MAXIMAL COPLANAR SETS OF INTERSECTION POINTS

Richard P. Halpern, David Hobby and Donald M. Silberger

Let F be any set of five points in \mathbf{R}^{3} so situated that no four of the points are coplanar, and that the line $x y$ through any two x and y of the points has a unique intersection point x^{*} * with the plane determined by the other three. Let F^{\wedge} denote the family of all such $\mathbf{x y}{ }^{*}$. Let $S(F)$ denote the set of all $X \subseteq F^{\wedge}$ which are maximal with respect to the property that X is a subset of a plane in \mathbf{R}^{3}. For $k>2$ an integer, let $\mathcal{S}(k ; F)$ denote the family of all k-membered elements in $\mathcal{S}(F)$.

A family \mathcal{D} of sets is said to be uniformly deep of depth d if and only if for every $x \in \cup \mathcal{D}$ there are exactly d distinct $A \in \mathcal{D}$ for which $x \in A$.

We establish the following result, and extend our ideas to general Euclidean spaces.

Theorem. F^{\wedge} contains exactly ten points, and no three of them are collinear. Furthermore, $\mathcal{S}(F)=\mathcal{S}(3 ; F) \cup \mathcal{S}(4 ; F)$ with $|\mathcal{S}(3 ; F)|=20$ and with $|\mathcal{S}(4 ; F)|=25$. Both $\mathcal{S}(3 ; F)$ and $\mathcal{S}(4 ; F)$ are uniformly deep; the depth of $\mathcal{S}(3 ; F)$ is 6 , and the depth of $\mathcal{S}(4 ; F)$ is 10 .

1. Introduction

This paper considers subsets $E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}\right\}$ of n-dimensional Euclidean space R^{n} such that each n-membered $G \subseteq E$ determines a unique hyperplane $\Pi(G)$, and every 2 -membered subset $\left\{\mathbf{e}_{i}, \mathbf{e}_{j}\right\}$ of $E \backslash G$ determines a line $\mathbf{e}_{\boldsymbol{i}} \mathbf{e}_{j}$ which intersects $\Pi(G)$ in exactly one point $\mathbf{e}_{i} \mathbf{e}_{j}^{G}$. Subjecting E to the further condition that $\mathbf{e}_{i} \mathbf{e}_{j}^{G}=$ $\mathbf{e}_{r} \mathbf{e}_{s}^{H}$ if and only if $\left\{\left\{\mathbf{e}_{i}, \mathbf{e}_{j}\right\}, G\right\}=\left\{\left\{\mathbf{e}_{r}, \mathbf{e}_{s}\right\}, H\right\}$ we focus our attention upon the set E^{\wedge} of all such intersection points $\mathbf{e}_{i} \mathbf{e}_{j}^{G}$, and we initiate a classification of those subsets X of E^{\wedge} which under set inclusion are maximal with respect to the property that the j-plane $\Pi(X)$ determined by X is a hyperplane. Let $S(E)$ denote the family of all

[^0]such maximal X, and for k an integer let $\mathcal{S}(k ; E)$ denote the family of all k-membered elements in $\mathcal{S}(E)$.

Implicit in the sort of classification announced above is a geometric enquiry: What regularities does E impose upon the configuration of the hyperplanes $\Pi(X)$ for these maximal $X \subseteq E^{\wedge}$? But our concern in this paper is at least as combinatorial as it is geometric, and centres more upon the families $\mathcal{S}(E)$ and $\mathcal{S}(k ; E)$ than it centres upon the hyperplanes $\Pi(X)$ which their elements X determine.

When $m=n+2$ then for every 2 -membered $\left\{\mathbf{e}_{i}, \mathbf{e}_{j}\right\} \subseteq E$ the set $E \backslash\left\{\mathbf{e}_{i}, \mathbf{e}_{j}\right\}$ is n-membered, and so without ambiguity the expression $\mathbf{e}_{i} \mathbf{e}_{j}^{*}$ denotes the intersection point $\mathbf{e}_{\boldsymbol{i}} \mathbf{e}_{j}^{E \backslash\left\{\mathbf{e}_{i}, \mathbf{e}_{j}\right\}}$. In passing we deal with the very easy case where $\langle m, n\rangle=\langle 4,2\rangle$. But our main concrete result is Theorem 1, which explores the evocative case where $\langle m, n\rangle=\langle 5,3\rangle$.

A family \mathcal{D} of sets is said to be uniformly deep of depth d if and only if for every $x \in \cup \mathcal{D}$ there are exactly d distinct $A \in \mathcal{D}$ for which $x \in A$. Uniformly deep \mathcal{D} are also called "regular hypergraphs", principally when all members of \mathcal{D} have the same cardinal number.

It seems unknown for which triples $\langle s, d, k\rangle$ of integers there exists a uniformly deep family \mathcal{D} of k-membered sets such that $d=\operatorname{depth}(\mathcal{D})$ while $s=|\cup \mathcal{D}|$. In [2] this question receives some scrutiny; there, Theorem 2 gives the necessary condition $s d=k|\mathcal{D}|$ for the existence of such a \mathcal{D}, and Theorem 13 and Corollary 14 in [2] supply some of the sufficient conditions. However, even when the existence of such a \mathcal{D} is ensured, the process of constructing it may be irksome. Furthermore, there are practical uses to which these \mathcal{D} can be put; for example, in the design of experiments. The present paper proposes an application of geometry to the construction of uniformly deep families.

Let F be any set of five points in \mathbf{R}^{3} so situated that no four of the points are coplanar, and that the line $x y$ through any two x and y of the points has a unique intersection point xy^{*} with the plane determined by the other three. Let $F^{\wedge}, \mathcal{S}(F)$ and $\mathcal{S}(k ; F)$ be as defined above. Then the following conditions are satisfied.

Theorem 1. F^{\wedge} contains exactly ten points, and no three of them are collinear. Furthermore, $\mathcal{S}(F)=\mathcal{S}(3 ; F) \cup \mathcal{S}(4 ; F)$ with $|S(3 ; F)|=20$ and with $|\mathcal{S}(4 ; F)|=25$. Both $\mathcal{S}(3 ; F)$ and $\mathcal{S}(4 ; F)$ are uniformly deep; the depth of $S(3 ; F)$ is 6 , and the depth of $\mathcal{S}(4 ; F)$ is 10 .

Note that, if \mathcal{A} and \mathcal{B} are any two uniformly deep families with $\cup \mathcal{A}=\cup \mathcal{B}$ and with $\mathcal{A} \cap \mathcal{B}=\emptyset$, then $\mathcal{A} \cup \mathcal{B}$ is uniformly deep and moreover $\operatorname{depth}(\mathcal{A} \cup \mathcal{B})=\operatorname{depth}(\mathcal{A})+$ $\operatorname{depth}(B)$. Thus Theorem 1 implies immediately that $S(F)$ is a uniformly deep 45membered family whose depth is 16 .

In Section 2 we lay the groundwork for proving Theorem 1, and at the same time we develop the general problem suggested by the theorem. In Section 3 we prove the theorem, and in Section 4 we offer concluding remarks.

2. Obesity

Henceforth m and n are integers with $m \geqslant n+2 \geqslant 4$. A review of some elementary linear algebra may be helpful here.

For $X \subseteq \mathbf{R}^{n}$ and $Y \subseteq \mathbf{R}^{n}$ the expressions $X+Y$ and $X-Y$ denote the sets $\{\mathbf{x}+\mathbf{y} \mid \mathbf{x} \in X \& y \in Y\}$ and $\{\mathbf{x}-\mathbf{y} \mid \mathbf{x} \in X \& \mathbf{y} \in Y\}$, respectively. Furthermore, $X+z=z+X:=\{z\}+X$ when $z \in R^{n}$. The expression $V(X)$ denotes the vector subspace generated (that is, spanned) by X.

Lemma 2. Let $\{x, y\} \subseteq R^{n}$ and let S and T be subspaces of R^{n}. Then $x+S=$ $\mathbf{y}+\mathrm{T}$ if and only if both $\mathrm{S}=\mathrm{T}$ and $\mathbf{x}-\mathrm{y} \in \mathrm{S}$.

Proof: First, suppose that $\mathbf{x}-\mathbf{y} \in \mathbf{S}=\mathbf{T}$. Then $\mathbf{x}+\mathbf{S}=\mathbf{y}+\mathbf{x}-\mathbf{y}+\mathbf{S}=\mathbf{y}+\mathbf{S}=$ $\mathbf{y}+\mathrm{T}$. Next, suppose that $\mathbf{x}+\mathbf{S}=\mathbf{y}+\mathrm{T}$. Then $\mathbf{x}-\mathbf{y}+\mathbf{S}=\mathbf{y}-\mathbf{y}+\mathrm{T}$, and so $\mathbf{x}-\mathbf{y}=\mathbf{x}-\mathbf{y}+0 \in \mathbf{x}-\mathbf{y}+\mathbf{S}=\mathbf{T}$. Therefore, $\mathbf{y}-\mathbf{x}=-(\mathbf{x}-\mathbf{y}) \in \mathrm{T}$ since \mathbf{T} is a subspace. It follows that $T=y-x+T=-x+x+S$. Therefore, $x-y \in S=T$.

