfying
AT > 1/2"*71. Since I' C X ¢, the previous comment implies that ;(I") = oo, leading to
a contradiction. Consequently, Definition 3.1(a) holds. Now consider V € B(X) such that
W C Vand A(V \ W) > 0. Since u is o-finite on W€, it is o-finite on V \ W. Consequently,
there exists I’ C V \ W such that A(I") > 0 and u(I") < oo, showing Definition 3.1(b). Since,
the set ([); oy Xi,0)¢ consists of no more than a countable number of sets I' with (") < oo
as described in item 1 of the algorithm then the measure u is o -finite on (("); oy Xi,0), giving
the result.

4. Finite action space

In this section we restrict our attention to the case where the action set A = {ay, ..., au}
is finite. In the next section, our results will be generalized to the case of a compact action
space. The objective of the current section is to show that if the linear program LP admits
an optimal solution u* then there exists a feasible randomized stationary policy ¢* € Il,.
which is optimal for the control problem defined in (2.1)—(2.3) and that the optimal value
of the LIP coincides with the optimal value of the control problem (see Theorem 4.2). As a
consequence, we show that the set of randomized stationary policies is a sufficient class of
policies for the control problem under consideration (see Corollary 4.1). The proof of our main
results strongly relies on the following key property: for any nearly perfect measure p (see
Definition 4.1 for a precise statement), one can construct a randomized stationary policy ¢
such that the occupation measure u¥ associated with ¢ is smaller than p (see Theorem 4.1).
We introduce the following assumptions: there exists a probability measure ¢ on B(X) with
respect to which the stochastic kernel Q is absolutely continuous and the values of LIPy for
any 0 € ® U{0} are finite (see Assumption 4). The former hypothesis is not very restrictive
as explained in item (b) of Remark 4.1. Moreover, it appears necessary to impose the latter
hypothesis. Indeed, if this assumption is violated then some examples presented in Section 6
show that the optimal solution of the linear program LP may have no meaning.
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We first introduce a special class of measures called nearly perfect.

Definition 4.1. A measure € M(X x A)y is said to be nearly perfect if it satisfies the linear
equation (2.6) and if, for any a € A, there exists a w4 /uq-nearly perfect set V, such that 4

is o-finite on V§, where V4 = (J,cp Va.

In the above definition, there is no loss of generality to assume that V,, N V,; = @ fori # j.

Definition 4.2. If . is nearly perfect then consider a stochastic kernel on A given X, labeled
@, such that, for any I' € B(V), ua(I') = (I x {a}) = frgo({a} | x)a(dx) and, for any
x € Vg4, ¢(- | x) = 84(-). The randomized stationary policy generated by ¢ will be said to be
induced by .

Sufficient conditions for the existence of nearly perfect measures is given in Lemma 4.4
below. In the following theorem we derive an important property of nearly perfect measures.

Theorem 4.1. Let u € M(X x A)y be nearly perfect, and let ¢ be its induced randomized
stationary policy. Then u? < u.

Proof. Introduce the mapping 7 defined on M(X) by

Ty =)+ Y [ 0 1y aptal |y,

acA

Define the sequence of measures (y,)nen in M(X)4 by y9 = 0 and y,41 = Ty, forn € N.
Since the operator T is monotone, it follows easily by induction that the sequence (¥ )neN
is increasing and converges to /JL‘:; which is the minimal positive solution of y = Ty with
y € M(X)+.

Now, let us show that Tiug < 4. Indeed, for any I' € B(X),

Tua® =)+ Y [0 1 yptia) | iaty)

acA

+ Z/VA O | y,a)p({a} | y)pa(dy). 4.1

acA

However, since u(A x {a}) = fArp({a} | x)ua(dx) for any A € B(Vy), we have, for any
I' e B(X),

A = v+ /V O | y.ap(la) | YA+ /V O | v, a)a(dy). (42)
acA” A acA” A

Consider a fixed set I in B(X). Suppose that s ({y € Vq;: Q(I' | y, a;) > 0}) > 0 for some
J € Npyr. Then, since Vy; is pua/pa;-nearly perfect, q; ({y € Vo; 0 Q(I' | y, aj) > 0}) = oo,
implying that

> fv O | y, a)pa(dy) > fv Q' | y.aj)pta;(dy) = 0. 4.3)

acA

Combining (4.1)—(4.3), we have Tua (I') < pa ().
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Now suppose that, for all j € Ny, ua({y € Vo;: Q(I' | y,a;) > 0}) = 0. Then

M
> /V O | y,a)p{a} | y)uady) =) /V O | y,a)paldy) =0, (44
A i=1""a

acA

and so combining (4.1), (4.2), and (4.4), we have T (I') < pna(T).

In any case Tiuq < 4. Consequently, it can be shown easily by induction that y,, < 4,
implyingthatu;’; < p4. Therefore, forany A € B(VY), u(A x{a}) = ngo({a} | X)pa(dx) >
fA o({a} | x),uﬁ(dx) = u?(A x {a}). Now consider any a € A and A € B(V,). Then, if
Ua(A) < 0o, we have ug(A) = 0since V, is w4/ uq-nearly perfect. Since ,uf‘ < a4, we have
w?(A x {a}) < u?(A x A) = 0, showing that (A x {a}) > u?(A x {a}). This concludes
the proof.

Roughly speaking, we now introduce the difference, labeled A*, between the measures p
and u¥ and derive some technical results related to it.

Definition 4.3. Let © € M(X x A)4 be nearly perfect, and let ¢ be its induced randomized
stationary policy. Define the mapping A* on B(X x A) by

AM(A) = n(AN[Va x AD + (u — ) (AN[V4 x A, 4.5

where A € B(X x A) (see Definition 2.1).

