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MINIMAL MODELS AND ABUNDANCE FOR POSITIVE
CHARACTERISTIC LOG SURFACES

HIROMU TANAKA

Abstract. We discuss the birational geometry of singular surfaces in positive
characteristic. More precisely, we establish the minimal model program and
the abundance theorem for Q-factorial surfaces and for log canonical surfaces.
Moreover, in the case where the base field is the algebraic closure of a finite
field, we obtain the same results under much weaker assumptions.
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81. Introduction

In this paper, we consider the minimal model theory for surfaces with
some singularities in positive characteristic. If the singularities are Q-factorial
or log canonical, then we establish the minimal model program and the
abundance theorem. In the case where the base field is the algebraic closure
of a finite field, we obtain the same result under much weaker assumptions.
More precisely, we prove the following two theorems in this paper.

THEOREM 1.1 (Minimal model program). Let X be a projective normal
surface X, which is defined over an algebraically closed field k of positive
characteristic. Let A be an R-divisor on X, and let A=73",;5;A; be its
prime decomposition. Assume that one of the following conditions holds:
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2 H. TANAKA

(QF) X is_@—factom’al, and 0<6; <1 forall je J;
(FP) k=TF,, and 0<6; for all j€ J;
(LC) (X,A) is a log canonical surface.

Then, there exists a sequence of birational morphisms

(X,A) = (X0, A0) 3 (X1, A0 B .25 (X, A,) = (XT, A1),

where (pi—1)«(Ai—1) =: A, with the following properties.

(1) Each X; is a projective normal surface.

(2) Each (X;,A;) satisfies (QF), (FP), or (LC) according to the above
assumption.

(3) For each i, Ex(¢;) =: C; is a proper irreducible curve such that

(Kx, +A;)-C; <0

and such that C; generates an extremal ray.

(4) The pair (XT,AT) satisfies one of the following conditions:

(a) Kyt + Al is nef;

(b) there is a surjective morphism p: X' — Z to a smooth projective
curve Z such that u.Oxi = Oz, —(Kxt + A') is pu-ample, and
p(X1/2)=1;

(¢) —(Kx++ AT) is ample, and p(XT) =1.

In case (a), we say that (XT,AT) is a minimal model of (X,A).
In cases (b) and (c), we say that (X, AT) is a Mori fiber space.

THEOREM 1.2 (Abundance theorem). Let X be a projective normal sur-
face X, which is defined over an algebraically closed field k of positive char-
acteristic. Let A be an R-divisor on X, and let A = ZjejéjAj be its prime
decomposition. Assume that one of the following conditions holds:

(QF) X is Q-factorial, and 0 < 6; <1 for all j € J;
(FP) k=TF,, and 0<§; for all j € J;

(LC) (X,A) is a log canonical surface.

If Kx + A is nef, then Kx + A is semiample.

Note that, if X is a normal surface over Fp, then X is Q-factorial (see
Theorem 4.5). In particular, Kx + A is an R-Cartier R-divisor.

In the case where the characteristic of the base field is 0, the above
two theorems are proved by Fujino [F2]. His proofs heavily depend on the
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Kodaira vanishing theorem and its generalizations. Unfortunately, in posi-
tive characteristic, counterexamples to the Kodaira vanishing theorem exist
(see [R]). To prove the above two theorems, we use a result established in
[Kel].

In characteristic 0, the base-point-free theorem follows from the Kawa-
mata—Viehweg vanishing theorem, which is a generalization of the Kodaira
vanishing theorem (see [KoM, Theorem 3.3]). Although we cannot use the
Kodaira vanishing theorem, we can show the following base-point-free the-
orem.

THEOREM 1.3 (Base-point-free theorem). Let X be a projective normal
Q-factorial surface X, which is defined over an algebraically closed field k
of positive characteristic. Let A be a Q-divisor. Let A =3, ;6;A; be its
prime decomposition, and assume that 0 <6; <1 for all j€ J. Let D be a
nef Cartier divisor satisfying one of the following properties:

(1) D— (Kx +A) is nef and big;
(2) D—(Kx+A) is semiample.

Then D is semiample.

Although counterexamples to the Kodaira vanishing theorem exist, we
can use the relative Kawamata—Viehweg vanishing theorem for birational
morphisms of surfaces [[Kol, Section 2.2]. Then, we obtain the following
result on rational singularities.

THEOREM 1.4. Let X be a projective normal surface X, which is defined
over an algebraically closed field k of positive characteristic. Let A be an
R-divisor on X. Let A = ZjEJ 0;A; be its prime decomposition, and assume
that 0 <0; <1 for all j € J. Assume that X has at worst rational singular-
ities. Then, the following assertions hold.

(1) The surface X is Q-factorial. In particular, by Theorem 1.1, we can
run a (Kx 4+ A)-minimal model program:
¢ b
(X,A) = (Xo,00) 3 (X1,A1) 5 --- 51 (X, Ay),
where (Qsifl)*(Aifl) = A,L
(2) Each X; has at worst rational singularities.

1.1. Overview of related literature
We summarize some literature related to this paper with respect to the
surface theory, the minimal model theory, and Keel’s result (Theorem 2.2).
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1.1.1. Surface theory. The Italian school established the classification
theory for smooth algebraic surfaces, which was generalized by Kodaira,
Shafarevich’s seminar, and Bombieri and Mumford ([BM1], [BM2], [Mu2]).
Theories of log surfaces and normal surfaces have been developed by Iitaka,
Kawamata, Miyanishi, Sakai, and many others (see, e.g., [S], [Mi]). Fujita
[Fu] established the abundance theorem for pairs (X,A) where X is a
smooth projective surface and A is a Q-boundary, that is, where A is a
Q-divisor such that, for the prime decomposition A = Zje 70;A;, all the
coeflicients d; satisfy 0 <J; < 1. In characteristic 0, Fujino ['2] generalized
this result. More precisely, [F'2] shows that the abundance theorem holds
for pairs (X,A) where X is a projective normal Q-factorial surface and A
is an R-boundary. In this paper, we generalize this result to positive char-
acteristic.

1.1.2. Minimal model theory. In characteristic 0, the minimal model the-
ory has been developed by Kawamata, Kollar, Mori, Shokurov, and many
others (see, e.g., [KoM], [KMM]). To establish fundamental theorems in
minimal model theory, we use the Kodaira vanishing theorem and its gen-
eralizations.

However, in positive characteristic, counterexamples to the Kodaira van-
ishing theorem exist even in the case of dimension 2 (see [R]). In [T], the
author established a weak Kodaira vanishing theorem for positive charac-
teristic surfaces and established a base-point-free theorem for klt surfaces.
Kollar [Kol] established the contraction theorem for smooth 3-folds in pos-
itive characteristic. Kawamata [I] established the minimal model program
for semistable 3-folds in positive characteristic.

Fujino [F2] established the minimal model theory for Q-factorial surfaces
and log canonical surfaces in characteristic 0. In the current article, we
generalize this result to positive characteristic.

1.1.8. Keel’s result. Keel’s result (Theorem 2.2) is a key theorem in this
paper. Thus, we summarize here some literature related to Keel’s result.
Theorem 2.2 is the surface version of [Kel, Theorem 0.2]. Keel’s proof
depends on the Frobenius maps and the theory of the algebraic spaces.
Note that Keel’s result (Theorem 2.2) holds only in positive characteristic
(see [Kel, Section 3]). See [CMM] and [FT] for alternative proofs of [Kel,
Theorem 0.2] that do not depend on the theory of algebraic spaces. In [F'T],
Fujino and the author consider only the case of surfaces.
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The article [Kel] also shows the base-point-free theorem for Q-factorial
3-folds over Fp with nonnegative Kodaira dimension. Over Fp, we can often
obtain some strong results. The reason is owing to Corollary 2.4 (see also
[A], [Ke2], [M], [To]).

1.2. Overview of contents

Section 2 summarizes the notation and two known results: Keel’s result
(Theorem 2.2) and Fact 2.3, which play crucial roles in this paper.

In Section 3, we prove the case (QF) of Theorems 1.1 and 1.2. To show the
case (QF) of Theorem 1.1, we establish the cone theorem and the contraction
theorem. The cone theorem follows from Mori’s bend-and-break lemma and
the minimal resolution. We consider the bend-and-break method for proper
normal surfaces in Section 3.1. The contraction theorem (Theorem 3.21) is
obtained by Keel’s result (Theorem 2.2).

To show the case (QF) of Theorem 1.2, we divide the argument into two
cases: k #F, and k =F,. We treat the case k = F, in Section 4, so we
prove Theorem 1.2 only for the case k # Fp. By a standard argument, we
may assume that A is a Q-divisor (Section 3.7). First, we prove that  :=
k(X,Kx + A) >0 (Theorem 3.30). This follows from the same argument as
in [F'2, Theorem 5.1]. Second, we consider the three cases k =0, k =1, and
k=2.If k=1, then the assertion follows from a more general known result
(Proposition 3.23). By using Keel’s result and the contraction theorem, we
can prove the case of kK =2 (Proposition 3.29). In the case where k=0
(Theorem 3.34), we use the arguments in [I'2] and [Fu], which depend on
the classification of smooth surfaces.

In Section 4, we prove the case (FP) of Theorems 1.1 and 1.2. The case
(FP) of Theorem 1.1 follows from Keel’s result (Theorem 2.2) and Corol-
lary 2.4. Proof of the case (FP) of Theorem 1.2 is almost the same as in [M,
Theorem 2]. In Section 4, we also show that normal surfaces over F, are
Q-factorial (Section 4.2).

In Section 5, we consider the case (LC) of Theorems 1.1 and 1.2. To
show the case (LC) of Theorem 1.1, we describe the log canonical surface
singularities by using results obtained in Section 3. This is discussed in
Section 5.1. The case (LC) of Theorem 1.2 follows from a known result (see
[Fu, (1.4) Main Theorem]).

In Section 6, we generalize the results in Sections 3—5 to relative situa-
tions. The relative version of Theorems 1.1 and 1.2 are Theorem 6.5 and
Corollary 6.10, respectively.
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In the Appendices, we prove Theorems 1.3 and 1.4. Note that, in char-
acteristic 0, the base-point-free theorem holds for log canonical varieties
(see [F'1, Theorem 13.1]). Its proof heavily depends on the Kodaira van-
ishing theorem and its generalizations. Although, in positive characteristic,
counterexamples to the Kodaira vanishing theorem exist (see [R]), we can
establish the base-point-free theorem for surfaces (Theorem 1.3). Our proof
depends on Keel’s result (Theorem 2.2), the classification of smooth sur-
faces, and the Riemann—Roch theorem.

Theorem 1.4 follows from the relative Kawamata—Viehweg vanishing the-
orem for birational morphisms of surfaces.

§82. Notation and known results

2.1. Notation

2.1.1. Notation. We will freely use the notation and terminology in
[KoM]. We will not distinguish the notation for line bundles, invertible
sheaves, and Cartier divisors. For example, we will write L + M for line
bundles L and M.

Throughout this article, we work over an algebraically closed field k,
whose characteristic char k =: p is positive unless otherwise mentioned.

In this paper, a variety means an integral scheme which is separated and
of finite type over k. A curve or a surface means a variety whose dimension
is 1 or 2, respectively.