Lemma 3. Let $\{\mathbf{y}, \mathrm{z}\} \subseteq X \subseteq \mathbf{R}^{\boldsymbol{n}}$. Then $\mathrm{V}(X-\mathrm{y})=\mathrm{V}(X-\mathrm{z})$, and therefore the set $(X-y) \backslash\{0\}$ is linearly independent if and only if $(X-z) \backslash\{0\}$ is linearly independent.

Proof: Choose $p \in X-\mathbf{y}$. Then $\mathbf{p}=\mathbf{x}-\mathbf{y}$ for some $\mathbf{x} \in X$. It follows that $p=(x-z)-(y-z) \in \vee(X-z)$, and hence that $X-y \subseteq \vee(X-z)$. Therefore $V(X-y) \subseteq V(V(X-z))=V(X-z)$. Similarly, $V(X-z) \subseteq V(X-y)$. So $V(X-y)=V(X-z)$.

Since $(X-y) \backslash\{0\}$ and $(X-z) \backslash\{0\}$ have the same number of elements, and span the same space $V(X-y)$, one set is linearly independent if the other is.

Corollary 4. Let $\{\mathbf{y}, \mathrm{z}\} \subseteq X \subseteq \mathbf{R}^{\boldsymbol{n}}$. Then $X \subseteq \mathbf{y}+\mathrm{V}(X-\mathrm{z})$. Moreover, if $X \subseteq p+S$ where $p \in \mathbf{y}+\mathrm{V}(X-z)$ and where S is a subspace then $\mathrm{V}(X-z)$ is a subspace of S .

Proof: Let $x \in X$. It follows by Lemma 3 that $x-y \in X-y \subseteq V(X-y)=$ $V(X-z)$, and so $x=x-y+y \in y+V(X-z)$. It follows that $X \subseteq y+V(X-z)$ as claimed.

Now suppose also that $X \subseteq p+S$ where $p \in y+V(X-z)$ and where S is a subspace. Then $X-p \subseteq S$ and so $V(X-p) \subseteq S$. But $X-p=X-\mathbf{y}-\mathbf{v}$ for some $v \in \mathrm{~V}(X-\mathbf{z})=\mathrm{V}(X-\mathbf{y})$. Now, $-\mathrm{v}=\mathbf{y}-\mathbf{y}-\mathrm{v} \in X-\mathbf{y}-\mathrm{v} \subseteq \mathrm{V}(X-\mathbf{y}-\mathrm{v})$. Thus $\mathbf{v} \in \mathrm{V}(X-\mathbf{y}-\mathbf{v})$. So $X-\mathbf{y}=X-\mathbf{y}-\mathbf{v}+\mathbf{v} \subseteq \mathrm{V}(X-\mathbf{y}-\mathrm{v})+\mathbf{v}=\mathrm{V}(X-\mathbf{y}-\mathrm{v})$. It
follows that $V(X-y) \subseteq V(V(X-y-v))=V(X-\mathbf{y}-\mathbf{v})=V(X-p) \subseteq S$, whence $V(X-z) \subseteq S$, as required.

When S is a j-dimensional subspace of R^{n} and when $y \in R^{n}$ then the set $y+S$ is said to be a j-plane. An $(n-1)$-plane in R^{n} is called a hyperplane in R^{n}. By Corollary 4 we have for $y \in X \subseteq R^{n}$ that $V(X-y)$ is the unique subspace S of the smallest dimension for which $X \subseteq z+S$ when $z \in X$. So for $\emptyset \neq X \subseteq R^{n}$ we can define $\Pi(X):=z+V(X-y)$, where $\{y, z\} \subseteq X$. The plane $\Pi(X)$ is said to be determined by X. When $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is finite, then $\Pi(X)$ may instead be written as $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\boldsymbol{k}}$.

It is easily seen by Corollary 4 that if $X \subseteq Y \subseteq \Pi(X)$ then $\Pi(Y)=\Pi(X)$, and hence that $\Pi(\Pi(X))=\Pi(X)$.

Of course, an n-plane in R^{n} is just R^{n} itself.
Corollary 5. Let $Y \subseteq X \subseteq \mathbf{R}^{n}$ with $0<j+1=|Y|$ and with $|X|=k+1 \leqslant$ $n+1$ and such that $\Pi(X)$ is a k-plane. Then $\Pi(Y)$ is a j-plane.

Proof: Since $Y \subseteq X$ we can write $\Pi(X)$ as a translate of the k-dimensional subspace $V(X-y)$ for some $y \in Y$. Note that $|(X-y) \backslash\{0\}|=k$. Therefore the set $(X-\mathbf{y}) \backslash\{0\}$ is linearly independent. So $(Y-\mathbf{y}) \backslash\{0\}$ is linearly independent since Y $\mathbf{y} \subseteq X-\mathbf{y}$. So $\Pi(Y)$ is a translate of the j-dimensional subspace $\mathrm{V}((Y-\mathbf{y}) \backslash\{0\})=$ $\mathrm{V}(Y-\mathbf{y})$.

Now we introduce our main concepts. These are motivated by Theorem 1.
Definition 6: Let $E \subseteq \mathbf{R}^{\boldsymbol{n}}$. Then E is said to be fat if and only if every subset X of E satisfies the following two conditions:
6.1 if $|X|>n$ then $\Pi(X)=R^{n}$;
6.2 if $|X|=n$ and if y and z are two distinct elements in $E \backslash X$ then there is a unique element $\mathbf{y z}{ }^{X}$ in the set $\mathbf{y z} \cap \Pi(X)$.

When E is a fat subset of $\mathbf{R}^{\boldsymbol{n}}$ the expression E^{\wedge} denotes the set of all $\mathbf{y z}^{\boldsymbol{X}}$ for which X is an n-membered subset of E and for which y and z are distinct elements in $E \backslash X$. Of course $E^{\wedge}=\emptyset$ unless $|E| \geqslant n+2$, and if $|E| \geqslant n+2$ but $n=1$ then $E^{\wedge}=E$; each of these situations is uninteresting.

Theorem 7. Let E be a fat subset of R^{n} with $|E| \geqslant n+2 \geqslant 4$. Let X be a k-membered subset of E with $0<k<n$ and let y and z be distinct elements in $E \backslash X$. Then $\mathrm{yz} \cap \Pi(X)=\emptyset$. In particular $E^{\wedge} \cap E=\emptyset$.

Proof: Assume that there exists $\mathbf{x} \in \mathrm{yz} \cap \Pi(X)$. Then since $|X \cup\{z\}|=k+1 \leqslant n$ we have by Corollary 5 together with Condition 6.1 that $\Pi(X \cup\{z\})$ is a k-plane. But $y \in z x \subseteq \Pi(X \cup\{z\})$ since $x \in \Pi(X) \subseteq \Pi(X \cup\{z\})$ and $z \in \Pi(X \cup\{z\})$. Therefore $\Pi(X \cup\{y, z\})=\Pi(X \cup\{z\})$. On the other hand $|X \cup\{y, z\}|=k+2$, and
so $\Pi(X \cup\{y, z\})$ is a $(k+1)$-plane. We reach a contradiction.
In general, with E an m-membered fat subset of $R^{\boldsymbol{n}}$ there is for $\left\{\mathrm{yz}^{\boldsymbol{G}}, \mathbf{p q}^{\boldsymbol{H}}\right\} \subseteq$ E^{\wedge} no guarantee that if $\mathbf{y z}^{\boldsymbol{G}}=\mathbf{p q}^{\boldsymbol{H}}$ then $\langle\{\mathbf{y}, \mathbf{z}\}, G\rangle=\langle\{\mathbf{p}, \mathbf{q}\}, H\rangle$. Indeed this implication fails in the special case where $n=2$ and where therefore each point in E^{\wedge} is counted at least twice; that is, $\mathbf{x y}^{\{p, q\}}=\mathbf{p q}^{\{x, y\}}$ for every 4-membered subset $\{\mathbf{x}, \mathrm{y}, \mathrm{p}, \mathrm{q}\}$ of E. We believe it best to confine our attention to those m-membered fat E for which $\left|E^{\wedge}\right|$ is as large as possible; that is, when $\left|E^{\wedge}\right|=\binom{m}{2}\binom{m-2}{n}$. This is our motivation for the following

Definition 8: A fat subset E of $\mathbf{R}^{\boldsymbol{n}}$ is said to be obese if and only if
8.1. for $n=2$, if $\{x, y, z, w\}$ and $\{p, q, r, s\}$ are 4 -membered subsets of E then $x^{\{\mathbf{z}, w\}}=p q^{\{r, s\}}$ implies either that $(\{\mathbf{x}, \mathbf{y}\},\{\mathbf{z}, \mathbf{w}\})=$ $\langle\{\mathbf{p}, \mathbf{q}\},\{\mathbf{r}, \mathbf{s}\}\rangle$ or that $\langle\{\mathbf{x}, \mathbf{y}\},\{\mathbf{z}, \mathbf{w}\}\rangle=\langle\{\mathbf{r}, \mathbf{s}\},\{\mathbf{p}, \mathbf{q}\}\rangle$;
8.2. for $n>2$, if G and H are n-membered subsets of E, if \mathbf{x} and \mathbf{y} are distinct elements in $E \backslash G$, and if \mathbf{p} and \mathbf{q} are distinct elements in $E \backslash H$ then $\mathbf{x y}{ }^{\boldsymbol{G}}=\mathbf{p q}^{H}$ implies that $\langle\{\mathbf{x}, \mathbf{y}\}, G\rangle=\langle\{\mathbf{p}, \mathbf{q}\}, H\rangle$.