The dependence of A* on ¢ is not explicitly mentioned because ¢ itself depends on .
Observe that, for any A € B(X x A), (u — u?)(A) is well defined since, from Theorem 4.1,
the measure u is nearly perfect and u? < u.

Lemmad4.1. Let u € M(X x A)y be nearly perfect, and let ¢ be its induced randomized
stationary policy. The mapping A" is a measure in M(X x A) that satisfies

w=pu?+ Ak (4.6)

Proof. It is easy to check that A* is a measure in M((X x A),. Consider I' € 8(V}) and
a € A. Then we clearly have u(I" x {a}) = u?(T x {a}) + A*(T" x {a}) by the definition of
AH, implying (4.6). According to Definition 4.1, V4 = ), 4 Vi, where V}, is a w4/ up-nearly
perfect set for any b € A. Now considera € A and I € 8(V,) for b € A. From the definition
of A*, weneed to check that u(I" x {a}) = u¥ (I x{a})+u (T x{a}). Note that u(I" x {b}) =0
or u(I'" x {b}) = oo since Vj is a w4 /up-nearly perfect. Consequently, if a = b then (4.6)
follows immediately since u? < . If b # a then u?(I" x {a}) = fr o({a} | y)uﬁ(dy), but
¢o{a} | y) =0forany y € I' C Vp, and so u?(I" x {a}) = 0, showing (4.6). This completes
the proof.

Lemma 4.2. Let u € M(X x A)y be nearly perfect, and let ¢ be its induced randomized
stationary policy. Consider I' € B(X). We have

AL = AR Q). 4.7

Moreover, if Mﬁ(r) < 00 or I' C V{ then we have an equality in the above formula.

Proof. From (4.6), wehave uQ = u?Q + A*Q andso us = /L(g + A*Q. LetT € B(X)
be fixed. Let us consider two cases: p%(I') < oo and u(I') = co. If u%(I') < oo then
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AFQ() = pa(T) — p¥ (). From (4.6) and since 1% (I') < oo, A (I") = pa(T) — u% (D),
showing the equality in (4.7). Now, if Mﬁ M=ocand I € i)’(V/i), then, by using the fact
that ,u‘f‘ is o-finite on V7, this case reduces to the previous one, and so the equality holds
in (4.7). Finally, if % (I') = co and " € B(V,)), then u§ (I') = [ ¢({a} | y)u%}(dy) = oo by
the definition of ¢ and (2.5). Consequently, A’y (I') > AZ (') = o (I") > ué (') = oo and so
A" (I") = oo, implying that inequality (4.7) is satisfied.

Lemma 4.3. Let © € M(X x A)y be nearly perfect, and let ¢ be its induced randomized
stationary policy. Assume that y € M(X x A)4 and satisfies y4 > uﬁ and ys = v+ yQ.
Then the measure A =y + A* satisfies Lo = v + L Q.

Proof. Let us consider I' € B(X) fixed. If u‘f‘ (I') = oo then y4(I") = oco. Consequently,
we have A g (T") = ya(T) + AZ(F) =v@)+y0T) + A*QT) = v() +10(T) = oo,
showing the result. Now if yff‘(r‘) < o0 then we have A’;(F) = A*Q() from Lemma 4.2.
Therefore, 1 4(I") = v(I') + AQ(I"), completing the proof.

We need the following assumptions to derive our main results.
Assumption A. Suppose that

(A1) there exists a probability measure ¢ € M(X)4 such that Q(- | x,a) K q for any
(x,a) e X x A,

(A2) the value of the linear program Py is finite for any 6 € ® U{0}.

Remark 4.1. (a) There is no loss of generality to assume that v < ¢ in assumption (Al).
Indeed, if there exists a probability measure ¢ € M(X)4 such that Q(- | x,a) < ¢ for any
(x,a) € X x A then the probability measure g = %v + %Zj satisfies the required property.

(b) Assumption (A1) is not very restrictive. In many applications, the evolution of an MDP is
specified by a discrete-time equation of the form x; 41 = F (x;, a;)+&;, where F is an R"-valued
measurable mapping defined on R” x A and (&;), o is an independent and identically distributed
sequence of random variables with density o with respect to the Lebesgue measure on B (R").
By using the change of variable formula, we obtain Q(A | x,a) = fA a(y — F(x,a))dy.
Consequently, assumption (A1) is satisfied for ¢ defined by the standard normal distribution
on B(R").

Moreover, assumption (A1) is automatically satisfied if X is finite or countable; in these
cases g can be defined as a geometric distribution.

The following lemma shows that hypothesis (A1) is a sufficient condition to ensure that any
measure satisfying the linear equation (2.6) is nearly perfect.

Lemma 4.4. Under assumption (Al), any measure p € M(X) 4 satisfying the linear equation
(2.6) is nearly perfect.

Proof. Since g is a probability measure, from Theorem 3.2, there exists a q/u,-perfect
set, labeled V, for any a € A. Moreover, u, is o-finite on VS. Consequently, the measure
Ha = ZaeA g is o-finite on (UaeA Va)¢. Furthermore, V, is g /u,-nearly perfect set. From
assumption (A1) and Remark 4.1(a), it can be easily shown that the measure (4 is absolutely
continuous with respectto g and soitis easy to show that V, is it 4 / u,-nearly perfect, completing
the proof.

We now present our two main results.
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Theorem 4.2. Suppose that Assumption A is satisfied. If u* is an optimal solution of the
constrained linear program LP then the induced policy ¢* is a solution of the constrained
control problem defined by (2.3) and the optimal value V*(v) coincides with the optimal value
of the ILP, that is,

v(v, %) = Jnf (v, ) = /}g}{\u(m) = " (ro).