Let D be an R-divisor, and let D = ZjedeDj be its prime decomposi-
tion. For a real number a, we define D > a by d; > a for all j € J. We define
D <a, D>a,and D < a in the same way.

We say that D is an R-boundary (resp., a Q-boundary) if D is an R-divisor
(resp., a Q-divisor) and if 0 < D < 1.

DEFINITION 2.1 (Semiample R-divisors). Let 7 : X — S be a proper mor-
phism between varieties. Let D be an R-Cartier R-divisor. We say that D

D= Y dD;,

1<i<N

is m-semiample if

where d; € R>¢ and D; is a m-semiample Cartier divisor for every 7 (for more
details, see [F'1, Section 4]).

2.2. Known results
2.2.1. Keel’s result. In positive characteristic, we cannot use the Kodaira
vanishing theorem, but we can use the following theorem by Keel. The
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following assertion is the surface version of the original theorem by Keel.
(For an alternative proof, see [CMM] and [F'T, Section 2].)

THEOREM 2.2 (Keel’s result). Let X be a projective normal surface over
an algebraically closed field k of positive characteristic. Let L be a nef and
big line bundle. Let E(L) be the reduced subscheme whose support is the
union of all the curves C with L-C =0. Then, L is semiample if and only
if Llg(r) is semiample.

Proof. For a proof, see [Kel, Theorem 0.2]. l

2.2.2. Difference between k #F, and k =T,. In this paper, we often
divide the argument into the two cases k # F, and k =F,. The reason for
this comes from the following fact.

Fact 2.3. Let k be an algebraically closed field of arbitrary characteris-
tic.
(1) If k #TF,, all abelian varieties over k have infinite rank.
(2) If k :Fp, all group schemes of finite type over Fp are torsion groups.

Proof. (1) For a proof, see [IJ, Theorem 10.1].

(2) Let X be a group scheme of finite type over Fp. Let P be a closed
point of X. Then we see that P and X are defined over a finite field. Thus,
we can consider P as a rational point of a group scheme of finite type over
a finite field. Since this group is finite, P is a torsion. [l

As a corollary, we obtain the following information on the line bundles of
varieties over I,

COROLLARY 2.4. Let X be a projective variety over Fp, and let D be a
Cartier divisor. If D =0, then D is a torsion in Pic X.

Proof. Consider the Picard space of X, and apply Fact 2.3 (for more
details, see [Kel, Lemma 2.16]). 0

83. (Q-factorial surfaces

3.1. Bend and break
In this section, we consider Mori’s bend-and-break method for proper

normal surfaces. We use the following intersection theory for normal surfaces
by Mumford [Mul].
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DEFINITION 3.1 (Intersection theory by Mumford [Mul]). Let X be a
normal surface, and let f: X’ — X be a resolution of singularities. Let
Eq,...,E, be the exceptional curves of f. Let C' be a proper curve in X,
and let D be an R-divisor on X. Let C’ and D’ be their proper transforms,
respectively.

(1) We define f*D := D'+ " ¢;E;, where all e; are real numbers uniquely
determined by the linear equations (D' +> " e;E;)-E; =0forj=1,...,n.
Note that the intersection matrix (£;- E;) is negative definite (see [I[<oM,
Lemma 3.40]).

(2) We define the intersection pairing by C' - D := f*C - f*D=C"- f*D.

(3) If X is proper, then we can naturally extend this intersection theory to
Weil divisors with Q or R coefficients by linearity.

DEFINITION 3.2. Let X be a proper normal surface, and let D and D’ be
R-divisors. We denote D =y, D' if D-C = D’ - C for every curve C in X.

Let us define the bend and break. This is the key method for the proof of
the cone theorem.

DEFINITION 3.3 (Bend and break). Let X be a proper normal surface.
We say that X satisfies bend and break if X satisfies the following two
conditions.

(BB1) If Z is a rational curve in X, then Z =\rym Z1 + - - + Z,, where each
Z; is a rational curve and —Z; - Kx < 3.

(BB2) Let C be a curve in X with C'- Kx < 0. Then for an arbitrary
point ¢g € C'\ Sing X, there exists a positive integer n(X,C,cp) with
the following conditions. For an arbitrary positive integer n with
n >n(X,C,cy), there exist a nonnegative integer «,, a curve Cp,
and an effective 1-cycle Z,, with the following four conditions:

(a) P"C =Mum anChn + Zp;

(b) Zpn=2Zn1+ -+ Zpn,,, where each Z, ; is a rational curve;
(¢) —anCh - Kx <2¢(Chormal), where Chormar is the normalization
of C;

(d) co € Supp Zp,.
The smooth case is the original bend and break proved by Mori, as follows.

ProprosITION 3.4. If X is a projective smooth surface, then X satisfies
bend and break.

Proof. For a proof, see [Mol, Theorems 4 and 5] and their proofs. 0
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Using this result, we extend the bend and break to the proper normal
surfaces.

PROPOSITION 3.5. If X is a proper normal surface, then X satisfies bend
and break.

Proof. Let f: X" — X be the minimal resolution, and let Kx/+ > e;E; =
f*(Kx), where all E; are exceptional curves and e; > 0.

(BB1): Let Z be a rational curve in X, and let Z’ be its proper transform.
Here, Z' is rational. Since X’ is smooth, X’ satisfies (BB1). Therefore,
Z'=Z1+---+ Z], all Z! are rational curves, and —Z; - Kx» < 3. Apply f,
to this equation. We obtain that Z =yym Z1 + -+ + Z,, where f.Z] = Z,.
Note that Z; may be 0. But if all of the Z; are 0, then we have Z =pum 0.
This is a contradiction. Moreover, the above relation between Kx and K x-
shows that —Z; - Kx <3.

(BB2): Let C be a curve in X with C'- Kx <0, and let C’ be its proper
transform. We see that C’- Kx/ < 0 from the above relation between canon-
ical divisors. Let ¢y be an arbitrary element of C' \ Sing X, and let
be a point of C’ such that f(c{) = cp. Since X’ is smooth, X’ satisfies
(BB2). Thus, we obtain n(X',C’, ), o), C},, and Z),. Let n(X,C,¢p) :=
n(X',C",cp), anCy := fi(a),Cl), and Z, := f.(Z]). It is easy to see that
these satisfy (BB2). 0

From now on, let us generalize this result for pairs (X, A).

DEFINITION 3.6 ((Kx + A)-bend and break). Let X be a proper normal
surface, and let A be an effective R-divisor. Let A = > b;B; be its prime
decomposition. We say that (X, A) satisfies (Kx + A)-bend and break if X
and A satisfy the following two conditions.

(BB1) There exists a positive integer L(X,A) which satisfies both of the
following conditions.
(1) If Z is a rational curve in X, then Z =y Z1 + -+ - + Z-, where

all Z; are rational curves and —Z; - (Kx + A) < L(X, A).

(2) If B2 <0, then —B; - (Kx + A) < L(X,A).

(BB2) Let C' beacurvein X with C'- (Kx+A) <0and C # B; for all ¢ such
that Bi2 < 0. Then, for an arbitrary point ¢y € C'\ Sing X, there exists
a positive integer n(X, A, C, ¢y) with the following conditions. For an
arbitrary integer n with n > n(X, A, C, ¢p), there exist a nonnegative
integer ay,, a curve C,,, and an effective 1-cycle Z,, with the following
four conditions:
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(a) P"C =Mum @nCn + Zy;

(b) Zpn=2Zn1+ -+ Zp,,, where all Z,, ; are rational curves;

(¢) —anCh - (Kx + A) <2¢g(Chormal), where Chormar is the normal-
ization of C or C,, = B; for some 7 such that Bi2 < 0;

(d) ¢o € Supp Zp,.

We obtain the following main result in this section.

THEOREM 3.7. If X is a proper normal surface, and if A is an effective
R-divisor, then (X,A) satisfies (Kx + A)-bend and break.

Proof. We write the prime decomposition A = b; B;.
(BB1): Let

L(X,A):= max({?)} U {—(KX +A)- Bu})a

where B,, ranges over the prime components of A with Bﬁ < 0. We check
conditions (1) and (2). Condition (2) is obvious. Thus, let us prove (1). Let Z
be a rational curve in X. By Proposition 3.5, we have Z =yjym Z1 4+ 2,
where any Z; is rational and satisfies —Z;- Kx < 3. If Z; = B, with Bﬁ <0,
then we obtain —Z; - (Kx + A) < L(X,A). If Z; # By, then we have

~Zj (Kx +A)<~Z; - Kx <3< L(X,A).

(BB2): Let C be a curve in X with C' - (Kx + A) <0 and with C' # B;
for all B; such that B? < 0. Then we obtain the following inequalities:

C-Kx<C- (Kx+A)<0.

By Proposition 3.5, we can use the bend and break in the sense of Defini-
tion 3.3. Let

n(X,A,C,co) :=n(X,C,cp).

This satisfies the four conditions of (BB2) of Definition 3.6. Indeed, condi-
tions (a), (b), and (d) are obvious. We consider (c). If C,, # B; for all B;
such that B? <0, then we have

—a, O, - (KX + A) < —0,Cp - Kx < 29(Cnormal)-

This completes the proof. 0

Let us calculate L(X,A) in the case where A is an R-boundary.
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PROPOSITION 3.8. Let X be a proper normal surface, and let A be an R-
boundary. Then (X,A) satisfies (Kx + A)-bend and break for L(X,A)=3.

Proof. By the proof of Theorem 3.7, (X, A) satisfies (Kx + A)-bend and
break for

L(X,A)=max({3} U{—(Kx +A)-B,}),

where B,, ranges over the prime components of A with Bﬁ < 0. Thus, the
assertion follows from the following lemma. []

LEMMA 3.9. Let X be a normal surface, and let A be an R-boundary. If
C is a proper curve in X such that C? <0, then —(Kx +A)-C <2.

Proof. Let f:Y — X be the minimal resolution, and let C'y be the proper
transform of C. We define Ay by
Ky +Cy + Ay = f*(Kx + C).

Note that Ay >0 and that Cy ¢ Supp Ay. Then, we see that (Ky + Cy) -
Cy > —2. We obtain
(Kx+A)-C>(Kx+0C)-C
=f"(Kx+C)-Cy
= (Ky +Cy +Ay)-Cy
> (Ky +Cy)-Cy
-2. [

v

3.2. Cone theorem

In this section we prove the cone theorem. We use the bend-and-break
method in the sense of Definition 3.6. Thus, in this section we use the
notation in Definition 3.6.

Here, let us recall the definition of the Kleiman—Mori cone.

DEFINITION 3.10. Let X be a projective variety. Then we define

N(X):={riZi+---+rsZs|ricRand Z; is a curve in X }=
NE(X):={[rZi+ - +rsZs|ri>0,Z; is a curve in X} C N(X),

where [r1Z; + -+ + rsZs] means the equivalence class.
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Note that N(X) is the quotient space by =. Although we often use the
intersection theory by Mumford, we do not take the quotient by =num. The
numerical equivalence = is induced by the intersections only with R-Cartier
divisors.

In this section, we use the following lemma repeatedly.

LEMMA 3.11. Let a,b € R and ¢,d € Ryg. Then,

rasm{ )

Proof. The proof is easy. Thus, we omit it. 0
The following lemma is key to this section.