The expression $\Phi(m, n)$ denotes the family of all m-membered fat subsets of \mathbf{R}^{n}, and $\Omega(m, n)$ denotes the family of all m-membered obese subsets of \mathbf{R}^{n}. Of course $\Omega(m, n) \subseteq \Phi(m, n)$. The following instance shows that the reverse inclusion sometimes fails.

Proposition 9. $\Phi(7,3) \neq \Omega(7,3)$.
Proof: Let $E=\left\{a_{0}, a_{1}, \ldots, a_{6}\right\}$ where $\mathbf{a}_{0}=\langle-3,-3,-3\rangle, \mathbf{a}_{1}=\langle-1,-1,-1\rangle$, $\mathbf{a}_{2}=\langle 0,1,0\rangle, \mathbf{a}_{3}=\langle 0,2,5\rangle, \mathbf{a}_{4}=\langle 0,5,9\rangle, \mathbf{a}_{5}=\langle 3,7,0\rangle$, and $\mathbf{a}_{6}=\langle 5,3,0\rangle$. We omit the lengthy sequence of routine calculations that establish the fatness of the set E. Since $\mathbf{a}_{0} \mathbf{a}_{1}^{G}=\langle 0,0,0\rangle=\mathbf{a}_{0} \mathbf{a}_{1}^{H}$ when $G=\left\{\mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$ and $H=\left\{\mathbf{a}_{2}, \mathbf{a}_{5}, \mathbf{a}_{6}\right\}$, we have that E is not obese.

Let $\sigma(n)$ denote the largest integer for which $\Phi(m, n)=\Omega(m, n)$ whenever $\sigma(n) \geqslant$ $m \geqslant n+2 \geqslant 4$. From Proposition 9 we learn that $\sigma(3)<7$; Theorem 1 alleges that $\sigma(3)$ exists and indeed that $\sigma(3) \geqslant 5$.

Lemma 10. Let $n>2$. Let $E \in \Phi(m, n)$. Let G and H be n-membered subsets of E, let $\{x, y\}$ be a 2 -membered subset of $E \backslash G$, and let $\{r, s\}$ be a 2 -membered subset of $E \backslash H$. Suppose that $\mathrm{xy}^{G}=\mathrm{rs}^{H}$. Then $\{\mathrm{x}, \mathrm{y}\}=\{\mathrm{r}, \mathrm{s}\}$.

Proof: If the set $\{x, y, r, s\}$ is 4 -membered then the j-plane $x^{\prime}{ }^{G} \mathbf{x y r s}$ is determined by the two intersecting lines $x y=x y^{G} x y$ and $r s=r s^{H} r s=x y^{G} r s$, whence $j=2$. But by Corollary 5 together with Condition 6.1 we have that xyrs is a 3-plane if $\{x, y, r, s\}$ is 4 -membered. It follows that $|\{x, y, r, s\}| \leqslant 3$. On the other hand, if $|\{x, y, r, s\}|=3$ then the distinct lines $x y$ and $r s$ intersect in $\{x, y, r, s\} \subseteq E$.

This implies that $\mathrm{xy}^{G}=\mathrm{rs}^{H}$ is a point in E, a violation of Theorem 7. Therefore $2 \leqslant|\{x, y\}| \leqslant|\{x, y, r, s\}|<3$, and thus we conclude that $\{x, y\}=\{r, s\}$.

Theorem 11. $\sigma(n) \geqslant n+3$.
Proof: Let $m \in\{n+2, n+3\}$ and let $E \in \Phi(m, n)$.
CASE. $n=2$. Suppose that $x y^{\{x, w\}}=r s^{\{p, q\}}$ where $\{x, y, z, w\}$ and $\{r, s, p, q\}$ are 4-membered subsets of E. We easily infer from Theorem 7 that either $\{x, y\} \cap\{r, s\}=\emptyset$ or $\{\mathbf{x}, \mathbf{y}\}=\{\mathbf{r}, \mathbf{s}\}$. So, if $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}\}=\{\mathbf{r}, \mathbf{s}, \mathbf{p}, \mathbf{q}\}$ then either $\langle\{\mathbf{x}, \mathbf{y}\},\{\mathbf{z}, \mathbf{w}\}\rangle=$ $(\{p, q\},\{r, s\})$ or $(\{x, y\},\{\mathbf{z}, \mathbf{w}\})=(\{r, s\},\{p, q\})$ whereupon Condition 8.1 is satisfied.

Assume that $\{x, y, z, w\} \neq\{r, s, p, q\}$. Then since $m \leqslant 5$ implies that $|\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}\} \cap\{\mathbf{r}, \mathbf{s}, \mathbf{p}, \mathbf{q}\}| \geqslant 3$, we infer that $|\{\mathbf{x}, \mathbf{y}, \mathrm{z}, \mathbf{w}\} \cap\{\mathbf{r}, \mathbf{s}, \mathrm{p}, \mathbf{q}\}|=3$. Without loss of generality we may suppose that $\{x, y, z\}=\{\mathbf{r}, \mathbf{s}, \mathbf{p}\}$ but that $\mathbf{w} \neq \mathbf{q}$.

Subcase. $\{x, y\}=\{r, s\}$ and $z=p$. Note that $p w \neq p q$, whence $p w \cap p q=\{p\}$. Since $x y=r s$, we have that $x y^{\{p, w\}}=x y^{\{p, q\}}$. It follows that $x y^{\{p, q\}} \in p w$. But $\mathbf{x y}{ }^{\{p, q\}} \in \mathbf{p q}$. So $\mathbf{x y}{ }^{\{p, q\}} \in \mathbf{p w} \cap \mathbf{p q}=\{\mathbf{p}\}$. We must infer that $\mathbf{x y}{ }^{\{p, q\}}=\mathbf{p} \in E$ in violation of Theorem 7.
 $\mathbf{r s}^{\{p, q\}}=\mathbf{p q} q^{\{r, w\}}$, and so $x y^{\{x, w\}} \in \mathbf{p q}$. So $x^{\{x, w\}} \in \mathbf{r p} \cap \mathbf{p q}=\{p\}$. Therefore $\mathbf{x y} \mathbf{y s}^{\{\mathbf{w}\}}=\mathbf{p} \in E$ in violation of Theorem 7.

In both subcases the assumption fails, and thus E satisfies Condition 8.1. We conclude that $E \in \Omega(m, 2)$.

CASE. $n>2$. Suppose that $\mathrm{xy}^{G}=\mathrm{rs}^{H}$ where G and H are n-membered subsets of E, where $\{x, y\}$ is a 2 -membered subset of $E \backslash G$ and where $\{r, s\}$ is a 2 -membered subset of $E \backslash H$. Then $\{\mathbf{x}, \mathbf{y}\}=\{\mathbf{r}, \mathrm{s}\}$ by Lemma 10 , and so G and H are subsets of the same $(m-2)$-membered set $E \backslash\{x, y\}$. If $m=n+2$ then $G=H$ and so Condition 8.2 is satisfied. Therefore we may take it that $m=n+3$.

Assume that $G \neq H$. Then $G \cup H=E \backslash\{\mathrm{x}, \mathrm{y}\}$, and so $|G \cup H|=m-2=n+1$ and $|G \cap H|=n-1$. So by Corollary 5 with Condition 6.1 we have that $\Pi(G \cap H)$ is an ($n-2$)-plane. It follows by Theorem 7 that $\mathrm{xy}^{G} \notin \Pi(G \cap H)$.