Proof. For any policy m € II, the corresponding occupation measure satisfies the linear
equation (2.6) by Lemma 9.4.3 of [10]. The value of the constrained control problem defined
in (2.3) cannot be smaller than the value of the LIP given by u*(rg). We will show that
w(rg) = u? (V@)fOI' any 0 € © U{0}. Suppose that, forsome 6 € O, u*(rg) < w?" (rp). Then
introduce A*" accordmg to (4.5). From Lemma 4.3 and Theorem 4.1, the measure A" deﬁned
by A" = u* + nA* forn € N satisfies My =v+1"0 and so A" (rg) = u*(rg) + nAR (rp).
From assumption (A2), —00 < u*(rg) and W *(rg) < Ry, and so u*(rg) is finite. Therefore,
we obtain u¥ rh) < 7 ("9 ) < oo and /L“’ (r9 ) < pu*(ry) < oo by usmg Theorem 4.1.
Consequently, w? (rp)is finite and we have A" (rg) < Osince w*(rg) = u? (ro) + A* (rg) <
u? (rg). This implies that the value of the auxiliary unconstrained linear program LPy is
smaller than A" (rg) = u*(rg) + nAR (rg) for any n € N and, thus, equals —oo, leading to a
contradiction with assumption (A2). Therefore, for any 6 € ©, ,u*”* (rg) < Ry. Now, it is also
obvious that u*(rg) < u? (ro), and it remains to prove that u*(rg) = w? (ro). If w*(rg) = +o00
then necessarily ¥ (ro) = w*(ro) since 0o = p*(rg) < u? (ro). If w*(ro) < +oo then, from
assumption (A2), —oo < p*(rp) and so u*(rp) is finite. One can apply the same reasoning
presented above for 6 € ® to show that u*(rg) = ,u‘/’* (ro). This completes the proof.

Corollary 4.1. Suppose that Assumption A is satisfied. The set of randomized stationary
policies is a sufficient set of policies for the optimization problem (2.1)—(2.3).

Proof. This result is a straightforward consequence of Theorem 4.2.

5. Compact action space

In this section, it is assumed that the action set A is compact. The main results we obtain
in this section may appear similar to those of the previous section. However, there are several
subtle differences that make the derivations more technical and complicated. The general idea
of the proof relies on some kind of discretization of the action space (see Lemma 5.1 and
Proposition 5.1). In this new context, we can still construct a randomized stationary policy ¢
associated to any measure  satisfying the linear equation (2.6). However, we cannot guarantee
that the occupation measure ©? associated to ¢ is smaller than p as in Theorem 4.1. Roughly
speaking, we can only prove that u?(g) < u(g) for any R, -valued measurable function g
defined on X x A such that g(x,-) is continuous on A for any x € X. However, since
the measures u and u? are not o-finite, we cannot conclude that u¥ < u. These technical
differences induce changes in the way we deal with the compact action space.

Assumption B. Suppose that

(B1) there exists a probability measure q € M(X)4+ such that Q(- | x,a) < q for any
(x,a) e X X A,

(B2) the set A is compact; the metric on A will be denoted by p,

(B3) forany T € B(X) and x € X, the mapping Q(I" | x, -) is continuous on A,
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(B4) the value of the linear program 1LIPy is finite for any 6 € © U{0},
(BS) for any 8 € ® U{0} and any x € X, the mapping ro(x, -) is continuous on A.

Observe that if assumption (B1) holds then any measure 1 € M(X x A)4 that satisfies
the linear equation (2.6) can be considered as being absolutely continuous with respect to g
according to Remark 4.1. Moreover, it must be noted that assumptions (B3) and (B5) are
automatically satisfied in the case of a finite action space.

The next two technical results introduce some kind of discretization of the action space.

Lemma 5.1. Suppose that assumptions (B1)—(B2) are satisfied. Consider a measure |1 €
M(X x A)y satisfying the linear equation (2.6). There exists a sequence (My),en in N, a
sequence (Ai,j)ieN,jeNM,. in B(A), and a sequence (Vi,j)ieN,jeNMi in B(X) such that the
following assertions hold.

(a) A= Z?’i‘l Ay, j with p(a, b) < 1forany (a,b) € Ay,j. The set Vi j is q/ua, ;-perfect
and [, ; is o -finite on ijfor any j € Ny,.

(b) Forn > 1, A= ZM" Ay, j with p(a,b) < 1/2"_1f0r any (a,b) € Ay j. For any
je€Ny, Vijisa q/uAn’j-perfect set. Moreover, there exists a partition of Ny,
labeled (InkkeNy, - such that V,_1 j = Ujeln,k Vo, jand Ap_1 x = Zjel,,,k Ay, j for
any k € Ny, ;.

Proof. Part (a) is an easy consequence of Theorem 3.2 and the fact that A is compact.
Let us show part (b) by induction. Consider p > 1, and assume that, for any n < p,
(b) is satisfied. Since A p jis relatlvely compact for any j € Ny, there exists a partition
of A, into N j sets: A, ;= Zk { Bjx with p(a,b) < 1/27 for any (a,b) € Bjy.
Then combining Theorems 3. 1 and 3.2, there exists a q/uup; k—perfecgv set, labeled W] x for
any k € Ny, such that V), ; ~ Uk i W]k Now, we have ij = U L] Wk with W =

[Vpi\ U,iv”l' W, ULV, ; N W;x]. However, since V, j ~ U,}(V”lf Wk, we have W« L
Wj k. Consequently, W; i is a q/up; -perfect set according to Proposition 3.1. Deﬁning

My = ZJ le j and reordering the sets (Bj, k)/eNMp keNy . and (W k)/eNMp keNy,
we can easily show the existence of (A py1, ])]eNM , (Vpi, ])jeNM ,and (Lpy, k)keNM ,
satisfying the desired properties.