LEMMA 3.12. Let X be a projective normal surface, and let A be an
effective R-divisor such that Kx + A is R-Cartier. Let A =Y b;B; be the
prime decomposition. Let H be an R-Cartier ample R-divisor. If C is a
curve in X such that C - (Kx + A) <0, then there exists a curve E in X
with the following properties:

(1) E is rational or E = B; for some j such that BJZ- <0;
(2) 0<—FE-(Kx+A)<L(X,A);
(3)

-C-(Kx+A4) < —E-(Kx+A)
c-H - EH
(The following proof is very similar to that of [[KoM, Theorem 1.13].)

Proof of Lemma 3.12. In this proof, we use the notation (BB1) and (BB2)
in the sense of Definition 3.6. First, if C' = B; with sz < 0, then the asser-
tion is obvious. We may assume that C # B; for all B; with B]2 < 0. Then,
we can use (BB2). However, since we do not use ¢p, we fix ¢p € C'\ Sing X.
Set C}, := a,,Cy,. We consider the following number:

—C - (Kx +A)
C-H
—p"C - (Kx +4)
pnC - H
—Cl - (Kx+A)—Z, - (Kx +A)
Cl H+Z,-H

M =

an + by,
cn+dy’
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where ay, b,, ¢,, and d,, are defined by
an = —Cy - (Kx +A),
b :=—Zn - (Kx +A),
cn:=Cl -H,
dy =2, H.
STEP 1. In this step, we reduce the proof to the case where o, > 0 for
all n> 0.

Assume that there is a positive integer n such that n >n(X,A,C,¢p) and
oy, = 0. Then we have

—C-(Kx+A4A) —Z, - (Kx+A) < —Zni- (Kx +4)

C-H Zn-H = Zn;-H

for some 7 by Lemma 3.11. Moreover, by (BB1) and Lemma 3.11, we obtain
the desired result.

STEP 2. In this step, we reduce the proof to the case where
ap = _ancn : (KX + A) < 2g(cnormal)

for all n > 0.
Suppose the contrary. Then, by condition (c) of (BB2), we obtain C,, = B;
for some j such that BJ2 < 0. By Lemma 3.11, we have the following equality:

—C-(Kx+4A) —oBj - (Kx+A)—-Z, - (Kx+A)

C H anB;-H+ Zy - H
~Bj - (Kx+A) —Z,-(Kx +A)

< J :

—max{ B, H ' Z, H }

If

—C-(Kx+A4) < —Bj- (Kx +A)
C-H - Bj-H ’
then this is the desired result. If
—C-(Kx+A4) < —Zn - (Kx +A)
C-H - Zn,-H ’

then, by (BB1) and Lemma 3.11, we obtain the desired result.

From now on, we consider the asymptotic behaviors of a,, by, ¢, and d,.
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STEP 3. The sequence a,, is bounded, and the sequence b,, is not bounded.
Indeed, the boundedness of a,, follows from Step 2. Since a,, +b,, = —p"C'-
(Kx 4+ A) is not bounded, by, is not bounded.

STEP 4. In this step, we prove that for an arbitrary positive real number
€, there exists a curve E in X with the following properties:
(1)’ E is rational;
(2) 0<—E-(Kx+A)<L(X,A);
3)’

—E-(Kx+4)
E-H '
If ay,/c, < M for some n>> 0, then we have b, /d, > M, which gives us
the desired result by (BB1) and Lemma 3.11. Thus, we may assume that
ap/cn > M for all n>> 0. Then, since a,, is bounded, so is ¢, because M is a

M—e<

positive number. Because ¢, + d,, = p"C - H, d,, is not bounded. Therefore,
for sufficiently large n, we obtain

by, an+b, an,+b,
— +te> > =M.
dyp, dn cn +dy
By (BB1) and Lemma 3.11, there exists a rational curve E with the desired

properties.

STEP 5. We take an arbitrary positive real number € with 0 < e < M/2.
Then, by Step 4, we obtain
—F-(Kx+A) L(X,A) 2L(X,A)
E-H < = .
< M —e€ - M)2 M
Since H is ample, the subset in numerical classes of effective 1-cycles in X
with integral coefficients

2L(X,A)
{IB)| B 1< =220
has only finitely many members. Therefore, the set
—F-(Kx+A 2L(X, A
{ é ).;I+ ) ‘E -H < 2L(X,A) and E satisfies (1), (2)’}

is also a finite set, because Kx + A is R-Cartier. Take a sufficiently small
€ > 0. Then, by Step 4, we obtain a rational curve F in X such that

E-H
This completes the proof. H

> M.

E satisfies (1), (2)' and —
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Let us prove the cone theorem.

THEOREM 3.13 (Cone theorem). Let X be a projective normal surface,
and let A be an effective R-divisor such that Kx + A is R-Cartier. Let
A =>"b;B; be the prime decomposition. Let H be an R-Cartier ample R-
divisor. Then the following assertions hold:

(1) NE(X)=NE(X)ky+a30+ 3 Rx0[Cil;

(2) WE(X) = NE(X )iy + 2110 + Y B0l

(3) each Cj in (1) and (2) is rational or C; = B; for some B;j with B <0;
(4) each C; in (1) and (2) satisfies 0 < —C; - (KX +A)< L(X A).

This proof is essentially the same as that of [[KoM, Theorem 1.24].

Proof of Theorem 3.15. (1) Let W be the right-hand side in (1); that is,

W .= W(X)(KXJ’_A)ZO + Z RZ()[C@'].
C; satisfies (3), (4)

Note that W is a closed set by the same proof as in [Ko2, Chapter 3,
Theorem 1.2]. We would like to prove that NE(X) = W. The inclusion
NE(X) D W is clear. Let us assume that NE(X) 2 W and derive a contra-
diction. Then we can find a Cartier divisor D which is positive on W \ 0
and which is negative on some element of NE(X). Let u be a positive real
number such that H + uD is nef and H + p’D is ample for all positive real
numbers p’ with y/ < p. Then we can take a 1-cycle Z with Z € NE(X)\ {0}
and (H + uD)-Z =0. Since Z - H > 0 means that Z - D <0, Z is not in
W. By the definition of W, we obtain Z - (Kx + A) < 0. Because Z is an
element of NE(X), there exist effective 1-cycles Z =" ay jZi; such that
the limit of Zy is Z. Take an arbitrary positive real number p' with p’ < p.
By the ampleness of H + u'D, we have

—ij'(Kx+A)>—Zk'(Kx+A)
Zk] (H+uw'D) = Zy-(H+ D) ’

max
We may assume that the maximum on the left-hand side occurs when j is 0.
By Lemma 3.12, we obtain

—Ek-(Kx+A)>—Zk70-(Kx+A)>—Zk'(Kx+A)
Ey-(H+wWD) = Zyo-(H+w'D) = Zy- (H+uD)
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Here, E} satisfies (3) and (4). Thus, we have Ej, € W, and this means that
Ei - D > 0. Therefore, we have

—Ek'(KX—I-A) > —Ek~(Kx+A) > —Zk~(Kx+A)

E,-H _Ek'(H-f-H’D) _Zk-(H—f—H/D)'
Take a large positive number r such that rH + (Kx + A) is ample. This
shows that
—EBp - (K
r> K ( X+ A) .
E.-H

Combining the inequalities, we obtain

—Zy - (Kx +A)
> .
Zi - (H + ' D)

Recall that we choose i/ as an arbitrary positive real number with p' < .
By taking the limit 4/ to p, we obtain

> —Zy - (Kx +A)
~ Zy-(H+ uD) '

Moreover, by taking the limit k& to oo, we obtain

. —Zp-(Kx+A) (positive)
r > lim = =
koo (Zy - H + D) +0

This is a contradiction. This completes the proof of (1).
(2) If C;- (Kx + A+ H) <0, then we have

CZ‘-H<—CZ'-(K)(+A)§L(X,A).

There are only finitely many numerical classes of curves like this. This
shows (2). The remaining assertions (3) and (4) have already been proved
in the above arguments. []

REMARK 3.14. In Theorem 3.13, L(X, A) gives an upper bound of length
of extremal rays. By the proof of Theorem 3.7,

L(X,A):=max({3} U{—(Kx +A)-B,}),

where B,, ranges over the prime components of A with Bﬁ < 0. In the case
where A is an R-boundary, we can set L(X,A) =3 by Proposition 3.8.
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Moreover, in the case where A is an R-boundary, every (K x + A)-negative
extremal ray is generated by a rational curve.

PRrOPOSITION 3.15. Let X be a projective normal surface, and let A be
an R-boundary such that Kx + A is R-Cartier. If R is a (Kx + A)-negative
extremal ray of NE(X), then R=Rx>o[C], where C is a rational curve such
that —(Kx +A) - C <3.

Proof. By Theorem 3.13 and Remark 3.14, we can write R = Rx>¢[C],
where C'is a curve such that —(Kx + A)-C <3 and such that C is rational
or C? < 0. Assume that C? < 0. Then, we obtain

(Kx+C)-C<(Kx+A)-C<0.

Thus, the assertion follows from the following lemma. 0

LEMMA 3.16. Let X be a normal surface, and let C be a proper curve
in X. If (Kx+C)-C<0, then C is a rational curve.

Proof. Let f:Y — X be the minimal resolution, and let Cy be the proper
transform of C'. We define Ay by Ky + Cy + Ay = f*(Kx + C). Then, we
see that

(Ky—i—Cy)-CyS(Ky—i-Cy—l-Ay)-Cy:(Kx+C)-C<O.

Then, since Cy is a rational curve, so is C. U

3.3. Results on adjunction formulas
In this section, we summarize results on adjunction formulas.

PRrROPOSITION 3.17. Let X be a projective normal surface, and let C be a
curve in X. Then, there exists an exact sequence

0—>T—>wx(C)|0—>wC—>0,

where T is the torsion subsheaf of wx (C)|c.
Proof. For a proof, see [F'2, Lemma 4.4]. 0

Using this adjunction formula, we obtain the following result on global
sections.

LEMMA 3.18. Let X be a projective normal surface, and let C' be a
curve in X. Fiz a positive integer v € Z~q. If HY(C,0¢) #0, then H°(C,
wx (M) #0, where wx (C) is the double dual of wx (C)%".
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Proof. We consider the exact sequence
0—=T = wx(C)|lc —=wc—0.

Since T is a skyscraper sheaf, we have H'(C,T) =0. By H*(C,w¢) # 0, we
obtain H°(C,wx (C)|c/T) #0. Thus, there exists a map

OC —>UJX(C)|C

such that this is injective on some nonempty open set. Therefore, we obtain
a map

Oc = wx(C)?"|¢,

which is injective on some nonempty open set. On the other hand, there is
a natural map

wx (C)%" o — wx (C))e,

which is bijective on some nonempty open set. Combining these maps, we
have the map

Oc — wx (O)g,

which is injective on some nonempty open set. Thus, the kernel K of this
map is a torsion subsheaf of O¢g. Then, we have K = 0. Therefore, we obtain
an injection O¢ < wy (C)")|¢. This means that HO(C,wx (C)|c) #0. [0

Using this lemma, we obtain the following theorem, which plays a crucial
role in this paper.

THEOREM 3.19. Let X be a projective normal surface, and let C' be a
curve in X such that r(Kx + C) is Cartier for some positive integer r.