We now claim that $\Pi(G \cap H)=\Pi(G) \cap \Pi(H)$. Surely $\Pi(G \cap H) \subseteq \Pi(G) \cap \Pi(H)$. Since $\Pi(\Pi(G) \cap \Pi(H)) \subseteq \Pi(\Pi(G))=\Pi(G)$ and since similarly $\Pi(\Pi(G) \cap \Pi(H)) \subseteq$ $\Pi(H)$, we have that $\Pi(G) \cap \Pi(H) \subseteq \Pi(\Pi(G) \cap \Pi(H)) \subseteq \Pi(G) \cap \Pi(H)$, whence $\Pi(\Pi(G) \cap \Pi(H))=\Pi(G) \cap \Pi(H)$. That is, as common wisdom would suggest, the intersection $\Pi(G) \cap \Pi(H)$ of two hyperplanes is a j-plane for some $j \leqslant n-1$. But if $\Pi(G) \cap \Pi(H)$ were also a hyperplane then $\Pi(G) \cap \Pi(H)=\Pi(G)$ whence $\Pi(G)=\Pi(H)=\Pi(G \cup H)=\mathbf{R}^{n}$ since $|G \cup H|=n+1$. Thus we infer that the
j-plane $\Pi(G) \cap \Pi(H)$ is not a hyperplane, but that $j \leqslant n-2$. So, since $\Pi(G \cap H)$ is an ($n-2$)-plane and since $\Pi(G \cap H) \subseteq \Pi(G) \cap \Pi(H)$ we infer that $\Pi(G) \cap \Pi(H)$ is an ($n-2$)-plane, and hence that $\Pi(G \cap H)=\Pi(G) \cap \Pi(H)$ as claimed. But then $\mathbf{x y}^{\boldsymbol{G}}=\mathrm{xy}^{H} \in \Pi(G) \cap \Pi(H)=\Pi(G \cap H)$, and we reach a contradiction. Therefore $G=H$, and E satisfies Condition 8.2. We conclude that $E \in \Omega(m, n)$.

By Proposition 9 with Theorem 11 we have that $\sigma(3)=6$.
Conjecture 12. $\sigma(n)=n+3$ for every $n \geqslant 2$, and $\Phi(m, n) \neq \Omega(m, n)$ for every $m>\sigma(n)$.

Conjecture 13. $\Omega(m, n)$ is uncountable whenever $m \geqslant n+2 \geqslant 4$.
For $E \in \Phi(m, n)$ the expression $\mathcal{S}(E)$ denotes the family of all subsets X of E^{\wedge} such that $\Pi(X)$ is a hyperplane in R^{n} but such that $\Pi(X \cup\{y\})=R^{n}$ for every $y \in E^{\wedge} \backslash X$. For each integer $k \geqslant n$ the expression $\mathcal{S}(k ; E)$ denotes the family of all k membered elements in $\mathcal{S}(E)$. Of course $\mathcal{S}(E)$ is the disjoint union of the $\mathcal{S}(k ; E)$. Our principal interest resides in exactly these families $\mathcal{S}(E)$ and $\mathcal{S}(k ; E)$ for $E \in \Omega(m, n)$.

Open question 14. If $E \in \Omega(m, n)$ then is $\mathcal{S}(k ; E)$ uniformly deep for every k ?
OPEN QUESTION 15. To every pair m and n of integers with $m \geqslant n+2 \geqslant 4$ is there a function $\beta(m, n ;): k \mapsto \beta(m, n ; k)$ such that $|\mathcal{S}(k ; E)|=\beta(m, n ; k)$ for every $E \in \Omega(m, n)$ and for every integer $k \geqslant n$?

By Theorem 1 for $(m, n\rangle=\langle 5,3$) both of the questions 14 and 15 have affirmative answers.

We consider briefly the simplest case $\langle m, n\rangle=\langle 4,2\rangle$. It is easy to confirm that whenever $E \in \Phi(4,2)=\Omega(4,2)$ then $\left|E^{\wedge}\right|=3$, and $\mathcal{S}(E)=\mathcal{S}(2 ; E)$ is a uniformly deep 3 -membered family of depth 2.

The most accessible cases yet to be studied are $\langle m, n\rangle \in\{(5,2\rangle,\langle 6,3\rangle,\langle 6,4\rangle\}$.

3. Proof of Theorem 1

Henceforth $F=\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}\}$ is an arbitrary fat 5 -membered subset of $\mathbf{R}^{\mathbf{3}}$. So F is obese by Theorem 11. Therefore $\left|F^{\wedge}\right|=\binom{5}{2}\binom{5-2}{3}=10$. Since for each 2-membered $\{\mathbf{x}, \mathbf{y}\} \subseteq F$ the set $F \backslash\{\mathbf{x}, \mathbf{y}\}$ is 3 -membered, we can without ambiguity write $\mathbf{x y}^{*}$ to mean the unique intersection point $x y$ ${ }^{F \backslash\{x, y\}}$ lying both on the line $x y$ and also on the plane $\Pi(F \backslash\{x, y\})$. Now, by Theorem 7 we have that $x^{* *} \notin F$. Also immediately by Theorem 7 we have

Lemma 16. For $\{x, y\}$ and $\{\mathrm{z}, \mathrm{w}\}$ any pair of 2 -membered subsets of F the following three assertions are equivalent:
(1) $\{\mathbf{x}, \mathbf{y}\}=\{\mathbf{z}, \mathbf{w}\} ;$
(2) $x y^{*} \in \mathbf{z w}$;
(3) $x y^{*}=z w^{*}$.

Lemma 17. Whenever $\{\mathbf{v}, \mathbf{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}=\{\mathbf{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ then $\mathrm{x} \in \mathrm{vw*} \mathrm{yz}^{*}$.
Proof: Without loss of generality let $\mathbf{v}=\mathbf{a}, \mathbf{w}=\mathbf{b}, \mathbf{x}=\mathbf{c}, \mathbf{y}=\mathbf{d}$, and $\mathbf{z}=\mathbf{e}$; now show that $c \in \mathbf{a b}^{*} d \mathbf{e}^{*}$. By 6.2 we have that $\mathbf{a b}^{*} \in \mathbf{c d e}$ and that $\mathrm{de}^{*} \in \mathbf{a b c}$. But also $\mathbf{a b}^{*} \in \mathbf{a b} \subseteq \mathbf{a b c}$ and $\mathbf{d e}^{*} \in \operatorname{de} \subseteq \mathbf{c d e}$. Clearly $\mathbf{c} \in \mathbf{a b c} \cap \mathbf{c d e}$. So now $\left\{\mathbf{a b}^{*}, \mathbf{d e}{ }^{*}, \mathbf{c}\right\} \subseteq \mathbf{a b c} \cap \mathbf{c d e}$. By 6.1 we have that $\mathbf{a b c d}=\mathbf{R}^{3}$, and by Corollary 5 we have that abc and cde are planes. Therefore abc \cap cde is a line. By Theorems 7 and 11 the set $\left\{\mathbf{a b}^{*}, \mathrm{de}^{*}, \mathrm{c}\right\}$ has three distinct elements. So $\mathbf{a b}^{*} \mathrm{de}^{*}$ is a line, and $c \in \mathbf{a b}^{*} \mathrm{de}^{*}$.

Although our identification of the families $\mathcal{S}(k ; F)$ is geometric in its conception, it will be convenient to organise this work graph theoretically. Furthermore, our subsequent arguments establishing the uniform depth of the $\mathcal{S}(k ; F)$ depend basically upon graph theory, and moreover will require a subtle departure from some of the standard terminology codified in [1].

By a graph we mean an ordered pair $\mathcal{G}=\langle A, B\rangle$, where A is a set and where B is a family of 2 -membered subsets of A; the elements in A are called vertices of \mathcal{G}, and the elements in B are called edges of \mathcal{G}. The expression $\mathcal{V}(\mathcal{G})$ denotes the set of all vertices of \mathcal{G}, and is called the vertex set of \mathcal{G}; the expression $\mathcal{E}(\mathcal{G})$ denotes the set of all edges of \mathcal{G}, and is called the edge set of \mathcal{G}. Thus $\mathcal{G}=\langle\mathcal{V}(\mathcal{G}), \mathcal{E}(\mathcal{G})\rangle$ whenever \mathcal{G} is a graph. Finally, a graph \mathcal{H} is said to be a subgraph of \mathcal{G} if and only if both $\mathcal{V}(\mathcal{H}) \subseteq \mathcal{V}(\mathcal{G})$ and $\mathcal{E}(\mathcal{H}) \subseteq \mathcal{E}(\mathcal{G})$. In the present paper, whenever \mathcal{H} a subgraph of \mathcal{G} then in fact $\mathcal{V}(\mathcal{H})=\mathcal{V}(\mathcal{G})$.