Proposition 5.1. Suppose that assumptions (B1)—(B2) are satisfied. Consider a measure |1 €
M(X x A)y satisfying the linear equation (2.6). There exists a sequence (Mp)nen in N, a
sequence (A; j)icN, jeN,, ih B(A), and a sequence (V; j)ieN, jeN,, in B(X) such that the
following assertions hold. I

(a) A= Zﬁ/]:ll Ay, j with p(a, b) < 1 for any (a, b) € Ay j. The set \71,j is q/ma, -nearly
perfectand jua, ; is o -finite on Vﬁjfor any j € Ny, . The measure 4 is o-finite on V7§,
where V4 = Z,M:l1 Vl,i.

(b) Forn > 1 A= ZM” Ay, j with p(a,b) < 1/2"~ ]foraMy (a b) € A, j. For any
J €Ny, Vi jisa q//,LAn j-nearly perfect set and V4 = Z] 1 Vn j- Moreover, for any
J € Ny, there exists k € Ny, | such that Vn,] C Vn 1kand Ay j C Ap_1x.

Proof. Part (a) follows from Lemma 5.1. Indeed, let us consider the sets (A /)1< <M

and (V3 ])1<]<M1 introduced in Lemma 5.1(a). Define V] 1 = Vi1 and, for j > 1, V] =
Vii\ Uk:l Vik. Since Vl,j C V1,j for j € Ny, and according to Remark 3.2, Vl,j is a
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q/ma, ; -nearly perfect set. Clearly, the sets (f/\l .j)jeN w, are pairwise disjoint and UM LV =

Zl 1 V] .i- Moreover, from Lemma 5.1(a), p 4 is o-finite on (Z V1 )¢, showing part (a).
Using similar arguments as before and from Lemma 5.1(b), there ex1ts aq/ua, ;-nearly perfect
set, labeled Vn JJ for any j € My, suchthat V,_j , = >, jedni V,, .j- Now the set V,Z j defined
by Vn J= Vn jn Vn 1.k for j € 4, i satisfies the required properties, completing the proof.

Remark 5.1. It is worth mentioning that the proofs of Lemma 5.1 and Proposition 5.1 only
required that ¢ must be a probability measure. Actually, the second part of assumption (B1)
is not needed, that is, Q(- | x,a) K ¢q for any (x,a) € X x A. Moreover, observe that
assumption (B2) is only needed to ensure that each element of the partition (A, ;) jen,,, of the
action space A has a diameter less than 1/2"~ !,

Let 1 be a measure in M[(X x A). satisfying equation (2.6). According to Proposition 5.1,
there exists a stochastic kernel on A given Vg, labeled 1, such that, for any I € {B’(Vj x A),
w(A) = f A V(da | x)pa(dx). Moreover, introduce, for any n € N, the A-valued mapping f,
defined on V4 by f,(x) = a,, ; if x € V, ;, where ay ; is an arbitrary fixed element in A, ;.

Lemma 5.2. Suppose that assumptions (B1)—(B2) are satisfied. Then lim,_,  f,(x) exists for
any x € V.

Proof. Let x € V4. For any n > 1, there exist k € Ny, |, and j € Ny, such that
Sum1(x) € Ap—1k and f,(x) € A, ; with A, ; C A,_1 according to Proposition 5.1.
Therefore, p(f,,(x), fu—1(x)) < 1/2"‘2, showing that the ( f;; (x)),en is a Cauchy sequence in
the complete space A. This completes the proof.

Definition 5.1. Suppose that assumptions (B1)—(B2) are satisfied. Consider u € M(X x A)4
satisfying the linear equation (2.6). Let f be the A-valued measurable function defined on
V4 by f(x) = lim,_ o fu(x), and let ¢ be the stochastic kernel defined on A given X by
(- x) = IVX )Y | x) + Iy, (x)8 (x)(-). The randomized stationary policy generated by
¢ will be said to be induced by the measure .

Figure 1 illustrates the construction of (4; j)ien, jeNy, and (f/\,; j)ieN, jeNy, obtained in
Lemma 5.1 and Proposition 5.1 and the associated mapping f introduced in Definition 5.1.

Lemma 5.3. Suppose that assumptions (B1)—(B2) are satisfied. Consider p € M(X x A)4
satisfying the linear equation (2.6), and let ¢ be its induced randomized stationary policy.

a
An,1 < an, 1
Ann an,2
M\ f(x) JLis o-finite
Anp, M, an,M,
X
- - - B
Vn, 1 Vn,2 Vn, M, VA

FIGURE 1: Construction of the sets A; j and V; ;.
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Let g be an R -valued measurable function defined on X x A such that g(x, -) is continuous on
A for any x € X. IffVAXAg(y,a)M(dy x da) < oo then fv xAg(y,a)u?(dy x da) =
Jv, 80, fF(M)q(dy) = 0.