(1) If C-(Kx +C) <0, then C ~P.
(2) If C- (Kx 4+ C) =0, then C =P! or Oc((Kx +C)l') ~0O¢.

Proof. (1) Since C- (Kx 4+ C) < 0 means that H°(C,wx (C)["|¢) =0, the
curve C' must be P! by Lemma 3.18.

(2) Assume that C 2 P!. Then we can apply Lemma 3.18 and obtain
HO(C,wx (C)M|e) #0. By C- (Kx 4+ C) =0, we have wy (C)'|c ~Oc. [
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3.4. Contraction theorem

In this section, we show that extremal rays are contractible for Q-factorial
surfaces with R-boundaries. First, we consider the following theorem, which
we will use later.

THEOREM 3.20. Let k be an algebraically closed field of arbitrary char-
acteristic. Let w:Y — B be a surjective morphism over k from a smooth
projective surface Y to a smooth projective irrational curve B. Let f 1Y — X
be a birational morphism to a projective normal Q-factorial surface. If k is
not the algebraic closure of a finite field, then all f-exceptional curves are
w-vertical.

This proof is essentially due to [F'2, Lemma 5.2].

Proof of Theorem 3.20. We assume that C'is an f-exceptional curve with
7m(C) = B and want to derive a contradiction. We may assume that C' is
smooth by taking a sequence of blowups of singular points of C'. We have

mlc:C — B,
Pic? ¢ W) pid B.

We prove that the image (7|¢)*(Pic” B) is an abelian group whose rank is
infinite. By considering (7|c)* as a morphism between Jacobian varieties,
we see that (7|¢)*(Pic® B) is an abelian variety. Note that the dimension
of (7|c)*(Pic® B) as a scheme is not 0 by (7|c)« o (7|c)* = deg(n|c¢) and
by the irrationality of B. Thus, by Fact 2.3, the rank of (7|c)*(Pic® B) is
infinite. Then, we have

*

(7lo)*(Pic” B) @2.@ \ 3" Q(Eilc) #0,
=1

where F1,...,FE, are the f-exceptional curves. Therefore, we can take a
Q-divisor D on B such that

(m*D)lc ¢ Y QEile).
i=1

On the other hand, since X is Q-factorial, we obtain

.
™D - f*fr*DeY QE;.
i=1
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Restricting this relation to C, we have the contradiction

(= D)lc € 3 Q(Ec)

i=1
because C is f-exceptional. []

Originally, [F'2] uses this theorem to prove the nonvanishing theorem. We
use this theorem not only for the nonvanishing theorem but also for the
following contraction theorem:.

THEOREM 3.21 (Contraction theorem). Let X be a projective normal
Q-factorial surface, and let A be an R-boundary. Let R =R>¢[C] be a (Kx +
A)-negative extremal ray. Then there exists a surjective morphism ¢p : X —
Y to a projective variety Y with the following properties.

(1) Let C' be a curve on X. Then ¢pr(C") is one point if and only if [C'] € R.

(2) We have (¢r)«(Ox) = Oy.

(3) If L is an invertible sheaf with L -C =0, then nL = (¢r)*Ly for some
invertible sheaf Ly on'Y and for some positive integer n.

(4) We have p(Y) =p(X) — 1.

(5) If dimY =2, then Y is Q-factorial.

We divide the proof into the three cases: C? >0, C? =0, and C? < 0.

Proof of the case where C? > 0. The inequality C? > 0 shows that C' is
a nef and big divisor. Therefore, for an arbitrary curve C’, there exists an
effective Cartier divisor E and positive integers n and m such that nC ~
mC’ + E by Kodaira’s lemma. Since C' generates an extremal ray, we have
C' = qC for some rational number ¢. Recall that we choose C’ as an arbitrary
curve. Thus, we obtain p(X) =1 and —Kx is ample. Then let Y be one
point, and properties (1), (2), and (4) are satisfied. We want to prove (3);
that is, we must show that for a Q-divisor D, if D =0, then D is a torsion. It
is sufficient to prove that x(X, D) > 0. Thus, we assume that x(X, D) = —oc0
and derive a contradiction. Let f: X’ — X be the minimal resolution, let
D' = f*D, and let Ky + E' = f*Kx, where E’ is an effective f-exceptional
(QQ-divisor. Then we obtain

H(X/,KX/) < K(X/,KX/ —i—El)
=r(X,Kx)=—00.
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First we prove that X’ is an irrational ruled surface. By Serre duality, we
obtain h?(X',D') = h%(X', Kx+ — D'). Moreover, we get

H(X/,KX/ — D/) < K}(X/,KX/ +F —D,>
=kr(X', f*(Kx — D))
— k(X, Kx — D) = —o¢

by the antiampleness of Ky — D. Hence, h?(X’,D’) = 0. Then, by the
Riemann—Roch theorem, we obtain

1
SB(X D) = x(Ox) + 5 D'+ (D~ Kxr) = x(Ox)
because D' = f*D = 0. This shows that
0> —-h'(X',D')=1-hrY (X', Ox).

Thus, we obtain h'(X’,0%) > 1, and this means that X’ is an irrational
ruled surface. Let 7 : X’ — B be its ruling. Here, if k = Fp, then D is a
torsion by Corollary 2.4. Hence, we consider the case k # F,. Then we can
apply Theorem 3.20, and all f-exceptional curves are m-vertical. This shows
that 7 factors through X’ — X — B. A curve in a fiber has nonpositive
self-intersection number. But this is a contradiction because each curve in
X is ample. This completes the proof of the case C? > 0. 0

Proof of the case where C% =0. First let us prove that p(X) = 2. It is
sufficient to show that, for an arbitrary divisor F,if F-C = F-(Kx+A) =0,
then F'=0. We need the following lemma.

LEMMA 3.22. If D1,Dy € C+={D| D is a divisor and D - C =0}, then
Dy -Dy=0.

This proof is essentially due to [Mo2, Lemma 3.29].

Proof of Lemma 3.22. We consider the quadratic form @ : Cﬁ — R. Here
we consider C’ﬁ as a subvector space of the numerical equivalence classes of
R-divisors, and @ is defined by the self-intersection. We want to prove that
Q is identically 0. Take a nef divisor G such that NE(X)NG* = R>[C]. By
the nefness of GG, we obtain G? > 0. But G2 must be 0 because G2 > 0 shows
that G is nef and big. Then, by G - C = 0, we obtain C? < 0, a contradiction.
This shows that @ is 0 in a nonempty dense subset of an open subset in Cué
by the cone theorem. Therefore, ) must be identically 0. 0
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Since F € C*, we obtain D - F =0 for any divisor D € Ct. The R-
subvector-space C’§ in numerical classes of divisors has codimension 1. Take
its basis D1,...,D,_1. Then we get the basis D1,...,D, 1, Kx + A of
the whole space. Indeed, by C - (Kx + A) # 0, these vectors are linearly
independent. Since F'- Dy =---=F-D, 1 =F-(Kx+A) =0, we get FF=0.
Thus, we obtain p(X) = 2.

Next, let us prove that the divisor C' is semiample. By C? =0 and (Kx +
A)-C <0, we obtain Kx -C <0. Let f: X' — X be a resolution. By

(FFO)2 = f.(f*C)-C=C-C=0  and
KX"f*C:f*(KXI)'C:KX'C<O,

the Riemann-Roch theorem shows that x(X’, f*C) > 1. Note that h?(X’,
nf*C)=h%X",Kx —nf*C) =0 for all n>> 0. Therefore, we get x(X,C) =
k(X', f*C) > 1. Because C% =0 implies that x(X,C) = 1, then by the fol-
lowing proposition, C' is a semiample divisor.

PROPOSITION 3.23. Let X be a projective normal surface, and let L be a
nef line bundle. If k(X,L) =1, then L is semiample.

Proof. For a proof, see [Fu, Theorem 4.1]. 0

Hence, the complete linear system |mC/| induces a morphism ¢p: X — Y
to a smooth projective curve Y. This morphism satisfies (1), (2), and (4). We
would like to show (3). Take a line bundle L with L-C = 0. Since p(X) =2,
we have L = qC for some rational number q. We take a large positive integer
s such that ¢ + s is positive. Then we have

L+sC=(q+s)C.

By the same argument as above, we see that L 4 sC' is semiample. Then
a sufficiently large multiple of L + sC' induces a morphism ¥ : X — Z to a
smooth projective curve Z. Moreover, since this morphism satisfies condition
(1), we obtain the factorization

R
V:XSY L7
with 0,0y = Ogz. Since Y and Z are smooth projective curves, ¢ must be

an isomorphism. Then n(L 4 sC) is a pullback of a line bundle on Y for
some positive integer n. Thus, we have (3). (]
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Before stating the proof of the case where C? < 0, we state a proposition
on the contraction of P!,

PROPOSITION 3.24. Let X be a projective normal surface, and let C be
a curve in X isomorphic to P'. Assume that G is a nef and big line bundle
on X such that, for every curve C' in X, G-C'" =0 if and only if C' =C.
Then, G is semiample.

Proof. By Keel’s result (Theorem 2.2), if G|¢ is semiample, then G is
semiample. But, by C' =P!, this is obvious. i

Proof of the case where C% < 0. By C-(Kx + A) <0, we have C- (Kx +
C) < 0. Therefore, by Theorem 3.19, we see that C' ~P!. Let G be a nef and
big divisor such that for any curve C’, G-C’ =0 if and only if C' = C. (The
way to construct such a divisor G is to let H be an ample divisor and to let
G be the divisor such that G = H + ¢qC and G - C' =0 for rational number
g.) Then, by Proposition 3.24, there exists ¢p satisfying (1) and (2). The
remaining assertions (3), (4), and (5) hold from the following propositions.

O

First we prove (3). We generalize the setting a little for a later use.

PROPOSITION 3.25 (Proof of (3)). Let f: X —Y be a proper birational
morphism from a normal Q-factorial surface X to a normal surface Y .
Assume that C :=Ex(f) is a proper irreducible curve and that f(C') is one
point. Let L be a Cartier divisor on X with L-C =0. If L|¢ is a torsion,
then nL = f*(Ly) for some Cartier divisor Ly on'Y and for some positive
integer n.

Proof. We have the following.

STEP 1. In this step, we assume that X and Y are projective, and we
prove the assertion.

Let G be the pullback of an ample divisor. By Kodaira’s lemma, G =
A+ E, where A is an ample Q-divisor and F is an effective Q-divisor. By
replacing G by its suitable multiple, it is easy to see that we may assume
that E = gC for some g € Q<. Consider the divisor

G'=mG+ L=(mA+ L) +mqC

for m > 0. Since mA + L is ample for m > 0, we see that G’ - C' > 0 for
every curve C’ # C. On the other hand, we have

G'-C=(mG+1L)-C=0.
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Thus, for a sufficiently large integer m > 0, the Cartier divisor G’ = mG + L
is nef and big such that G'- C" =0 if and only if C’ = C for every curve C’.
Since L|¢ is a torsion, G’ = mG + L is semiample by Keel’s result (Theo-
rem 2.2). By Zariski’s main theorem, |nG’| induces the same morphism as f
for some n € Z~q. Thus, nG' = nmG + nL is a pullback of some line bundle
on Y, and so is the difference nL = nG’ — nmG.

STEP 2. In this step, we assume that Y is quasiprojective, and we prove
the assertion.