For graphs \mathcal{G} and \mathcal{H}, a bijection f from $\mathcal{V}(\mathcal{G})$ onto $\mathcal{V}(\mathcal{H})$ is a graph isomorphism if and only if $\mathcal{E}(\mathcal{H})=\{\{f(\mathbf{x}), f(\mathbf{y})\} \mid\{\mathbf{x}, \mathbf{y}\} \in \mathcal{E}(\mathcal{G})\}$. The expression Graphs($\mathcal{G})$ denotes the family of all graphs \mathcal{H} for which $\mathcal{V}(\mathcal{H})=\mathcal{V}(\mathcal{G})$. The expression Type (\mathcal{G}) denotes the subfamily of all $\mathcal{H} \in \operatorname{Graphs}(\mathcal{G})$ such that \mathcal{H} is isomorphic to \mathcal{G}. Finally, the expression Edgesets (\mathcal{G}) denotes $\{\mathcal{E}(\mathcal{H}) \mid \mathcal{H} \in \operatorname{Type}(\mathcal{G})\}$.

It will be illuminating to associate with each subset of F^{\wedge} a corresponding graph. Thus, recalling that each element in F^{\wedge} lies on exactly one line $x y$ with $\{x, y\}$ a 2-membered subset of F, we see that each k-membered subset $K=\left\{x_{1} y_{1}^{*}, \ldots, x_{k} y_{k}^{*}\right\}$ of F^{\wedge} is represented by exactly one k-edged graph $\mathcal{G}(K)$ on the vertex set F; the edge set of this graph is just $\mathcal{E}(\mathcal{G}(K))=\left\{\left\{\mathbf{x}_{1}, \mathbf{y}_{1}\right\}, \ldots,\left\{\mathbf{x}_{k}, \mathbf{y}_{k}\right\}\right\}$. It turns out that when $k=4$ then whether or not $\Pi(K)$ is a plane is decided by the isomorphism type of $\mathcal{G}(K)$.

Having classified each 4-membered subset X of F^{\wedge} according to the isomorphism type of its associated graph $\mathcal{G}(X)$, we will have for each 3 -membered subset Y of F^{\wedge}
that $Y \in \mathcal{S}(3 ; F)$ if and only if the 3-edged graph $\mathcal{G}(Y)$ is the subgraph of no 4-edged graph $\mathcal{G}(X)$ for which $X \in \mathcal{S}(4 ; F)$.

There are exactly 6 isomorphism types of 4-edged graphs on a 5 -membered vertex set; these are displayed for future reference in Figure 1 below where they bear the Roman-numeral labels I to VI. There are exactly 4 isomorphism types of 3-edged graphs on a 5-membered vertex set; these are labelled VII to X in Figure 1.

Figure 1

Theorem 18. Let $\{x, y\},\{z, w\}$ and $\{u, v\}$ be any three distinct 2 -membered subsets of F. Then $x^{*} \mathbf{z w}^{*} \mathbf{u v}^{*}$ is a plane.

Proof: There are four cases to consider, corresponding to graph types VII to X in Figure 1.

Case 1. The situation represented by graph-type X. Without loss of generality we specify that $\mathbf{x}=\mathbf{z}=\mathbf{u}=\mathbf{a}$, that $\mathbf{y}=\mathbf{b}$, that $\mathbf{w}=\mathbf{c}$ and that $\mathbf{v}=\mathbf{d}$.

Now assume that $a^{*} b^{*} a c^{*} a d^{*}$ is a line. Then $a^{*} \mathbf{a c}^{*} a d^{*} a$ is a plane. But $b \in a^{*} \mathbf{a} \subseteq \mathbf{a b}^{*} \mathbf{a c}{ }^{*} \mathbf{a d}^{*} \mathbf{a}$. Similarly we see that \mathbf{c} and d are elements in $\mathbf{a b}^{*} \mathbf{a c}^{*} \mathbf{a d}{ }^{*} \mathbf{a}$. Thus, abcd $\subseteq \mathbf{a b}^{*} \mathbf{a c}{ }^{*} \mathbf{a d *} \mathbf{a}$. But $\mathbf{a b c d}=\mathbf{R}^{3}$. Therefore, $\mathbf{a b}^{*} \mathbf{a c}{ }^{*} \mathbf{a d}{ }^{*} \mathbf{a}=\mathbf{R}^{3}$, a contradiction. We infer that $\mathbf{a b}^{*} \mathbf{a c}^{*} \mathrm{ad}^{*}$ is not a line; instead, $\mathrm{xy}^{*} \mathrm{zw}^{*} \mathrm{uv}^{*}=\mathbf{a b}^{*} \mathrm{ac}^{*} \mathrm{ad}^{*}$ is a plane.

Case 2. The situation represented by graph-type IX. Without loss of generality we specify that $x=a$, that $y=z=b$, that $w=u=c$, and that $v=d$.

Assume that $a b^{*} b c^{*} c d^{*}$ is a line. Then $a^{*} b^{*} c^{*} d^{*} a$ is a plane. Arguing as in Case 1 we have that $b \in a b^{*} b c^{*} c d^{*} a$ and hence that $c \in a b^{*} b c^{*} c d^{*} a$ whereupon also $\mathbf{d} \in \mathbf{a b}^{*} \mathbf{b c} \mathbf{c}^{*} \mathbf{c d}^{*} \mathbf{a}$. It follows that $\mathbf{R}^{\mathbf{3}}=\mathbf{a b c d} \subseteq \mathbf{a b}^{*} \mathbf{b} \mathbf{c}^{*} \mathbf{c d}^{*} \mathbf{a}$, again a contradiction. So we conclude that $x y^{*} z w^{*} u v^{*}=a b^{*} b c^{*} c d^{*}$ is not a line, but is instead a plane.

Case 3. The situation represented by graph-type VIII. Without loss of generality we specify that $\mathbf{x}=\mathbf{z}=\mathbf{a}$, that $\mathbf{y}=\mathbf{b}$, that $\mathbf{w}=\mathbf{c}$, that $\mathbf{u}=\mathbf{d}$, and that $\mathbf{v}=$ e. By Lemma 17 we have that both $a b^{*} d e^{*} c$ and $a c^{*} d e^{*} b$ are lines. Assume that $\mathbf{a b} \mathbf{b}^{*} \mathbf{a c}^{*} \mathbf{d e}^{*}$ is a line. Then Lemma 17 implies that $\mathbf{a c}{ }^{*} \in \mathbf{a b}^{*} \mathbf{a c} \mathbf{c}^{*} \mathbf{d e}^{*}=$ $\mathbf{a b}^{*} \mathrm{de}^{*} \mathbf{a c *} \mathbf{d e}^{*}=\mathbf{a b}^{*} \mathrm{de}^{*} \mathbf{c a c}{ }^{*} \mathrm{de}^{*} \mathbf{b}=\mathrm{bc}$ contrary to Lemma 16. Therefore $\mathbf{a b}^{*} \mathrm{ac}^{*} \mathrm{de}^{*}$ is not a line; instead, it is a plane.

Case 4. The situation represented by graph-type VII. Without loss of generality we specify that $\mathbf{x}=\mathbf{v}=\mathbf{a}$, that $\mathbf{y}=\mathbf{z}=\mathbf{b}$ and that $\mathbf{w}=\mathbf{u}=\mathbf{c}$. By. definition de ${ }^{*} \in \mathbf{a b c}$. However de* $\notin \mathbf{a b} \cup b c \cup a c$ by Theorem 7 .

Now assume that $\mathbf{a b}^{*} \mathbf{b} \mathbf{c}^{*} \mathbf{c a *}$ is a line. By Lemma 17 we have that $\mathbf{a} \in \mathbf{b c}^{*} \mathbf{d e}^{*}$, that $\mathbf{b} \in \mathbf{a c}^{*} \mathbf{d e} \mathbf{e}^{*}$, and that $\mathbf{c} \in \mathbf{a b}^{*} \mathbf{d e}^{*}$. Therefore if de^{*} were an element in the line $\mathbf{a b}^{*} \mathbf{b c *} \mathbf{c a}^{*}$ then the points \mathbf{a}, \mathbf{b}, and \mathbf{c} would be collinear, which they are not. It follows that de^{*} does not lie on the line $\mathrm{ab}^{*} \mathrm{bc}^{*} \mathrm{ca}^{*}$.

Without loss of generality we specify that $\mathbf{b c *}$ is between $\mathbf{a b}^{*}$ and $\mathbf{c a}^{*}$. It readily follows that exactly one of the following two equivalent situations occurs:
(i) b is between $a c^{*}$ and $\mathbf{d e}^{*}$, but \mathbf{c} is not between $\mathbf{a b}^{*}$ and de^{*}.
(ii) \mathbf{c} is between $\mathbf{a b}{ }^{*}$ and $d e^{*}$, but b is not between $a c^{*}$ and $d e^{*}$.

Again without loss of generality we can suppose that the situation (i) actually obtains, and we refer the reader to Figure 2 for the argument which follows.

