A NOTE ON THE EXISTENCE OF A SOLUTION OF THE FALKNER-SKAN EQUATION

BY
K. KUEN TAM

1. Introduction. We are concerned with the existence proof of solution of the Falkner-Skan equation

$$
\begin{equation*}
f^{\prime \prime \prime}+f f^{\prime \prime}+\lambda\left(1-f^{\prime 2}\right)=0 \quad \lambda>0 \tag{1}
\end{equation*}
$$

subject to boundary conditions

$$
\begin{align*}
f=f^{\prime}=0 & \text { at } t=0 \\
f^{\prime}=1 & \text { at } t=\infty . \tag{2}
\end{align*}
$$

The first existence and uniqueness proof based on a fixed point theorem was given by Weyl [4] in 1942, with the added assumption that $f^{\prime}>0$. In 1960, Coppel [1] proved the existence (and uniqueness with the assumption $0<f^{\prime}<1$) by considering trajectories in the three-dimensional phase space.
In this note, we prove the existence of at least one solution without assuming the condition $1>f^{\prime}>0$ by a "shooting method" which is commonly used in the numerical solution of two point boundary value problems. The method consists of seeking an appropriate initial condition for $f^{\prime \prime}$ so that the solution of the resulting initial value problem has the correct limiting behaviour when t is large.
The advantage is that we need only consider the behaviour of the trajectory in the $f^{\prime}-t$ plane. This method of proving existence is apparently first used by Ho and Wilson [2] and later by McLeod and Serrin [3]. The approach used here is essentially that of Serrin.
2. The sets S^{+}and S^{-}. We consider equation (1) with the initial values

$$
\begin{equation*}
f(0)=f^{\prime}(0)=0 ; \quad f^{\prime \prime}(0)=\beta, \tag{3}
\end{equation*}
$$

where $-\infty<\beta<\infty$. We define the sets S^{+}and S^{-}of values of β as follows:

$$
\beta \in S^{+} \text {if } \exists t^{+}>0 \text { Э } f^{\prime}\left(t^{+}\right)>1
$$

and

$$
f^{\prime}>0 \text { for } 0<t<t^{+}
$$

$$
\beta \in S^{-} \text {if } \exists t^{-}>0 \text { э } f^{\prime}\left(t^{-}\right)<-k ; \quad 0<k<1,
$$

and

$$
f^{\prime}<1 \text { for } 0<t<t^{-}
$$

Lemma 1. The sets S^{+}and S^{-}are disjoint and open.
Received by the editors June 17, 1969.

Proof. That S^{+}and S^{-}are disjoint is obvious. Since solutions of (1) depend continuously on their initial values, it is clear that S^{+}and S^{-}are open.

Lemma 2. If $\beta \geq e(1+\lambda)$ then $\beta \in S^{+}$.
Proof. First observe that if $0<f^{\prime}<1$ in the open interval $(0, \tau)$ where $\tau \leq 1$, then for $0<t<\tau$, we have

$$
0<\int_{0}^{t} f d n<1
$$

Let $J=(0, \tau)$ be the maximal open interval with $\tau \leq 1$ in which $0<f^{\prime}<1$. We can show $f^{\prime}>t$ in $0<t \leq \tau$. Rewrite equation (1) as

$$
\begin{equation*}
\left(f^{\prime \prime} e^{\int_{0}^{t} f d n}\right)^{\prime}=\lambda\left(f^{\prime 2}-1\right) e^{f_{0}^{t} f d n} \tag{4}
\end{equation*}
$$

Hence

$$
\left(f^{\prime \prime} e^{\int_{0}^{t} f d n}\right)^{\prime}>-\lambda e
$$

and

$$
f^{\prime \prime} e^{\int_{0}^{t} f d n}>\beta-\lambda e, \quad 0<t \leq \tau
$$

Using $\beta \geq e(1+\lambda)$, we have

$$
f^{\prime \prime} e>e, \quad 0<t \leq \tau
$$

and hence

$$
f^{\prime}>t, \quad 0<t \leq \tau
$$

It follows from the definition of J that $\tau<1$, and from $f^{\prime \prime}>1$ for $0<t \leq \tau$ that $\beta \in S^{+}$.

Lemma 3. If $\beta \leq 0$, then $\beta \in S^{-}$.
Proof. Clearly since $f^{\prime \prime}(0)=-\lambda, \beta \notin S^{+}$. If further, $\beta \notin S^{-}$, we must have $-1<-k<f^{\prime}$ for all t. We can then show that $f^{\prime \prime}$ does not change sign. If $f^{\prime \prime}$ becomes positive, then f^{\prime} must have a local minimum at which $-k<f^{\prime}$, which violates equation (1). Hence $f^{\prime \prime}$ remains negative, implying f^{\prime} is monotonic decreasing. That f^{\prime} is bounded from below implies that $\lim _{t \rightarrow \infty} f^{\prime}=-K,-k<-K<0$, while $f^{\prime \prime}$ and $f^{\prime \prime \prime}$ tend to zero. It then follows from equation (1) that

$$
\lim _{t \rightarrow \infty} f f^{\prime \prime}=\lambda\left(K^{2}-1\right) \neq 0
$$

Since $|f| \leq$ const. t, we have $\left|f^{\prime \prime}\right| \geq$ const. $/ t$ for all sufficiently large t. Thus $f^{\prime \prime}$ is not integrable, contradicting the fact that f^{\prime} has a finite limit. Hence, $\beta \in S^{-}$.
3. The existence of a solution. Since S^{+}and S^{-}are disjoint, nonempty open sets, their complement D is also nonempty. Further, $\beta \in D$ implies that the solution of (1) and (3) can be continued for all $t>0$ with $-1<-k<f^{\prime}<1$.

Lemma 4. If $\beta \in D, f^{\prime}(\infty)=1$.

Proof. We first show that f^{\prime} is monotone. If f^{\prime} is not monotone, $f^{\prime \prime}$ must change sign. Initially, we have $\beta>0$. Supposing $f^{\prime \prime}$ changes sign at t_{1}, then the fact that f^{\prime} cannot have a local minimum for $-1<-k<f^{\prime}<1$ implies that $f^{\prime \prime}<0$ for $t>t_{1}$. A similar argument as in the proof of Lemma 3 shows that a contradiction is obtained. Hence f^{\prime} is monotone increasing. Since f^{\prime} is bounded from above, the limit of f^{\prime} exists. If $\lim _{t \rightarrow \infty} f^{\prime} \neq 1$, a contradiction is again obtained using the same argument as in the proof of Lemma 3. Hence $f^{\prime}(\infty)=1$.

We have thus proved the following result.
Theorem. The differential equation (1) subject to boundary conditions (2) has at least one solution.

Remarks. We have obtained an estimate for $f^{\prime \prime}(0)$ of the solution as

$$
0<f^{\prime \prime}(0)<e(1+\lambda) .
$$

References

1. W. A. Coppel, On a differential equation of boundary layer theory, Proc. Cambridge Phil. Soc. Series A 253 (1960), 101-136.
2. D. Ho and H. K. Wilson, On the existence of a similarity solution for a compressible boundary layer, Arch. Rational Mech. Anal. 27 (1967), 165-174.
3. J. B. McLeod and J. Serrin, The existence of similar solutions for laminar boundary layer problems, Arch. Rational Mech. Anal. 31 (1968), 288-303.
4. H. Weyl, On the differential equations of the simplest boundary layer problems, Ann. Math. 43 (1942), 381-407.

McGill University, Montreal, Quebec