Take a compactification Y C Y such that Y is projective and is smooth on
Y \ Y. We define X by patching X and Y along X \ C ~Y \ {f(C)}. Then,
X is projective because X is proper and Q-factorial (see ['2, Lemma 2.2]).
Thus, by Step 1, we obtain the required assertion.

STEP 3. In this step, we prove the assertion.

Let f(C) €Yy CY be an affine open subset, and let X := f~1(Yp). Let
flx, =: fo. Then, by Step 2, we obtain nL|x, = (fo)*Ly,. Let Ly be the
Z-divisor on Y such that Lyly, = Ly, and such that Ly has no prime
component contained in Y\ Yy. Then, Ly is Q-Cartier. Consider the prime

decomposition
L:ZliCi: Z L;C; + Z lej.
CiCX\Xo Cj ¢X\X0
We see that nf*Ly = ch¢X\XO [;C;. Since ZCJCX\XO [;C; is the pullback
of some Q-Cartier divisor, we obtain the assertion. 0

The condition (4) is an immediate corollary from (3). Thus, we prove (5).

PROPOSITION 3.26 (Proof of (5)). Let f: X —Y be a proper birational
morphism from a normal Q-factorial surface X to a normal surface Y .
Assume that C :=Ex(f) is a proper irreducible curve and that f(C) is one
point. Assume the following condition.

(3) If L is a Cartier divisor with L -C =0, then nL = (¢r)*Ly for some
Cartier divisor Ly on'Y and for some positive integer n.

Then, Y is Q-factorial.

Proof. Let E be a prime divisor on Y, and let D be its proper transform.
Since C? < 0, there exists a rational number ¢ such that (D + ¢C) - C = 0.
By (3), we have n(D + ¢qC') = f*(Ly) for some Cartier divisor Ly . By oper-
ating f,, we obtain the equality nE = Ly as Weil divisors. Therefore, F is
Q-Cartier. 0
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Since we have the cone theorem and the contraction theorem, we obtain
the minimal model program for Q-factorial surfaces with boundaries.

THEOREM 3.27 (Minimal model program). Let X be a projective nor-
mal Q-factorial surface, and let A be an R-boundary. Then, there exists a
sequence of projective birational morphisms

(X,A) = (X0, 00) 3 (X1, A0 B %50 (X, Ay) = (XT, A1),

where (pi—1)«(Aj—1) =: A;, with the following properties.
(1) Each X; is a projective normal Q-factorial surface.

(2) Each A; is an R-boundary.
(3) For each i, Ex(¢;) =: C; is an irreducible curve such that

(Kx, +A;)-C; <0

and such that C; generates an extremal ray.

(4) The pair (XT,AT) satisfies one of the following conditions:

(a) Kyt + Al is nef;

(b) there is a projective surjective morphism pu : Xt — Z to a smooth
projective curve Z such that (1,0 xi = Oz, —(KL + AT is p-ample,
and p(XT) =2;

(c) —(Kxt + Al is ample, and p(XT) =1.

3.5. Finite generation of canonical rings

It is important to consider the finite generation of canonical rings, which
is closely related to the minimal model program. In this section, we prove
the following theorem.

THEOREM 3.28 (Finite generation theorem). Let X be a projective normal
Q-factorial surface over k, and let A be a Q-boundary. Then R(X,Kx +
A) =@, HO(X,um(Kx + A)) is a finitely generated k-algebra.

Proof. Let us consider the Kodaira dimension x:= k(X, Kx + A). It is
obvious for the case kK = —oo and the case k = 0. In particular, we may
assume that Kx + A is effective. Then, by Theorem 3.27, we may assume
that Kx 4+ A is nef. The case k = 1 follows from Proposition 3.23. Therefore,
we may assume that x = 2, that is, that Kx + A is nef and big. This case
follows from Proposition 3.29. 0
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PropPOSITION 3.29. Let X be a projective normal Q-factorial surface,
and let A be a Q-boundary. If Kx + A is nef and big, then Kx + A 1is
semiample.

Proof. By Keel’s result (Theorem 2.2), it is sufficient to prove that if

E = U C=CiU---UGC,,
C-(Kx+A)=0

then (Kx + A)|g is semiample. Let C'C E. Then we have
(Kx+C)-C<(Kx+A)-C=0.

STEP 1. In this step, we reduce the proof to the case where, if C C F,
then (Kx—l-C) -C'=0.

Assume that C C E and that (Kx +C)-C <0. Then C is a (Kx +
C)-negative extremal curve. Thus, by Theorem 3.21, we can contract C.
Let f: X — Y be its contraction, and let Ay := f,(A). Then since Kx +
A= f*(Ky + Ay) and Y is Q-factorial, if we can prove that Ky + Ay is
semiample, then Kx + A is semiample. We can repeat this procedure and
obtain the desired reduction.

STEP 2. In this step, we prove that E is a disjoint union of irreducible
curves and that if C' C E, then (Kx + A)|c = (Kx + C)lc.

Let C C E. By Step 1, we have (Kx 4+ C) - C =0. Then, the inequality
over Step 1 is an equality. Thus, C C Supp A, and C is disjoint from any
other component of A.

By Step 2, it is sufficient to prove that, if (Kx 4+ C)-C =0, then (Kx +
()|¢ is semiample. This is satisfied by Theorem 3.19. U

3.6. Abundance theorem (k #F),)

In this section, we prove the abundance theorem for Q-factorial surfaces
with Q-boundary over k # F,. The case where k =T, will be treated in
Section 4. In the case where x(X,Kx + A) =0, we give a proof of the
abundance theorem which does not depend on the characteristic of the base
field k& (see Theorem 3.34).

First we present the following nonvanishing theorem.

THEOREM 3.30 (Nonvanishing theorem). Let k be an algebraically closed
field of arbitrary characteristic. Let X be a projective normal Q-factorial
surface over k, and let A be a Q-boundary. If k is not the algebraic closure
of a finite field and if Kx + A is pseudoeffective, then k(X,Kx + A) > 0.
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Proof. For a proof, see [F'2, Theorem 5.1, Lemma 5.2]. Note that in this
article, instead of [F'2, Lemma 5.2], we use Theorem 3.20 of this paper. []

Before the proof of the abundance theorem, we present the definition of
indecomposable curves of canonical type in the sense of [Mu2, p. 330].

DEFINITION 3.31. Let k£ be an algebraically closed field of arbitrary char-
acteristic. Let X be a smooth projective surface over k, and let Y =" n; E;
be an effective divisor with n; € Z~q. We say that Y is an indecomposable
curve of canonical type if Y #0, Kx - E; =Y - E; =0 for all 4, SuppY is
connected, and ged(n;) = 1.

We present criteria for the movability of indecomposable curves of canon-
ical type.

PROPOSITION 3.32. Let k be an algebraically closed field of arbitrary char-
acteristic. Let X be a smooth projective surface over k, and let Y be an inde-
composable curve of canonical type in X. Assume that one of the following
assertions holds:

(1) chark=p>0;
(2) HY(X,0x)=0.
If Oy (Y) is a torsion, then k(X,Y)=1.

The proof of (2) is very similar to that of [To, Theorem 2.1].

Proof of Proposition 3.32. (1) For a proof, see [M, lemma on p. 682].

(2) Assume that H'(X,Ox) =0. Let m be the order of Oy (Y), and let
a be an integer with 1 <a <m — 1. The case where Oy (Y) = Oy is easy,
so we exclude this case and can assume that m > 2. Let us consider the
following exact sequence:

H(Y,Oy(aY)) = H' (X, (a—1)Y) —» H (X,aY) — H' (Y, Oy (aY)).
By Serre duality and [Mu2, Corollary 1 on p. 333], we obtain
R (Y, 0y (aY)) =R (Y, Oy (Ky —aY)) = h°(Y, Oy (—aY)).
The choice of a shows that

K (Y,0y (aY)) = h° (Y, 0y (—aY)) = 0.
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Indeed, suppose the contrary; for example, suppose that h°(Y,aY|y) # 0.
Then we have Oy (aY) = Oy by [Mu2, lemma on p. 332]. This is a contra-
diction. Therefore, we get

0=h'(X,0x)=h'(X,Y)="=h'(X,(m—1)Y).
This leads to the following exact sequence:
0— H(X,(m—-1)Y) = H(X,mY) — H°(Y,Oy) = 0.

Thus, Y is an effective semiample divisor on X, and Y? = 0. This shows
that k(X,Y) =1. U

Now, we prove the abundance theorem.

THEOREM 3.33 (Abundance theorem). Let k be an algebraically closed
field of positive characteristic. Let X be a projective normal Q-factorial
surface over k, and let A be a Q-boundary. If k is not the algebraic closure
of a finite field and Kx + A is nef, then Kx + A is semiample.

Proof. By Theorem 3.30, we may assume that x(Kx + A) > 0. Moreover,
we may assume that k(Kx + A) =0 by Propositions 3.23 and 3.29. Thus,
it is sufficient to prove the following theorem. 0

THEOREM 3.34. Let k be an algebraically closed field of arbitrary charac-
teristic. Let X be a projective normal Q-factorial surface over k, and let A
be a Q-boundary. If k is not the algebraic closure of a finite field, Kx + A
is nef, and K(X,Kx + A) =0, then Kx + A ~qg0.

This proof is very similar to that of [F2, Theorem 6.1] and uses many of
the techniques in [Fu, Section 5].

Proof of Theorem 3.34. Let f:V — X be the minimal resolution. We set
Ky + Ay = f*(Kx +A). We note that Ay is effective. It is sufficient to see
that Ky + Ay ~Q 0. Let

V=33 . By=5

be a sequence of blowdowns such that

(1) ¢; is a blowdown of a (—1)-curve C; on V;,
(2) Avi+1 = SO’L*AV“ and
(3) (Kv, +Ay,)-C; =0,
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for every i. We can assume that there are no (—1)-curves C' on S with
(Kg+ Ag) - C =0. We note that Ky + Ay = ¢*(Kg + Ag). It is sufficient
to show that Kg+ Ag ~q 0. Since k(S5, Kg + Ag) =0, there is a member
Z of |m(Kg + Ag)| for some positive integer m. Then, for every positive
integer ¢, tZ is the unique member of |[tm(Kg + Ag)|. We will derive a
contradiction assuming that Z # 0.

STEP 1. In this step, we prove that for each prime component Z; of Z,
we have
Ks-Z;=Ag-Z;=7-7Z;=0.

Since (Kg+ Ag)-Z =m(Kgs+ Ag)? =0 and (Kg+ Ag) is nef, (Kg+ Ag) -
Z; =0 for all 7. This means that

Z-Zi=0

and that ZZ-2 < 0. Now, we prove that Kg- Z; >0 for every ¢. If Kg-Z; <0,
then we obtain (Kg+ Z;)- Z; <0 and Z; 2P If Z? >0, then we obtain
k(S,Z) > k(S,Z;) > 0. This contradicts x(S, Kg + Ag) = k(S,Z) =0. If
Z? <0, then Z; is a (—1)-curve with (Kg + Ag) - Z; = 0. This contradicts
the definition of S. Regardless, we have Kg - Z; > 0 for every i. This implies
that Kg-Z = Kg-m(Kg+ Ag) > 0. The nefness of Kg+ Ag shows that
(Ks+Ag)-Ag >0.By (Ks+Ag)? =0, we see that (Kg+Ag) - Kg = (Ks+
Ag)-Ag=0. This is equivalent to Z - Kg=2-Ag=0. Since Kg - Z; >0,
we see that
Ks-Z;=Ag-Z;=0.