Proof. For ¢ >AO, n € N, and j € Ny, let us introduce W* = {x € V4: g(x, f(x)) >
e}, W,f/ {x eV, j: foralla € Ay j, g(x,a) > ¢}. According to Proposition 5.1, the sets
(Wn’ ]) jeNy, are pairwise disjoint. Define W} = ZM" W5 Since A is a compact metric
space, any subset of A is separable. Therefore, we have W s = renix € X: G(x, ar) >
ein Vn ,j» Where (ap)ken is a dense subset of A, ; since g(x ) is continuous for any x € X.
Consequently, W5 € B(X). Now let us show that W® C ey Wy €2, Indeed, consider
x € WE. Since g(x -) is continuous on the compact set A, there exists 8, . > 0 such that
lg(x,a) — g(x, f(x)| < /2 for any a satisfying p(a, f(x)) < Br. Now, forany n € N,
we have x € V,, j, . and f,(x) € Ay, j, , for some j, x € Ny, . According to Proposition 5.1
and Lemma 5.2, there exists n, . € N such that, for any n > ny. and a € A, j, ., we
have p(fy(x),a) < Bre/2 and p(fu(x), f(x)) < Bre/2. Consequently, for n > ny g,
we have p(f(x),a) < By forany a € A, j,, and so x € W;’jz“ C W,f/2, showing that
We C UnEN Wa /2 )

Now assume that fVAXAg(y,a),u‘/’(dy x da) > 0. Then fVAXAg(y, f(x)gdy) > 0
according to the fact that /ﬂﬁ(-) & ¢q(-) and so there exists ¢ > 0 such that g(W¢) > 0.

Therefore, q(W, 5/2 ;) >0 for some n € N and j € Ny, since W¢ C UneN Ujenu, Wri/jz.
Observe that W, / ; is a g/pa, -nearly perfect set since it is a subset of Vn .j- This implies
that p 4, (W£/2) = 00. Fmally,
2
/ gmmmwxwe/Uz $0 @y x da) = Zpa, (WD) = oc,
VaxA we X Ap,j

n,j

showing the contrapositive of the result.

Our next result is aimed towards comparing the measures  and ?. Clearly, in the context of
a general compact action space, we cannot guarantee that the occupation measure u? associated
to ¢ is smaller than w as in Theorem 4.1. This is an important difference with respect to the
case of a finite action space. We can only prove that u¥ < p on B(Vy{ x A).

Theorem 5.1. Suppose that assumptions (B1)—(B3) are satisfied. Consider p € M(X x A)4
satisfying the linear equation (2.6), and let ¢ be its induced randomized stationary policy. Then
Mi < paand p¥ < pon B(Vy x A). Moreover, if g is an R -valued measurable function
defined on X x A such that g(x, -) is continuous on A for any x € X then

AIﬁWMW@wMMS/ ¢(v, a)u(dy x da). 5.1)

VaxA
Proof. Introduce the mapping T defined on M(X)4 by
Ty([T) =v() +/ O | y.a)p(da | y)y(dy).
XxA
Define the sequence of measures (¥)nen in M(X)4 by o = 0 and yp41 = Ty, forn € N.
Since the operator 7' is monotone, it follows easily by induction that the sequence (¥,)neN

is increasing and converges to /Lﬁ which is the minimal positive solution of y = Ty with
y € M(X)+.
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Now, let us show that T4 < wa. Indeed, by the definition of ¢, for any I' € B(X),

TpaM) = () + / O | y. a)p(da | ¥)pa(dy)

VixA

+ y Q" [y, fF(M)ra(dy). (5.2)
A

However, since w(A) = fA @(da | x)pa(dx) for any A € B(Vy x A), we have, for any
I' e B(X),

paT) =v(I) +/, O | y,a)p(da | y)ua(dy)

VixA
+f O [ y,a)u(dy x da). (5.3)
VaxA

We study two cases. Assume first that fVAxA O | y,a)u(dy x da) = oco. Then ua(I') = oo
and we clearlyhave T 4 (I') < 4 (T"). Now suppose that fVA A QT [y, a)u(dy x da) <oo.
From assumption (B3) and Lemma 5.3, taking into account the fact that u4 < ¢, it follows
that
O | y. f(»a(dy) =0, (5.4)
Va

and so combining (5.2), (5.3), and (5.4), we have Tug < [t 4.

Consequently, it can be shown easily by induction that y,, < @4, implying that uﬁ < ua-
Therefore, according to the definition of ¢ (see Definition 5.1),

w(A) = /A @(da | y)ua(dx) > /A ¢(da | y)u¥(dx) = u?(A)

for any A € B(Vy x A). Moreover, (5.1) is a straightforward consequence of Lemma 5.3.
This completes the proof.

Given the measures u and u¥, we now give the definition of their difference.

Definition 5.2. Suppose that assumptions (B1)—(B3) are satisfied. Consider u € M(X x A)4
satisfying the linear equation (2.6), and let ¢ be its induced randomized stationary policy. Define
the mapping A* on B(X x A) by

AM(A) = n(AN[Va x AD + (u — n?)(A N[V x A, (5.5

where A € B(X x A) (see Definition 2.1).

The dependence of A* on ¢ is not explicitly mentioned because ¢ itself depends on .
Observe that, forany A € 8(V{ x A), (u—u?)(A) is well defined since, from Proposition 5.1,
the measure p is o-finite on B(V{ x A) and u¥ < pwon B(Vy x A). Our next result presents
some technical properties of A¥.

Lemma 5.4. Suppose that assumptions (B1)—(B3) are satisfied. Consider n € M(X x A)4
satisfying the linear equation (2.6), and let ¢ be its induced randomized stationary policy. If g
is an Ry -valued measurable function defined on X x A such that g(x, -) is continuous on A
forany x € X then

wu(g) = u?(g) + At (g).
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Proof. Consider A € 8(V{ x A). Thenwehave u(A) = u¥(A)+A#(A) by the definition
of A" and Theorem 5.1, which implies that

/ g(x, a)u(dx, da) =/ g(x, a)u?(dx, da) +/ g(x,a)A¥(dx, da). (5.6)
VixA VixA VixA
Now, according to (5.5),
/ g(x, a)u(dx, da) =/ g(x,a)A*(dx, da).
VaxA VaxA

Combining the above equality and Lemma 5.3, we obtain
/ g(x,a)u(dx, da) =/ g(x,a)yu?(dx, da) +/ g(x,a)A*(dx, da). (5.7)
VixA VaxA VaxA

From (5.6) and (5.7), the result follows.