Figure 2
Now, $\mathbf{a} \in \mathbf{a b} \mathbf{b} \mathbf{b}$, and by Lemma 17 also $\mathbf{a} \in \operatorname{de}^{*} \mathbf{b} \mathbf{c}^{*}$. So $\mathbf{a} \in \mathbf{a b}^{*} \mathbf{b} \cap \mathrm{de}^{*} \mathbf{b} \mathbf{c}^{*}$, placing a inside the triangle $\triangle\left(a^{*}, a c^{*}, d e^{*}\right)$. But then c, which is similarly seen to be the only element in $\mathbf{a c}^{*} \mathbf{a} \cap \mathbf{a b}^{*} \mathbf{d e} \mathbf{e}^{*}$, would have to lie between ab^{*} and de^{*}. This is a contradiction. So $\mathbf{x y}^{*} \mathbf{z w}^{*} \mathbf{u} \mathbf{v}^{*}=\mathbf{a b}^{*} \mathbf{b c} \mathbf{c}^{*} \mathbf{c a}{ }^{*}$ is a plane.

In each of the four cases considered above, we have that $\mathrm{xy}^{*} \mathrm{zw}^{*} \mathrm{uv}^{*}$ is a plane. $]$
A useful rephrasing of Theorem 18 is that no three distinct elements in F^{\wedge} are collinear.

Our next task is to characterise the families $\mathcal{S}(k ; F)$. To this end, we shall examine the $\binom{10}{4}=210$ distinct 4 -membered subsets X of the 10 -membered set F^{\wedge}, and then we shall examine the $\binom{10}{3}=120$ distinct 3 -membered subsets Y of F^{\wedge}. For many of the X it happens that $\Pi(X)$ is a plane while for others $\Pi(X)=R^{3}$. In those cases where $\Pi(X)$ is a plane we shall see that $X \in \mathcal{S}(4 ; F)$ and hence that $\mathcal{S}(k ; F)=\emptyset$ for all integers $k>4$. Henceforth X denotes a 4 -membered subset of F^{\wedge}. The next eleven results, Lemma 19 to Corollary 29, refer to Figure 1 above.

Lemma 19. When the graph $\mathcal{G}(X)$ is of isomorphism type I then $\Pi(X)$ is a plane.

Proof: We may suppose that $X=\left\{a^{*}, b^{*}, c^{*}, d a^{*}\right\}$. By Lemma 17 then $\mathbf{a b}^{*} \mathbf{c d}{ }^{*} \mathbf{e}$ and $\mathbf{b c}^{*} \mathbf{d a}^{*} \mathbf{e}$ are lines. They are obviously subsets of $\Pi(X)$, and they share a common point e. Moreover $\mathbf{a b}^{*} \mathbf{c d} \mathbf{d}^{*} \neq \mathbf{b c}^{*} \mathbf{d a}^{*} \mathbf{e}$ by Theorem 18. Therefore $\Pi(X)=$ $\mathbf{a b}^{*} \mathbf{c d}^{*} \mathbf{b c}^{*} \mathbf{d a}^{*}=\mathbf{a b} \mathbf{b}^{*} \mathbf{c d}^{*} \mathbf{e b c} \mathbf{c}^{*} \mathbf{d a}^{*} \mathbf{e}$ is a plane.

Lemma 20. When the graph $\mathcal{G}(X)$ is of isomorphism type $I I$ then $\Pi(X)$ is a plane.

Proof: We may suppose that $X=\left\{\mathbf{a b}^{*}, \mathbf{b c}^{*}, \mathbf{c a}^{*}, \mathbf{d e}^{*}\right\}$. Surely $\mathbf{a b}^{*} \mathbf{b c}^{*} \mathbf{c a}^{*} \subseteq$ abc. But Theorem 18 implies that $\mathbf{a b}^{*} \mathbf{b} \mathbf{c}^{*} \mathbf{c a}^{*}$ is a plane. Furthermore $\mathrm{de}^{*} \in \mathbf{a b c}$. So $\Pi(X)=$ ab* $^{*} \mathbf{b c}^{*} \mathbf{c a}^{*}{ }^{\mathbf{d e}}{ }^{*}=$ abcde $^{*}=\mathbf{a b c}$.

Lemma 21. When the graph $\mathcal{G}(X)$ is of isomorphism type III then $\Pi(X)=\mathbf{R}^{\mathbf{3}}$.
Proof: We may suppose that $X=\left\{\mathbf{a b}^{*}, \mathbf{b c}^{*}, \mathbf{c a}^{*}, \mathbf{d a}^{*}\right\}$. As in the proof of Lemma 20 we see that $\mathbf{a b}^{*} \mathbf{b c} \mathbf{c}^{*} \mathbf{c a}^{*}=\mathbf{a b c}$. Since we have by Theorem 7 that $\mathrm{da}^{*} \neq \mathbf{a}$, it follows that $d \in d a=d a^{*} a \subseteq a^{*} b^{*} c^{*} \mathbf{c a}^{*} \mathbf{d a}^{*}$. Thus abcd $\subseteq \mathbf{a b}^{*} \mathbf{b c}^{*} \mathbf{a c}^{*} \mathbf{d a}^{*}$, whence $\mathbf{a b}^{*} \mathbf{b c} \mathbf{c}^{*} \mathbf{a c}^{*} \mathbf{d a}^{*}=\mathbf{R}^{\mathbf{3}}$.

LEMMA 22. When the graph $\mathcal{G}(X)$ is of isomorphism type IV then $\Pi(X)=\mathbf{R}^{3}$.
Proof: We may suppose that $X=\left\{\mathbf{a b}^{*}, \mathbf{b c}^{*}, \mathbf{c d}^{*}, \mathbf{d e}^{*}\right\}$. Obviously $\left\{\mathbf{a b}^{*}\right.$, cd$\left.^{*}, \mathrm{de}^{*}\right\} \subseteq$ cde. It follows by Theorem 18 that $\mathbf{a b}^{*} \mathbf{c d}^{*} \mathrm{de}^{*}=\mathbf{c d e}$. But then, as in the proof of Lemma 21, we see that $b \in b^{*} c \subseteq c d e b c^{*}=a^{*} \mathbf{c d}^{*} \mathbf{d e}^{*} b c^{*}$. Thus bcde $\subseteq \mathbf{a b}^{*} \mathbf{c d}^{*} \mathbf{d e}^{*} \mathbf{b} \mathbf{c}^{*}$, whence $\mathbf{a b}^{*} \mathbf{b c}^{*} \mathbf{c d}^{*} \mathbf{d e}^{*}=\mathbf{R}^{\mathbf{s}}$.

Lemma 23. When the graph $\mathcal{G}(X)$ is of isomorphism type V then $\Pi(X)=\mathrm{R}^{3}$.
Proof: We may suppose that $X=\left\{\mathbf{a b}^{*}, \mathbf{b c}^{*}, \mathbf{c d}^{*}, \mathbf{c e}^{*}\right\}$. Since $\left\{a^{*}\right.$, cd* *, ce* $\left.^{*}\right\} \subseteq$ cde we have as above that $\mathbf{a b}^{*} \mathrm{~cd}^{*} \mathrm{ce}^{*}=\mathbf{c d e}$ and that $\mathrm{b} \in \mathrm{bc}^{*} \mathbf{c} \subseteq$ $a^{*} b^{*} c^{*} c d^{*} e^{*}$. The lemma follows.

Lemma 24. When the graph $\mathcal{G}(X)$ is of isomorphism type VI then $\Pi(X)=\mathbf{R}^{3}$.
Proof: We may suppose that $X=\left\{a b^{*}, a c^{*}, a d^{*}, a e^{*}\right\}$. Indeed, since incidence properties and parallelism are preserved under those transformations of R^{3} which are the composition of translations, shears, dilations, rotations and reflections, we may suppose for convenience that $\mathbf{a}=\langle 0,0,0\rangle$, that $\mathbf{b}=\langle 1,0,0\rangle$, that $\mathbf{c}=\langle 0,1,0\rangle$ and that $\mathbf{d}=\langle 0,0,1\rangle$. For each $\mathbf{x} \in\{b, c, d, e\}$ we write \mathbf{x}^{*} as an abbreviation for $a x^{*}$. Then, since points can also be treated as vectors, there exist real numbers β, γ, δ, and ε such that $\mathbf{b}^{*}=\beta \mathbf{b}=\langle\beta, 0,0\rangle$, such that $\mathbf{c}^{*}=\gamma \mathbf{c}=\langle 0, \gamma, 0\rangle$, such that $\mathbf{d}^{*}=\delta \mathbf{d}=\langle 0,0, \delta\rangle$, and such that $\mathrm{e}^{*}=\varepsilon \mathrm{e}=\varepsilon\left(e_{1}, e_{2}, e_{3}\right)$. By Theorem 7 we have that $\{\beta, \gamma, \delta, \varepsilon\} \cap\{0,1\}=\emptyset$ since the set F is fat. Moreover, the fatness of F implies that e lies in no plane whose equation is $\xi x+\eta y+\zeta z=\lambda$ for which $\langle 0,0,0, \lambda\rangle \neq\langle\xi, \eta, \zeta, \lambda\rangle \in 2 \times 2 \times 2 \times 2$ where as usual $2:=\{0,1\}$. Thus our constants obey the following conditions:
24.1. $\left\{\beta, \gamma, \delta, \varepsilon, e_{i}, e_{i}+e_{j}, e_{1}+e_{2}+e_{3}\right\} \cap\{0,1\}=0$ where $\{i, j\}$ is a 2-membered subset of $\{1,2,3\}$.