STEP 2. We can decompose Z into the connected components as follows:

r
=1

where u;Y; is a connected component of Z such that u; is the greatest
common divisor of the coefficients of prime components of Y; in Z for every
1. Then we see that, for every i, each Y; is an indecomposable curve of
canonical type by Step 1. We obtain wy, >~ Oy, by [Mu2, Corollary 1 on p.
333].

STEP 3. In this step, we assume that (S, Kg) >0 and prove the asser-
tion. Since

0<k(S,Ks)<k(S,Ks+Ag)=0,

we obtain k(S, Kg) = 0. Let us prove that S is a minimal surface.
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Suppose the contrary; that is, suppose that there exists a (—1)-curve E.
Then we have the contraction g: S — 5" of E, and we obtain a morphism

h
sLeghg

to a minimal surface Spin. Since 0 = k(S, Ks) = £(Smin, K5, ), we see that
Ks, .. ~00. Because

min

Ks=g"'Kg + E = g*(h*(Kg,,,) + (effective divisor)) + E,

min)

we see that Kg ~q (effective divisor) + E. This means that
nZ ~nm(Kg+ Ag) ~ (effective divisor) + nmE + nmAg
for some n € Z~q. Since k(S5,7Z) =0,
nZ = (effective divisor) + nmE + nmAg

as Weil divisors. In particular, we have F C Supp Z and E = Z; for some 1.
This implies that Z; - (Kg + Ag) =0 and that Z; is a (—1)-curve, a contra-
diction to the construction of S. Therefore, S is minimal.

Then we obtain the contradiction

K(S, Ks + As) = (S, Z) > (S, Y;) > 1

from the known result x(5,Y;) > 1 (see, e.g., [Bal, Theorem 7.11]).

STEP 4. By Step 3, we may assume that (S, Kg) = —o0. In Steps 5
and 6, we assume that S is rational and prove the assertion. In Steps 7—
12, we assume that S is irrational and we prove the assertion. Note that
since k(X,Z) =0, in order to derive a contradiction, we want to prove that
k(X,Y;) > 1 for some i.

We assume that S is rational.

STEP 5. In this step, we prove that
ASZZ%Yz‘ and yi > 1.
We fix i. By H'(S,05(Kg)) =0 and the exact sequence

0— OS(Ks) — OS(KS —i—Y;) — wy; — 0,
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we obtain the surjection
H°(S,05(Ks +Y;)) — H'(Y;,wy;) ~ H°(Y;, Oy,).

Thus, there exists W; € |Kg 4 Y;| such that W; has no components of Y;.
For Z; = Z — 1;Y;, we obtain the equation

mu;Ws + mu; Ag + mZ; = (i +m)Z.

Note that this equality holds as Weil divisors because k(S,Z)=0. From this
equation, Supp Ag C Supp Z. Since W; and Z; are free from the components
of Y;, we have Ag=>"((pi + m)/m)Y;. We set y; := (p; +m)/m > 1.

We fix i, and we denote Y instead of Yj.

STEP 6. Inthisstep, we prove the desired assertion. By Proposition 3.32(2),
it is sufficient to prove that Oy (aY) ~ Oy for some positive integer a. We set
Y(x) :=Y and construct Y;) inductively. It is easy to see that ¢;: V; = Vjq
is the blowup at Pj1 with multp,,, Ay, , >1 for every j since Ay, is effec-
tive. If multp,,, Y1) =0, then we set V() = ¢3Y(;11). It multp,,, Y41y >
0, then we set Y(;) = ¢;¥(;11) — Cj, where Cj is the exceptional curve of ¢;.
Thus, we obtain Y(O) on V5 =V. Note that multp AV].H > multp Y(j+1) for
every P € Supp Y{;;1) by Step 5 and the above inductive construction. More-
over, since multp Y{;,1) € Z, we see that Y(q) is effective and that Supp ¥q) C
Supp A‘>/1 where, for the prime decomposition Ay =) 6;Ay;, we define
A‘>/1 = Zal>1 0;Ay;. Then, we have (pj*(/)y(j) ~ (91/(],+1> for every j. Indeed,
©jxOv, (=Y(5)) = Oy, (=Y(j41)) and ngoj*(’)vj(—Y(j)) =0 for every j. See
the following commutative diagram:

0 —— O\/j+1(_Y(j+1)) — Oy, — OY(jJrl) — 0
0 —— ¢0y,(=Y) —— ¢;:0v; —— .0y, —— 0

Therefore, we obtain go*(’)y(o) =~ Oy . Since Supp Y|gy C Supp A‘>/1, we see that
Y(o) is f-exceptional. Since Ky +Ay = f*(Kx +A), we obtain Oy, (b(Ky +
Ay)) = Oy,, for some positive divisible integer b. Thus,

Oy (b(Ks + As)) =~ 0. Oy, (b(Kv + Av)) =~ ¢, Oy, =~ Oy.
This means that
Oy(,ubY) ~ Oy(bZ) ~ Oy (bm(Kg + As)) ~ Oy.

This completes the proof of the rational case.
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We assume that S is an irrational ruled surface. Let m:.5 — B be its
ruling, and let F' be one of its smooth fibers.

STEP 7. In this step, we prove that each connected component pY of Z
satisfies F'-Y > 0.

We assume that F'-Y =0 and derive a contradiction. Since Y is con-
nected, Y is contained in some fiber Fy. Then we have the equality

Fy=yY +Y’

for some effective Q-divisor Y’ with SuppY ¢ SuppY” and for some positive
rational number y. By Kg-Fyg=—2 and Kg-Y =0, it is sufficient to prove
that Y/ = 0. Thus, assume that Y’ # 0. Take a prime component Y1) of
Y which is not a component of Y’. The equalities Fj - Yo=Y Yy =
0 show that Y’ - Y1) = 0. Thus, if Y{y) is a prime component of Y such
that Y(1) N Y{9) # 0, then Yy is not a component of Y’. By repeating this
procedure, we see that Y(;) is not a prime component of Y’ for each prime
component Y(; of Y. Since Y’ #0, there exists a prime component Y(;) of
Y with Y{;) NY" # . This leads to the contradiction

Fo-Y; =Y -Y;»=0 and Y'Y #0.

STEP 8. In this step, we prove that both B and Y are elliptic curves. In
particular, Y2 = 0.

By Step 7, Y has a prime component Y{o) with 7(Y{o)) = B. Because
(Ks+Y(0)) - Y) <0 by Step 1, Y{g) is a rational curve or an elliptic curve.
But, since B is irrational and m(Y(g)) = B, Y{g) must be an elliptic curve.
Then, B is also an elliptic curve. Moreover, if an indecomposable curve of
canonical type Y is reducible, then every prime component of ¥ must be P!.

Indeed, for every prime component Y(;), we have (Kg + Y{;)) - Y(;) <0.
Assume that a prime component Y(q) satisfies (Ks+Y/q))Y(g) = 0. Then, by
Kg-Y() =0, we have Y(%) = 0. Since Y - Y(g) =0, we obtain Y{;) - Y(g) =0 for
every prime component Y(;). Because Y is connected, ¥ must be irreducible.

STEP 9. In this step, we prove that the coefficient § of Y in Ag satisfies
0<6<1.

Assume the contrary; that is, we assume that § > 1 and derive a contra-
diction. Take the proper transform Yy of Y in V. We see that the coefficient
of Yy in Ay is §. Then Yy is contracted by f because of the assumption of
the boundary. Since X is Q-factorial, we can apply Theorem 3.20, and this
is a contradiction.
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STEP 10. In this step, we prove that Oy (Y') is a torsion.
By Step 1, we have Y - (Ag — 6Y) = 0. This means that SuppY N
Supp(Ag — 0Y) = (). Thus, in PicY, we obtain

Y =Z=m(Kg+ Ag) =m(Kg+0Y)=m(-Y +Y).

Therefore, we have (m(1—46)+ )Y =0in PicY. By m(1 —6) +p>m(1 —
0) >0, Oy (Y) must be a torsion.

STEP 11. Let r be the order of the torsion Oy (Y'). In this step, we prove
that
H'(S,05(Ks+1tY)) =0

for 1 <t <r by induction.
Let us consider the exact sequence

0—Og(Kg) > 0Os(Ks+Y)—wy —0.
If the induced map
H°(S,05(Ks+Y)) = H(Y,wy) =k

is surjective, we get a contradiction by the same argument as in Step 5.
Therefore, this map is 0. Then, the injective map

k=HY,wy)— H'(S,05(Ks)) =k
is bijective. This means that the map
H'(S,08(Ks+Y)) — H'(Y,wy)

is injective. On the other hand, we have h?(S,Og(Kg +Y)) =0 by Serre
duality. Then we obtain the surjective map

H'(Y,wy) — H?(S,05(Ks)).
But this is bijective by Serre duality. Therefore, we obtain
H'(S,05(Ks+Y)) =0,

and this proves the case where t =1. When 1 <t <r, we have the exact
sequence

H'(S,Ks+ (t—1)Y) = H' (S, Kg+tY) = H'(Y,Kg +tY).

By the induction hypothesis, we have H'(S, Kg + (t —1)Y) = 0. Moreover,
we obtain hl(Y, Oy (Ks +tY)) = h%(Y,Oy(—(t —1)Y)) = 0 since r is the
order of Oy (Y). Thus, we see that H'(S,Kg+tY)=0for 1 <t <r.
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STEP 12. By Step 11, we obtain a surjection
HY(S,05(Ks+ (r+1)Y)) = H(Y,0y (Ks + (r +1)Y)).

By Oy(Ks+ (r+1)Y) = Oy (Ky + 1Y) = Oy, there exists an effective
member W € |Kg + (r +1)Y| free from Y. Set Z :=Z — pY. We obtain
the equation

pZ + (r+1)ymZ = pm(Ks + Ag) + (r+ 1)m(pY + Z)
=um(Kg+ (r+1)Y) 4+ pmAg + (r + ymZ
= umW + pmAg + (r+1)mZ

as Weil divisors. By considering the coefficients of Y in both sides, we obtain
(n+ (r+1)m)p = pmé.

But these two numbers are different by 0 < § < 1. This is a contradic-
tion. []

REMARK 3.35. If char k > 0, then we do not need Steps 11 and 12 in the
proof of Theorem 3.34 by using Proposition 3.32(1).

3.7. Abundance theorem for R-divisors (k #F))
In this section, we establish the abundance theorem in the case where A
is an R-boundary. We fix the following notation.

NOTATION 3.36. Let X be a projective normal Q-factorial surface. We
fix prime divisors Aq,...,As; and a positive integer A € Z~. Let

L= {Be Y RA;[0<B gAZAi}.

Let
M(X, L) :=max({3} U{—(Kx +A\;) - A;}),

where i ranges over 1 <17 <s.

Lemma 3.37 and Proposition 3.39 play key roles in this section. The
arguments are extracted from [Bi, Section 3].