Corollary 5.1. Suppose that assumptions (B1)—(B3) are satisfied. Consider p € M(X x A)+
satisfying the linear equation (2.6), and let ¢ be its induced randomized stationary policy. For
any I' € B(X), we have

AL(T) = A Q(T). (5.8)

Moreover, l:fl,l,ﬁ (T') < 00 or ' C V then we have an equality in the above formula.
Proof. LetT" € B8(X). According to assumption (B3), the mapping Q(I" | -, -) satisfies the

hypothesis of Lemma 5.4 and so uQ(I') = u? Q(I') + A#Q(I"). Adding v(T") to both sides
of the above equality yields

pam) = ph (@) + A" QD). (5.9)
Applying Lemma 5.4 to g = Irx4 we have
pam) = ph () + AL D). (5.10)

Consequently, if ,u‘/ﬂ(l") < oo then combining (5.9) and (5.10) we get an equality in (5.8).
Now, if 4% (I'") = 0o and I' € B(V), then, by using the fact that ;% is o-finite on VY, this
case reduces to the previous case, and so the equality holds in (5.8). Finally, if “Z (I') = coand
I' € B(V4,), then, from Theorem 5.1 and by the definition of A*, we obtain co = M(ﬁ T) <
ual) = A'X ("), implying that inequality (5.8) is satisfied, showing the result.

Lemma 5.5. Suppose that assumptions (B1)—(B3) are satisfied. Consider p € M(X x A)4
satisfying the linear equation (2.6), and let ¢ be its induced randomized stationary policy.
Assume that y € M(X x A)y and satisfies y4 > ,uﬁ and y4 = v + y Q. Then the measure
A =y + A" satisfies g = v + LQ.

Proof. The proof of this result is similar to that of Lemma 4.3 by using Corollary 5.1 instead
of Lemma 4.2.

In the next theorem and corollary, we present our main results.

Theorem 5.2. Suppose that Assumption B holds. If u* is an optimal solution of the constrained
linear program ILP then the induced policy ¢* is a solution of the constrained control problem
defined by (2.3) and the optimal value V*(v) coincides with the optimal value of the LLP.
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Proof. For any policy m € II, the corresponding occupation measure satisfies the linear
equation (2.6) by Lemma 9.4.3 of [10]. The value of the constrained control problem defined
in (2.3) cannot be smaller than the value of the LIP given by u*(rg). We will show that
w(rg) = u? (rg) for any 0 € ®U{0}. Suppose that, for some 6 € O, u*(rg) < w? (ro).
Then introduce A*" according to (5.5). From assumption (B3), —oo < u*(rg). Moreover,
since w* is a solution of the constrained linear program LP, u*(rg) < Rg and so u*(rg)
is finite. According to assumption (B4) and Lemma 5.4, u (r+) = u‘p (rg ) + AH (r; ) and
wH(ry) = ,u‘ﬂ (rg) + AR (rg), 1mp1y1ng that ;L“’ (rg) and A" (rg) are finite. Therefore, we
obtain u*(ry) = /ﬂ (ro) + A* (rg) and so A* (rg) < O since it is assumed that /,L *(rg) <
w?" (rg). From Theorem 5.1 and Lemma 5.5, the measure A" defined by A" = u* 4+ nA*
for n € N satisfies A"y = v+ A" Q. Therefore, A (rg) = w*(ro) + A* (rp) is well defined
and finite and it can easily be shown by induction that A" (rg) = u*(ry) + nA* (rg) is well
defined and finite for any n € N. This implies that the value of the auxiliary unconstrained
linear program ILIPy is smaller than A" (rg) = u*(rg) + nA* (rg) for any n € N and, thus,
equals —oo, leading to a contradiction with assumption (B3). Therefore, for any 6 € ©,
;L‘/’*(rg) < Ry. Now, it is also obvious that u*(rg) < /L“’*(ro), and it remains to prove that
w*(ro) = u‘/’* (ro). If uw*(r9) = +oo then necessarily pc‘/’*(ro) = u*(ro). If u*(rg) < 400
then, since u*(rg) > —oo, one can apply the same reasoning presented above for 6 € © to
show that u*(rg) = ;L“’* (ro). This completes the proof.

Corollary 5.2. Suppose that Assumption B holds. The set of randomized stationary policies is
a sufficient set of policies for the optimization problem (2.1)—(2.3).

Proof. This result is a straightforward consequence of Theorem 5.2.

6. Examples
6.1. Example 1

This example shows that assumption (A2) is important in Theorem 4.2 and, similarly,
assumption (B4) is important in Theorem 5.2.

We consider an uncontrolled model (A = {a}, dummy action) with a single constraint:
® = {1}; Ry = 1. The state spaceis X ={...,—2,—1,0, 1,2, ...} and the stochastic kernel
is defined by Q(0 | 0,a) =1, Q(1 | —1,a) =1,and Q@i + 1 | i,a) = 1foralli # 0, —1.
Take ro(i,a) = r1(i,a) = 0foralli < 0and ro(i,a) = —ri(i,a) = —(%)i foralli > 0 and
choose v(0) = 1.