We define $E:=e_{1}+e_{2}+e_{3}$ and $D:=\left(1+e_{1}-E\right)\left(1+e_{2}-E\right)\left(1+e_{3}-E\right)$. Note that Conditions 24.1 imply that $E \neq 0 \neq D$.

It suffices to prove that $\mathbf{b}^{*} \mathbf{c}^{*} \mathbf{d}^{*} \mathbf{e}^{*}=\mathbf{R}^{\mathbf{3}}$. This condition is equivalent to the linear independence of the set $\left\{b^{*}-\mathbf{e}^{*}, \mathbf{c}^{*}-\mathbf{e}^{*}, \mathrm{~d}^{*}-\mathbf{e}^{*}\right\}$. We will first express $\varepsilon, \beta, \gamma$ and δ in terms of e_{1}, e_{2}, and e_{3}. Note that $\mathbf{e}^{*} \in \operatorname{bcd}$, and that the equation of the plane bed is $x+y+z=1$. It follows that $\varepsilon\left(e_{1}+e_{2}+e_{3}\right)=1$, whence $\varepsilon=1 / E$.

Next, we obtain a vector p normal to the plane ced by applying the ordinary cross product thus: $\mathbf{p}=(\mathbf{e}-\mathbf{c}) \times(\mathbf{e}-\mathbf{d})=\left\langle e_{1}, e_{2}-1, e_{3}\right\rangle \times\left\langle e_{1}, e_{2}, e_{3}-1\right\rangle=\left\langle 1-e_{2}-e_{3}, e_{1}, e_{1}\right\rangle$. Therefore, since $\langle\beta, 0,0\rangle=b^{*} \in \operatorname{ced}$, we have that the vector $b^{*}-e$ is perpendicular to p, and hence that $\left(b^{*}-\mathbf{e}\right) \cdot p=0$. By routine substitution and calculation we then infer that $\beta=e_{1} /\left(1-e_{2}-e_{3}\right)=e_{1} /\left(1+e_{1}-E\right)$. Similarly one can solve for γ and δ in terms of the e_{i}, and thus get that

$$
\begin{aligned}
\beta & =e_{1} /\left(1+e_{1}-E\right) \\
\gamma & =e_{2} /\left(1+e_{2}-E\right) \\
\delta & =e_{3} /\left(1+e_{3}-E\right)
\end{aligned}
$$

So we have that

$$
\begin{aligned}
\mathbf{b}^{*}-\mathbf{e}^{*} & =\left\langle\beta-\varepsilon e_{1},-\varepsilon e_{2},-\varepsilon e_{3}\right\rangle \\
& =\left\langle e_{1} /\left(1+e_{1}-E\right)-e_{1} / E,-e_{2} / E,-e_{3} / E\right\rangle \\
& =(1 / E)\left\langle e_{1}\left(E /\left(1+e_{1}-E\right)-1\right),-e_{2},-e_{3}\right\rangle .
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
& \mathbf{c}^{*}-\mathbf{e}^{*}=(1 / E)\left\langle-e_{1}, e_{2}\left(E /\left(1+e_{2}-E\right)-1\right),-e_{3}\right\rangle \text { and } \\
& \mathbf{d}^{*}-\mathbf{e}^{*}=(1 / E)\left\langle-e_{1},-e_{2}, e_{3}\left(E /\left(1+e_{3}-E\right)-1\right)\right\rangle .
\end{aligned}
$$

Now, the set $\left\{\mathbf{b}^{*}-\mathbf{e}^{*}, \mathbf{c}^{*}-\mathbf{e}^{*}, \mathbf{d}^{*}-\mathbf{e}^{*}\right\}$ is linearly independent if and only if the matrix M defined by

$$
\mathbf{M}:=E\left[\begin{array}{l}
\mathbf{b}^{*}-\mathbf{e}^{*} \\
\mathbf{c}^{*}-\mathbf{e}^{*} \\
\mathbf{d}^{*}-\mathbf{e}^{*}
\end{array}\right]
$$

is nonsingular. Of course then

$$
\mathbf{M}=\left[\begin{array}{ccc}
e_{1}\left(E /\left(1+e_{1}-E\right)-1\right) & -e_{2} & -e_{3} \\
-e_{1} & e_{2}\left(E /\left(1+e_{2}-E\right)-1\right) & -e_{3} \\
-e_{1} & -e_{2} & e_{3}\left(E /\left(1+e_{3}-E\right)-1\right)
\end{array}\right] .
$$

Now we multiply the three columns of M by $-1 / e_{1},-1 / e_{2}$, and $-1 / e_{3}$ respectively, to obtain a matrix \mathbf{N} that is singular if and only if \mathbf{M} is singular. Here,

$$
\mathbf{N}:=\left[\begin{array}{ccc}
1-E /\left(1+e_{1}-E\right) & 1 & 1 \\
1 & 1-E /\left(1+e_{2}-E\right) & 1 \\
1 & 1 & 1-E /\left(1+e_{3}-E\right)
\end{array}\right]
$$

It is "straightforward" to verify that $\operatorname{det}(N)=3 E^{2}(1-E) / D$. Since Conditions 24.1 imply also that $1-E \neq 0$, we have that \mathbf{N} is nonsingular. It finally follows that $a b^{*} a c^{*} a d^{*} a^{*}=R^{\mathbf{3}}$.

The following is a summary of Lemmas 19 to 24.
Theorem 25. If the graph $\mathcal{G}(X)$ is of isomorphism type I or II then $\Pi(X)$ is a plane, but if $\mathcal{G}(X)$ is of isomorphism type III or $I V$ or V or VI then $\Pi(X)=\mathbf{R}^{3}$.

Corollary 26. Let X be any 4-membered subset of F^{\wedge}. Then $X \in \mathcal{S}(4 ; F)$ if and only if the graph $\mathcal{G}(X)$ is of isomorphism type I or II.

Proof: It is immediate from Theorem 25 that $X \notin \mathcal{S}(F)$ when $\mathcal{G}(X)$ is not of type I or of type II. So, if $X \in \mathcal{S}(4 ; F)$ then $\mathcal{G}(X)$ is either of type I or of type II.

Note that every 5-edged graph of 5 vertices has a subgraph of at least one of the types: III, IV, V, VI. Therefore if Z is a 5 -membered subset of F^{\wedge} then $\Pi(Z)=\mathbf{R}^{3}$. So, if $\Pi(X)$ is a plane then $X \in \mathcal{S}(4 ; F)$. Thus, by Theorem 25 we have that $X \in \mathcal{S}(4 ; F)$ if $\mathcal{G}(X)$ is either of type I or of type II.

By the proof of Corollary 26, we also have
Corollary 27. $\mathcal{S}(k ; F)=\emptyset$ for every integer $k>4$.
Corollary 28. Let Y be any 3-membered subset of F^{\wedge}. Then $Y \in \mathcal{S}(3 ; F)$ if and only if the graph $\mathcal{G}(Y)$ is of isomorphism type X.

Proof: If the 3-edged graph $\mathcal{G}(Y)$ is of type VII or of type VIII then $\mathcal{G}(Y)$ is a subgraph of a graph of type II. And if $\mathcal{G}(Y)$ is of type IX then $\mathcal{G}(Y)$ is a subgraph
of a graph of type I. In each of these cases, therefore, Theorem 25 implies that Y is a proper subset of some $X \subseteq F^{\wedge}$ for which $\Pi(X)$ is a plane. That is, $Y \notin \mathcal{S}(F)$. So $Y \notin \mathcal{S}(3 ; F)$.

It is easy to see that if $\mathcal{G}(Y)$ is of type X then $\mathcal{G}(Y)$ is a subgraph neither of a type-I graph nor of a type-II graph. It follows by Theorem 25 that $\Pi(X)=\mathbf{R}^{3}$ for every 4-membered superset $X \subseteq F^{\wedge}$ of Y. Furthermore $\Pi(Y)$ is a plane by Theorem 18 , whence $Y \in \mathcal{S}(3 ; F)$.