LEMMA 3.37. If R is an extremal ray of NE(X) spanned by a curve, then
there exists a curve C' such that R =R>o[C] and —(Kx +B)-C < M(X, L)
for all Be L.
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Proof. Let H be an ample line bundle on X. Take a curve C with
R:Rzo[C] and H-C:min{H-D},

where D ranges over curves generating R. We want to prove that C' satisfies
the desired condition. Set B € L. If —(Kx + B)-C <0, then there is nothing
to prove. Thus, we may assume that —(Kx + B)-C > 0. This means that R is
a (K x + B)-negative extremal ray. Then, by Theorem 3.13 and Remark 3.14,
there exists a curve C’ such that R =R>o[C’] and

—(Kx +B)-C'< L(X,B) =max({3} U{—(Kx + B) - Au}),

where A, ranges over the prime components A, of B with Ai < 0. Here, by
the definition of M (X, L), we have L(X,B) < M (X, L). Thus, we obtain

—(Kx +B)-C' < M(X,L).

By
—(Kx+B)-C —(Kx+B)-C'
H-C N H-C ’
we have
H-C
—_— . e _— . ,
(Kx+B)-C=(~(Kx +B)-C') 1o
<—(Kx+B)-C'
<M(X,L).
This completes the proof. 0

DEFINITION 3.38. For an R-divisor B € >_; ; RA; and for its prime decom-
position B =Y r;A;, we define

18] = (X n?) "

where |r;| is the absolute value of r;.

PROPOSITION 3.39. Let I' be a Q-divisor on X. Let M be a positive real
number.
(1) Let A € L. Then there exists a positive real number € depending on
X, L, A, T, and M, which satisfies the following property: let C be
a curve on X such that —(Kx + T + B)-C <M for all B€ L. If
(Kx+T'+A)-C>0, then (Kx+T'+A)-C>e.
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(2) Let A € L. Then, there exists a positive real number §, depending on X,
L, A, T, and M, which satisfies the following property: if a curve C' in
X and an R-diwisor By € L satisfy ||Bo— Al <, (Kx +T'+By)-C' <0,
and —(Kx +T+ B)-C' <M forall BE L, then (Kx +T+A)-C' <0.

(3) Let {Ci}ier be a set of curves such that —(Kx +1T + B)-Cy < M for
all B € L. Then, the set

NT(F)::{Beﬁ‘(KX+F+B)-Ct20f0ranyt€T}

s a rational polytope.

Proof. Note that, for every B € L, we obtain the irreducible decomposi-

tion .
B=> LA,
=1

for some real numbers [; with 0 <[; <.
(1) We can write A :=>"[;A; as above. Then we have

(Kx+T+A)-C=) Li(Kx +T+A;)-C.
Suppose that (Kx +I'+ A) - C < 1. Then we have

L(Kx +T+A)-C<1-) Li(Kx +T+4A;)-C
i
<1+> LM
J#i
<1+ (s—1)AM.

Thus, if [; # 0, then we obtain

M < (Kx+T+A)-C< %(1'}‘(8— DAM).
(2

Since X is Q-factorial, the Q-divisor Kx +I'+ A; is Q-Cartier. This means
that there are only finitely many possibilities for the number (Kx + ' +
A)-C.

Thus, if (Kx +T'+A)-C < 1, then there are only finitely many possibil-
ities for the number (Kx +I'+ A)-C =Y l;(Kx + I + A;) - C. Therefore,
we can find the desired number e.
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(2) Suppose that the statement is not true. Then, for an arbitrary positive
real number 4, there exist a curve ¢’ and an R-divisor By € £ which satisfy
|Bo— Al <d, (Kx+T'+By)-C'"<0, —(Kx+T+B)-C'"<M forall Be L
and (Kx +T+A)-C’">0. Set § :=1/m for any m € Z~o. Then we obtain
an infinite sequence of curves Cy, and B, € £ which satisfy

(Kx +T+ By,) - Cr, <0,
—(Kx+TI'+B)-Cp, <M forall BeL, and
(Kx+T+A)-Cp >0,

and || By, — A|| converges to 0. Let A =)"1;A;, and let By, =) l; mA; as
above. Then we see that l; =lim/; ,,. Here, for each j, the set {(Kx + 1"+
A;j) - Cr}m has a lower bound —M.

We show that, if [; # 0, then the set {(Kx +I'+A;) - Cy, }im has an upper
bound. Since 0 <; = liml;,,, we may assume that l;,, >0 for all m by
replacing the sequence with a suitable subsequence. By the inequality

0> (Kx +T+Bp) Cn= Lim(Kx +T+A;)-Cn,

we have
(KX+F+Aj).Cm§lL< > lim(Kx +T+A:)-C )

P iy
1

< g (o tin)
DI ity

<1 s—an
Lim

Since the set {1/, }m has an upper bound, the set {(Kx +T'+ A;)-C}m
also has an upper bound. This is what we want to show.
Then, for m > 0, we have

(Kx-i-r—l-Bm)'Cm
=(Kx +T+A)-Coo+ > (lign — 1) (Kx + T+ A;) - Cpy
>et+ > (lim—L)(Ex +T+ M) C

=+ Y (lim—L)(Ex +T+ M) Cr+ D Lim(Kx +T 4+ Ai) - Cr
1;#0 ;=0
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et > (lim—1)(Kx +T+A) Co+ Y Lijn(—M)
1,0 1;=0
> 0.

The first inequality follows from (1). The third inequality follows when
m > 0. Note that, if I; # 0, then the set {(Kx + T + A;) - Cy, }i is bounded
from both sides. This is a contradiction.

(3) We show the assertion by the induction on dim £. If dim £ = 0, then
there is nothing to show. Thus, we assume that dim £ > 0. We may assume
that for each ¢ € T' there exists B € £ with (Kx +TI'+ B)-C; <0.

We see that Np(T') is a compact set. Then, by (2) and by the compact-
ness of Np(T'), there exist R-divisors Aq,..., A, € Np(I') and positive real
numbers 01 > 0,...,d, > 0 such that Np(T") is covered by B;:={B € L |
|B— A;|| <0;} and such that if B € B; with (Kx +T'+ B) - Cy <0 for some
teT, then (Kx +T'+ A;)-Cy=0. Set

Ti::{t€T|(KX+F+B)~C’t<0f0r someBGBi}.

Then, for every t € T;, we have (Kx + '+ A;) - C; = 0. In particular, A, is
a Q-divisor.
Here, we prove that

Np(T) = Nz(D).

The inclusion Np(I') C N7, (T') is obvious. Thus, we want to prove that
Np(T) D N7, (T). Let B ¢ Np(T'). Since Np(T') is compact, we can find an
element B’ € Np(I') with

|B' — B|| = min{[|B* — B|| | B* € Np(I) }.

Here we have B’ € B; for some i. Since B; N BB’ is an open subset of BB’
where BB’ is the line segment, we have an element B” such that B”
B;NBB’, B" # B, and B" # B’. This means that there is a real number j
with 0 < 8 <1 such that

BB+ (1-B)B'=B".
We obtain

B(Kx+T+B)+(1-p)(Kx+TI'+B)=Kx+T+B".
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Moreover, we see that B” ¢ Np(T'). Here, since B” € B; \ Np(T'), we have
(Kx +T'+ B")-Cy <0 for some t € T;. Thus, we obtain the inequality

B(Kx+T+B) Ci=(Kx+T+B")-C,—(1-8)(Kx+T+B) -C
<—(1-B)(Kx+T+B)-C
<0.

Therefore, we have (Kx + '+ B) - C; < 0. This means that B ¢ N, (T).

Therefore, it is enough to prove that each N, (I") is a rational polytope.
By replacing T with T;, we may assume that there exists a Q-divisor Ag €
N7(T) such that (Kx +T + Ag) - Cy =0 for every t € T. Let L,..., L% be
the proper faces of £ with codimension 1. Note that, for every 1 <u' < u,
there exists a positive integer 7' such that

(1) 5“’:{36211@/\2- ongsz}

iti! it/

or such that

(11) 5“/:/\Ai/+{BeZRAi Ong)\ZAi}.
i it

Let us prove that each J\/%‘/(F) =Np()N £* is a rational polytope. If
LY satisfies equation (I), then we see that

NFE@) ={BeL"|(Kx+T+B)-C;>0forany teT}.

Hence, /\/}‘/(F) is a rational polytope by the induction hypothesis. Thus,
assume that £ satisfies equation (I1). Set LY := {B € 2z RA [0S B<
A iz Ai}. Equation (II) implies that

LY =M\y + LY.
Then we see that
NF@)={BeL"|(Kx+T+B)-C;>0forany t€ T}
= A\ + {Bo Eﬁgl ‘ (Kx +T' 4+ A\y + By) - C, >0 for anthT}.
For all By € E})‘/, we have the inequality

—(Kx +T + My + By) - C, < M.
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Thus, the set

Np(LE T+ My)
:={Bo eLy | (Kx +T+AAy + Bg)-C; >0 for any t € T'}
is a rational polytope by the induction hypothesis. Therefore, N:}«”, (T) is also
a rational polytope, and this is what we want to show.
Here, take an arbitrary element B € Np(I') with B # Ag. Then we can
find B' € £ for some 1 <’ <u such that B is on the line segment defined
by Ag and B’. Since (Kx + T + Ag) - C; =0 for all t € T, we have B’ €

N#(T). Thus, we see that N7(T') is the convex hull of Ay and all the
N#(T). Hence, Np(T) is a rational polytope. 0

COROLLARY 3.40. Let {R;}er be a family of extremal rays of NE(X)
spanned by curves. Then the set

NT::{BEE‘(KX—i—B)-thOforanytET}

18 a rational polytope.

Proof. By Lemma 3.37, for every t € T' there exists a curve Cy such that
R =R>¢[Ct] and —(Kx + B)-Cy <M (X, L) for all Be L. Let I := 0, and
let M := M(X,L). Then we can apply Proposition 3.39. Therefore, the set
N7 = N7 (0) is a rational polytope. 0

Now, we prove the abundance theorem with R-coefficients.

THEOREM 3.41. Let X be a projective normal Q-factorial surface over k,
and let A be an R-boundary. If k is not the algebraic closure of a finite field
and Kx + A is nef, then Kx + A is semiample.

Proof. Let {R;}ier be the set of all the extremal rays of NE(X) spanned
by curves. Then

J\/'T::{Beﬁ‘(KX+B)-RtZOf0reveryt€T}

is a rational polytope by Corollary 3.40. Moreover, by Theorem 3.13, we see
that

Nr={BeL|(Kx+B) R >0 for every te T}
={B e L|Kx + B is nef}.
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Since A € N7, we can find Q-divisors Aq,...,A; such that A; € N for all 4
and such that > r;A; = A, where positive real numbers r; satisfy > r; = 1.
Thus, we have

Kx+A= Zn‘(Kx + Ay),
and Kx + A; is nef. By Theorem 3.33, Kx + 4A; is semiample. 0

84. Normal surfaces over Fp

4.1. Contraction problem

In this section, let & be an arbitrary algebraically closed field, and let
chark =p > 0. As the introduction of this part, we consider the following
question.

QUESTION 4.1 (Contraction problem). Let X be a smooth projective
surface over k, and let C be a curve in X. If C? < 0, then is C contractible?
That is, does there exist a birational morphism f: X — Y to an algebraic
surface Y such that f(C”) is one point if and only if C' = C for every curve
C'?