Obviously, x; = 0 and v(v, 1) = vi(v, ) = 0 for the (single) control policy m. The
corresponding occupation measure is given by u”(0,a) = oo and u”* (i,a) = 0 for i # 0.
Observe that in this example w4 (i) = w(i, @), which will be denoted by (i) for notational
convenience. The linear program LP has the form

N N2
minimize — ZM(J)<E>
j=1
subject to '
1\’
ZM(]’)<§> <R =1,
j=1
n(@)y=un@ —1) foralli <Oandi > 1,
pu(l) = p(=1), p(0) =1+ w(0).
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Clearly, 1 (0) = oo and u(1) = u(2) = --- = M, where one can take any M > 0. The
optimal solution to LP is given by M = 1, the minimal value is —1, but this solution does not
correspond to any control policy. In this example, the value of LPy equals —oo, corresponding
to M = +o0.

6.2. Example 2

This example shows that condition (B2) and the continuity conditions (B3) and (B5) are
crucial in Theorem 5.2. At the same time, in Theorem 4.2, it is critical that the control set A is
finite.

We consider the unconstrained case: ® = &. The state space is X = {0, 1, 2,. } the
action space is A = {1, 2, ...}, the stochastic kernel is defined by Q(a | 0,a) = ( ye 1,
0@01o0, a)—l—( )4- 1foralla € A,and Q0 |i,a) = 1foralli > 0,a € A. Take
ro(0,a) = ( ya! and ro(i,a) = —1foralli > 0,a € A, and choose v(0) = 1. This model is
presented in Flgure 2. Observe that, for any 1 € M(X x A)4, u(rg) = 3 4eu #(0,a)(3)* !
and pu(ry’) = Y ;=1 1a(i). Consequently, u(ro) is well defined if ), ., (0, a)(%)“_1 < 00
ory ;. a(i) < oo. For such feasible measures, the linear program ILIP has the form

1 a—1
minimize u(rg) = Z w(0, a) (5) — Z wa(i)

acA i>1
subject to

1 a—1
pa(0) =1+ (0, a)[l - (5) } + ) mald,

acA i>1

1 i—1
na@i) = (§> (0, 1), i>1

These equations show that 14 (rg) is well defined if and only if ZaeA (0, a)(%)“’l < 0. One
can easily see that in this case us(0) = 1 + ua(0) and so u4s(0) = oco. The particular
values u(i,a) for i > 1 are of no importance; one can take u(i,a) = 6;({ahua@) =
(Si({a})(%)i_lu(o, i). Moreover, it is easy to see that u(rg) = 0 and so the optimal value
of LPP equals zero.

For this problem, any stationary policy is unfeasible. Indeed, if ¢(a | 0) > 0 then pL(rO )=
u(ry ) = oo and so u(rp) is not well defined since the running costs +( ya=1and —1 appear

(L1 @ a=1, 0=1, ry=1
o1 1( ) e,

2
©a=i, 0=(4)" ‘,ro=(‘5)’*‘

FIGURE 2: Illustration to Example 2.
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infinitely many times with positive probability. On the one hand, it is clear that V*(v) > 0
since the optimal value of ILIP equals 0, and on the other hand, one can check that v(v, 7*) = 0,
where

if x; = 0 and a equals the number of Os in the history A;,
1 if 0 and a equals th b f Os in the hi y h
7*a | hy) = orifa = x;, # 0,

0 otherwise.

For this policy, the occupation measure is given by u”* (0,a) =1and ,u”* (i,a)=6;({a}) (%)"_1
for any (i, a) € N x A.

In this example, one cannot construct the induced policy ¢* for the measure u* = u™ (and
for any other feasible measure) because it is not nearly perfect. Assumption (A1) holds for
instance for the geometric distribution g(x) = (%))H‘1 on the state space X, but Lemma 4.4
does not hold because the action space A is not finite. Indeed, according to Definition 4.1, all
sets V, should be empty, because u% (i) > 0 and pu}; (i) = u*(i,a) < ooforalli € X,a € A.
However, the measure 17 is not o-finite on X since u% (0) =

If we consider the discrete topology for the spaces X and A then assumptions (B3) and (BS)
hold, but Theorem 5.2 cannot be applied because one cannot construct the induced policy since
Lemma 5.2 requires the action space A to be compact. According to Remark 5.1, one can still
construct a partition for the action space A as in Proposition 5.1, but we cannot ensure that each
element of the partition (A, ;) jeN,,, of the action space A will have a diameter less than 1/ on=l,
Namely, for an arbitrary fixed n € N, we define M, =n. Forn > 1,put A, ; = {j} for j €
Np—1and Ay = Apm, =f{n,n+1,n+2,..}. If n =1, put A = Ay ;. The corresponding
subsets Vn j» whichmustbe g/ A _-nearly perfect are all empty exceptfor V4 = V,, um, = {0}
because the geometric distribution takes positive values and j* A, (X )y=1+ ( )=l < 00 for
all j < M,. On the other hand, ,uA " ({0}) = oo, The measure ,uA ; is ﬁnlte on X for
all j € Ny, —1. The measure /,LA is o-finite on Vn M, = Vi=1{1, 2 ..} and W’ is also
o-finite on V. We can introduce the mapping f, on VA ={0}as f,(0)=n e Vn M, but the
limit 11m,Hoo f(0) does not exist.

A way to overcome these difficulties is to use a one-point compactification of the action
space A. We add the point O to A and fix the following metric:

pla, b) = |In(@) ()" — Wm@)(L)].

Assumptions (B3) and (B5) are satisfied if we put Q(0 | x,0) = 1 for all x € X. Now
Lemma 5.2 and Theorem 5.2 can be applied. Starting from the measure u* (or from any
other feasible measure), one can build the induced policy ¢*: lim,—~ f,(0) = 0, so that
¢(- | x) = 85 () (see Definition 5.1). This policy is optimal for the problem (2.3).