Corollary 29. $|\mathcal{S}(3 ; F)|=20$ and $|\mathcal{S}(4 ; F)|=25$.
Proof: On the vertex set F there are exactly 20 distinct graphs of type X. Therefore Corollary 28 implies that $|\mathcal{S}(3 ; F)|=20$.

On the vertex set F there are exactly 15 distinct graphs of type I, and there are exactly 10 graphs of type II. Thus Theorem 25 implies that $|\mathcal{S}(4 ; F)|=15+10$.

Once it has been established that $\mathcal{S}(3 ; F)$ and $\mathcal{S}(4 ; F)$ are uniformly deep, the proof of Theorem 1 will be finished: Theorem 11 and Corollary 29, in conjunction with Proposition 8 and Theorem 2 both of [2], will imply that the depth of $\mathcal{S}(3 ; F)$ equals $3|\mathcal{S}(3 ; F)| /\left|F^{\wedge}\right|=60 / 10=6$, and similarly that the depth of $\mathcal{S}(4 ; F)$ equals 10 , as required in Theorem 1.

Our final task is to prove that $\mathcal{S}(3 ; F)$ and $\mathcal{S}(4 ; F)$ are uniformly deep.
For X a set the expression $\operatorname{Sym}(X)$ denotes the symmetric group on X; the elements in $\operatorname{Sym}(X)$ are the permutations of X. A subgroup G of $\operatorname{Sym}(X)$ is called transitive if and only if for every $\langle\mathbf{x}, \mathbf{y}\rangle \in X \times X$ there exists $g \in G$ such that $\mathbf{y}=g(\mathbf{x})$. A subgroup H of $\operatorname{Sym}(X)$ is said to preserve a given family \mathcal{F} of subsets of X if and only if $\mathcal{F}=\{h[Y] \mid Y \in \mathcal{F} \& h \in H\}$ where $h[Y]:=\{h(\mathbf{y}) \mid \mathbf{y} \in Y\}$. We omit proving here the following paraphrase of Theorem 6 in [2].

Lemma 30. For X a finite set, and for $k \leqslant|X|$ a positive integer, let \mathcal{F} be a family of k-membered subsets of X. If $\operatorname{Sym}(X)$ has a transitive subgroup which preserves \mathcal{F} then \mathcal{F} is uniformly deep.

For X a v-membered set the expression $[k ; X]$ will denote the family of all k membered subsets of X. For each $g \in \operatorname{Sym}(X)$ we define $k g:[k ; X] \rightarrow[k ; X]$ by ${ }_{k} g(Y)=g[Y]$ for all $Y \in[k ; X]$, and let ${ }_{k} \operatorname{Sym}(X)$ denote $\left\{{ }_{k} g \mid g \in \operatorname{Sym}(X)\right\}$. Note that ${ }_{k} \operatorname{Sym}(X)$ is a transitive subgroup of $\operatorname{Sym}([k ; X])$. Furthermore, ${ }_{2} \operatorname{Sym}(X)$ preserves the family Edgesets (\mathcal{G}) when $\mathcal{G}=\langle X, \mathcal{E}(\mathcal{G})\rangle$ is a graph. The following result is of independent interest since it provides a purely graph-theoretic method for producing uniformly deep families. It is an immediate consequence of Lemma 30 in conjunction with Theorem 2 of [2].

Theorem 31. Let \mathcal{G} be any graph on a v-membered vertex set X where v is a positive integer. Then the family Edgesets (\mathcal{G}) is uniformly deep and its depth is
$d=|\mathcal{E}(\mathcal{G})||\operatorname{Edgesets}(\mathcal{G})| /\binom{v}{2}$.
The proof of Theorem 1 is now complete.
Again let X be a finite, v-membered, set. An isomorphism from a graph $\mathcal{G}=\langle X, \mathcal{E}(\mathcal{G})\rangle$ onto \mathcal{G} itself is called an automorphism of \mathcal{G}. The set $\operatorname{Aut}(\mathcal{G})$ of all automorphisms of \mathcal{G} is a subgroup of $\operatorname{Sym}(X)$. We remark that $|\operatorname{Edgesets}(\mathcal{G})|=$ $|\operatorname{Type}(\mathcal{G})|=|\operatorname{Sym}(X)| /|\operatorname{Aut}(\mathcal{G})|=v!/|\operatorname{Aut}(\mathcal{G})|$, and hence by Theorem 31 that $d=2|\mathcal{E}(\mathcal{G})|(v-2)!/|\operatorname{Aut}(\mathcal{G})|$ where d is the depth of the family Edgesets (\mathcal{G}).

There is a straightforward generalisation of Theorem 31 to k-hypergraphs. By a k-hypergraph we mean an ordered pair $\mathcal{H}=\langle X, \mathcal{K}(\mathcal{H})\rangle$ where X is a vertex set $\mathcal{V}(\mathcal{H})$ but where $\mathcal{K}(\mathcal{H})$ is a family of k-membered subsets of X; that is, the elements in $\mathcal{K}(\mathcal{H})$ are the " k-edges" of \mathcal{H}.

4. Slimming down

One might prefer Open Question 15 to be answered eventually in the affirmative. That is, one might hope that each pair (m, n) of integers with $m \geqslant n+2 \geqslant 4$ determines a unique sequence $s_{n}, s_{n+1}, s_{n+2}, \ldots$ of nonnegative integers such that $|\mathcal{S}(n+j ; E)|=$ s_{n+j} for every nonnegative integer j and for every $E \in \Omega(m, n)$. One would then hope to characterise this sequence numerically.

However, even if the answer to Open Question 15 turned out to be "No!", one would still have a situation worthy of study. For, given a particular pair $\langle m, n\rangle$ there are obviously at most finitely many distinct such sequences s_{n}, s_{n+1}, \ldots. So the family of such sequences induces a natural and interesting finite partition of the (probably uncountable) family $\Omega(m, n)$. What would the geometric meaning of this partition be?

We close with the curiosity that for $\langle m, n\rangle=\langle 6,4\rangle$ the most plausible analogue of Theorem 18 is false.

Theorem 32. Let $E=\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}\} \in \Phi(6,4)$. Then $\mathbf{a b}^{*} \mathbf{c d}^{*} \mathbf{e f}^{*}$ is a line.
Proof: By Theorem 11 we have that E is obese, and hence that $\mathrm{xy}^{*}=\mathrm{zw}^{*}$ if and only if $\{x, y\}=\{z, w\}$ when $\{x, y, z, w\} \subseteq E$. Now note that $\left\{\mathbf{a b}^{*}, \mathbf{c d}^{*}\right.$, ef $\left.^{*}\right\} \subseteq$ abcd \cap abef \cap cdef. It follows that the j-plane $a^{*} \mathbf{c d}^{*} \mathrm{ef}^{*}$ is a subset of abcd \cap abef \cap cdef. Of course $1 \leqslant j \leqslant 2$. Since $c \notin$ abef, and since abef and abcd are 3-planes by Condition 6.1, we have that abcd \cap abef is an i-plane for some $i \leqslant 2$. Since $c^{*} \notin \mathbf{a b}$ by Theorem 7, we have that $\mathbf{c d ^ { * }} \mathbf{a b}$ is a 2 -plane. Therefore $\mathbf{c d * a b}=$ abcd \cap abef since $\left\{\mathbf{a}, \mathbf{b}, \mathbf{c d}^{*}\right\} \subseteq$ abcd \cap abef. But a \notin cdef while $a \in \operatorname{cd}^{*} \mathbf{a b}$. So abcd \cap abef $\cap c d e f=c d^{*} a b \cap c d e f$ is a 1-plane; that is, $a b^{*}{ }^{*} d^{*} e^{*}$ is a subset of a line. Therefore $j=1$.

References

[1] Frank Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1972).
[2] D.M. Silberger, 'Uniformly deep families of \boldsymbol{k}-membered subsets of n ', J. Combin. Theory Ser. A 22 (1977), 31-37.

Professors Halpern, Hobby and Silberger
State University of New York
New Paltz, NY 12561
United States of America

Professor Silberger
Universidade Federal de Santa Catarina
88.000 - Florianópolis - SC

Brasil

[^0]: Received 21 August 1989
 We have benefitted in the present endeavour from conversation with our colleagues, David M. Clark, who helped us to focus the Definitions 6 and 8 , and who suggested a relaxation of an unnecessary restriction on our notion of a uniformly deep family; Stanley Hayes, who called our attention to the existence of analogous work in finite geometries; and Krishnamurthi Ravishankar, who showed us a preliminary version of our proof of Lemma 3. We are however especially indebted to an enterprising undergraduate engineering student, Russell Polo: it was the suggestive data, provided by a computer program he wrote in response to a question posed in his calculus class, which launched the expedition whose booty our paper displays.