6.3. Example 3

The following meaningful example describes the process of selling a property. Suppose
that a landlord plans to sell the house and, once a month, receives the offers from the random

market, denoted as 1,2, ..., M. The actual value of offer i is f (i) (thousand pounds). We
assume that the offers change according to an (uncontrolled) Markov chain with transition
matrix P = (p;;), i, j =1,2,..., M. If a tenant currently rents the house, the landlord is not

allowed to sell it, but the tenant may leave before the next offer with probability p;. In case
there is no tenant and the landlord does not accept the current offer, he/she can wait until the
next month or can invite a new tenant who will appear by the next month with probability p,,.
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Every month, the landlord pays the maintenance fee ¢ > 0 (thousand pounds); the monthly
revenue from a tenant is d > 0 (thousand pounds). Assume that the expected time for the whole
selling period should not exceed a fixed constant R| (months). Moreover, the total maintenance-
revenue cost should not exceed R; (thousand pounds). The goal is to elaborate a selling policy
maximizing the expected value of the accepted offer under the imposed constraints. A similar
example was solved in [2, Example 10.3.1] using the dynamic programming approach, but the
problem was unconstrained and the authors considered the finite horizon case. A version of
this example also appears in [7], where a pure positive MDP was studied.

To formulate the MDP, we introduce the state space X = {(i, N), (j,Y),i,j =1,2,...,
M}U{A}, where the components i, j represent the current offer and the letter N (respectively Y)
means that there is no tenant currently (respectively there is a tenant). The state A means the
house is sold. The action space is given by A = {s, ¢, w}, where s means ‘accept the offer (sell
the house)’, t means ‘invite a tenant’, w means ‘wait’. The transition kernel is given by

1 ifl=N,a=s,

0 otherwise,

QA A a) =1, QA ] (i,D),a) = {

DI ifl=Y, k=N,
1—p ifl=Y k=Y,
. . Da ifl=N,a=tk=Y,
,k ,D,a) = pii -
0, k) | (,D),a) = pij |- py ifl=N.a=tk=N.
1 ifl=N,a=wk=N,
0 otherwise.

The cost and constraint functions are defined by
ro(A,a) =ro((i,Y),a) =0,

f@) ifa=s,
0 otherwise,

ro((i, N),a) = {

r1(x, a) = Iixzny,
(A, a) =r (@i, N),s) =0,

c ifl=N, a#s,
D). a) =
(D, @) {c—d if1=7v.
Here ® = {1, 2}.
Below, we solve numerically the LP for the following data: M = 6; f (i) = 100+20( — 1):
11
Tl e e
S B
0 z 5 7 0 O
P= A TS ., =066, p,=02, =05 d=1.
00 37 72 20
000 i
0000 4 1

Suppose that v((1, N)) = 1, that is, there is no tenant and the first offer is 1 at the beginning.
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Remark 6.1. 1.One can easily reformulate the problem as a minimization problem by changing
the sign of the function ry.

2. Assumption A is satisfied: one can take g as the uniform distribution; the values of the
linear programs LIPy and LIP; are obviously finite (the maximum of LIPy equals f(6) = 200,
the minimum of ILP; equals 1). The value of ILP; equals 0 because the expected maintenance-
revenue cost coming from r; increases with time.

3. In the case p; < p, the expected maintenance-revenue cost decreases with time and the
value of ILIP; is —oo. Therefore, Assumption A is not satisfied and the results of the present
paper cannot be used.

Let Ry = 24 and Ry = 10. Then w*(rg) = 167.1 (thousand pounds), u*(r1) = 24 (months),
and p*(r2) = 10 (thousand pounds), so that both constraints are active. The optimal policy
solving the constrained control problem (see (2.3)) is as follows:

e accept offer numbers 5 and 6 if there is no tenant,

o offer number 4 should be accepted with probability 0.31, or the landlord should simply
wait with the complementary probability 0.69,

e reject offer numbers 2 and 3 and just wait,

o if the landlord receives offer number 1 and there is no tenant then he/she should invite a
tenant with probability 0.82 and wait with the complementary probability 0.18.

The optimal occupation measures are presented in Table 1. The values of ©*((6, N), s) and
w*((6,Y), w) are negligible but positive (approximately 0.0001).

If we combine together all the monetary objectives, i.e. replace rg with ro — r, then, under
the same constraint p(r1) < R; and with the same values of the parameters, the optimal policy
prescribes to invite a tenant in states (1, N), (2, N), and (3, N) and accept the offers in states
(5, N) and (6, N). In the state (4, N), one should invite a tenant with probability 0.57 or accept
the offer with probability 0.43. Under this policy, u*(r9) = 160.7; w*(r1) = 24.

We emphasize that this model coming from a real-life situation is not transient: for the
policy ‘never accept the offer’, the expected time to the absorption at cemetery A equals +o0.
Of course, this policy is far from optimal, the corresponding occupation measure equals +00
at most of the state-action pairs, and all the performance functionals equal 4+-00. The theory
developed in [1] is not applicable here. Moreover, since the cost function r takes positive and
negative values, and the running cost rp, to be maximized, is positive, the results of [7] are also
not applicable here.

TABLE 1.
X
a
(IL,N) 2,N) 3, N) (4 N) (5,N) (6,N) (L,Y) (2,Y) 3,Y) 4Y) 5. Y) (6,Y)
s 0 0 0 0.643 0.357 0 0 0 0 0 0 0
t 4.950 0 0 0 0 0 0 0 0 0 0 0
w 1.092 8.686 5.352 1.420 0 0 0.672 0.742 0.077 0.008 0.001 0
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