ANSWER 4.2. Ifk # Fp, then the answer to Question /.1 is no in general.

We only recall the method of its construction. For more details, see [H,
Example 5.7.3].

Construction. If we obtain an elliptic curve C in P? with rank at least 10,
then we can construct a counterexample as follows. There are 10 points in
Co which are linearly independent. Blow up P? at these 10 points. The
proper transform C' of Cy is not contractible. U

By Fact 2.3, if k # Fp, then we can use this construction. On the other
hand, if £ = Fp, then we have the opposite answer.

ANSWER 4.3 ([A, Theorem 2.9]). If k =T, then the answer to Ques-
tion 4.1 s yes.

To see this answer and its mechanism of this proof, we divide the verifi-
cation into small pieces and prove the more general following result.

PROPOSITION 4.4. Let X be a projective normal Q-factorial surface over
k, and let C be a curve in X.

(1) If C%2 <0, then there exists a nef and big divisor G such that G -C' =0
if and only if C' = C for any curve C' in X.
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(2) If the restriction G|c of the divisor G in (1) is a torsion, and if char k =
p >0, then G is semiample.
(3) If k=T,, then G|c is torsion.

Proof. (1) Let H be an ample divisor on X. We define a Q-divisor G and
q€ Qs by G=H+qC and G-C =0. It is easy to check that G satisfies
the above conditions.

(2) Since p > 0, we can use Keel’s result (Theorem 2.2). Therefore, the
semiampleness of G is equivalent to the semiampleness of G|¢. But G|¢ is
a torsion by the assumption. Thus, G is semiample.

(3) This is an immediate consequence of Corollary 2.4. U

For results related to this section, see [A] and [Ba2].

4.2. Q-factoriality
In this section, we prove the following two theorems.

THEOREM 4.5. If X is a normal surface over Fp, then X is Q-factorial.

THEOREM 4.6. Let f: X —Y be a proper birational morphism between
normal surfaces over Fp. Then f factors into contractions of one curve.
More precisely, there exist proper birational morphisms such that each g; :
Xi; — Xi41 1s a proper birational morphism between normal surfaces such
that Ex(g;) is an irreducible curve.

The following lemma plays a key role in this section.

LEMMA 4.7. Let f: X — Y be a proper birational morphism over Fp
from a normal Q-factorial surface X to a normal surface Y. Let Ex(f) =
CiU---uUC,.

(1) There exists a proper birational morphism g : X — Z to a normal sur-
face Z such that Ex(g) =C}.

(2) The morphism f factors through Z.

(3) The surface Z is Q-factorial.

Proof. (1) If X and Y are proper, then the assertion follows from Propo-
sition 4.4. Note that proper Q-factorial surfaces are projective (see [F2,
Lemma 2.2]). In the general case, take the Nagata compactification. Note
that normality and Q-factoriality may break up by compactification. How-
ever, by taking the normalization and the resolution of the locus of X \ X,
we may make these assumptions.

(2) This is obvious.
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(3) The assertion immediately follows from Propositions 3.25, 3.26,
and 4.4. 0

COROLLARY 4.8. Let f: X —Y be a proper birational morphism over
Fp from a normal Q-factorial surface X to a normal surface Y. Then'Y is

Q-factorial.

Proof. By using Lemma 4.7 repeatedly, f is factored into contractions of
one curve, and Q-factoriality of X descends to Y. 0

By the same argument, Theorem 4.6 follows from Theorem 4.5. Thus, we
prove only Theorem 4.5.

Proof of Theorem /.5. Let f: X" — X be the resolution of singularities.
Of course, X’ is Q-factorial. Therefore, X is also Q-factorial by Corol-
lary 4.8. {

REMARK 4.9. Theorem 4.5 follows from [Bal, Corollary 14.22] and [Ma,
(24.E)].

4.3. Theorems in Section 3
In this section, we establish the theorems, which we discussed in Section 3,
over Fp under much weaker assumptions.

THEOREM 4.10 (Contraction theorem). Let X be a projective normal
surface over Fp, and let A be an effective R-divisor. Let R =R>¢[C] be a
(Kx + A)-negative extremal ray. Then there exists a surjective morphism
or: X =Y to a projective variety Y with the following properties:

(1) let C" be a curve on X, and then ¢r(C") is one point if and only if
[C'] € R;

(2) (6r)+(Ox) = Oy

(3) if L is an invertible sheaf with L-C =0, then nL = (¢r)*Ly for some
invertible sheaf Ly on'Y and for some positive integer n;

(4) p(Y)=p(X)—1.

Proof. If C? >0, then we have
Kx -C<(Kx+A)-C<O.

Then we can apply Theorem 3.21. Thus, we may assume that C? < 0. But
this curve is contractible, and the proofs of the remaining properties are the
same as those of Theorem 3.21. []

https://doi.org/10.1215/00277630-2801646 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-2801646

44 H. TANAKA

The following theorem is a known result (see [Bal, Corollary 14.29]). We
give a minimal model-theoretic proof.

THEOREM 4.11 (Finite generation theorem). Let X be a projective normal
surface over F,, and let D be a Q-divisor. Then R(X,D) = D0 HO(X,
LmD_) is a finitely generated Fp-algebm.

Proof. We may assume that x(X, D) > 1. Then, in particular, D is effec-
tive. If there is a curve with D-C < 0, then C? < 0 and C is contractible. Let
f:X =Y be the contraction of C. Note that we obtain D = f*f.D + qC,
for a positive rational number g. Therefore, we may assume that D is nef.
If K(X,D) =1, then D is semiample by Proposition 3.23. If k(X,D) = 2,
then D is semiample by the following proposition. 0

PROPOSITION 4.12. Let X be a projective normal surface over Fy,. If D
s a nef and big Q-divisor, then D is semiample.

Proof. If there is a curve C such that D -C =0, then C? <0 and C
is contractible. Let f: X — Y be its contraction, and let f*Dy = D. It is
sufficient to prove that Dy is semiample. Repeating the same procedure,
we see that D is a pullback of an ample divisor. 0

THEOREM 4.13 (Nonvanishing theorem). Let X be a projective normal
surface over Fp, and let A be an effective Q-divisor. If Kx + A is nef, then
IQ(X,KX —|—A) > 0.

The proof of this theorem depends heavily on the argument in [M, The-
orem 2|.

Proof of Theorem 4.135. We may assume that X is smooth by replacing
it with its minimal resolution.

STEP 1. If k(X, Kx) >0, then r(X, Kx + A) > k(X,Kx) > 0. Thus, we
may assume that (X, Ky)= —oc.

STEP 2. In this step, we show that we may assume that Kx + A is not
numerically trivial and that h?(X,m(Kx + A)) =0 for m > 0.

If Kx + A is numerically trivial, then Kx + A is a torsion by Fact 2.3.
Thus, we obtain n(Kx + A) ~ 0 for some integer n and (X, Kx +A) =0.
Therefore, we may assume that Kx + A is not numerically trivial. Then we
obtain h?(X,m(Kx +A)) =h%(X,Kx —m(Kx +A)) =0 for m>>0. (We
have (Kx + A)-C > 0 for some curve. Then there exist an ample divisor A
and an effective divisor E such that A =C + E. By the nefness of Kx + A,
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we obtain (Kx + A)- A > 0. Then since (Kx —m(Kx + A))- A <0 for
sufficiently large integer m, we obtain h%(X, Kx —m(Kx 4+ A)) =0.)

STEP 3. In this step we show that we may assume that (Ky + A)%2=0.

Suppose the contrary; that is, suppose that (Kx +A)2 > 0. Then Kx +A
is nef and big. Then we obtain h%(X,m(Kx + A)) > 0 for some positive
integer m, and x(X, Kx +A) > 0.

We consider the two cases: X is rational or irrational.

STEP 4. In this step, we prove the assertion when X is rational.
Now x(Ox) =1 because X is rational. Then, the Riemann-Roch theorem
shows that

K (X, m(Kx + A))
1
=h' (X, m(Kx +A)) +1+ FM(Ex +4)- (m(Kx +A) — Kx),
where m > 0. The right-hand side is positive because

m(Kx—i-A) (m(Kx+A)—Kx)
=m(Kx +A)- (m—1)(Kx +A)+A)>0

by the nefness of Kx + A. This is what we want to show.

Thus, we may assume that X is an irrational ruled surface. We divide
the proof into three cases: (Kx + A)- Kx <0, (Kx +A)-Kx >0, and
(Kx+A)-Kx=0.

STEP 5. We assume that X is irrational and that (Kx + A) - Kx <0.
By Steps 2 and 3 and the Riemann-Roch theorem, h?(X, m(Kx +A)) >0
for some large integer m. This is what we want to show.

STEP 6. We assume that X is irrational and that (Kx + A) - Kx > 0.
Since (Kx +A)?2=0and (Kx +A)-Kx >0, we obtain (Kx +A)-A <0.
This contradicts the nefness of Kx + A.

STEP 7. We assume that X is irrational and that (Kx + A) - Kx =0.

We assume that (X, Kx + A) = —oco and derive a contradiction. By
(Kx +A)-Kx =0 and (Kx +A)? =0, we obtain (Kx +A)-A=0. Let
C be an arbitrary prime component of A. Since A # 0, we can take such
a curve. (Indeed, if A =0, then Ky is nef. This contradicts that X is
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a ruled surface.) By (Kx + A)-A =0 and the nefness of Kx + A, we
have (Kx + A)-C =0. By Fact 2.3, we obtain n;(Kx + A)|c ~ 0 for some
n1 € Z~o. Then we get the exact sequence

0— Ox(nlng(KX +A) - C) — Ox(nlng(KX + A)) —0Oc—0

for every no € Z~. Here we want to prove that, for every ny > 0,
hQ(X,nan(KX + A) — C) =0.

By Serre duality, we obtain h?(X,nina(Kx +A) — C) =h%(X,Kx +C —

ning(Kx + A)). This is 0, by the same argument as in Step 2.

Fix ng >0, and let n:=nny. By h?(X,n(Kx +A) — C) =0, we have a

surjection HY(X,n(Kx + A)) — H(C,0O¢). This means that

R (X, n(Kx +A)) > hHC,0¢).

On the other hand, by h°(X,n(Kx + A)) = h%*(X,n(Kx + A)) =0 and the
Riemann—Roch theorem,

1
—h' (X, n(Kx +A)) =x(Ox) + §n(KX +A)-{n(Kx +A) - Kx}
=x(0x)=1-h'(B,0p),
where 7 : X — B is the ruling. Hence, we have
h'(B,0p) —1=h'(X,n(Kx + A)) > ' (C,0¢).

This shows that C is in some fiber of 7. In particular, for a smooth fiber
F, we have C'- F'=0. Recall that C is an arbitrary prime component of A;
then we obtain A - F'=0. Thus, we have

0<(Kx+A) F=Kx F=-2

This is a contradiction. U

THEOREM 4.14 (Abundance theorem). Let X be a projective normal sur-
face over Fy,, and let A be an effective R-divisor. If Kx + A is nef, then
Kx + A is semiample.
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Proof. By the same proof as Theorem 3.41, we may assume that A is a
Q-divisor. By Theorem 4.13, we have x(X, Kx + A) > 0. By Propositions
3.23 and 4.12, we may assume that x(X, Kx + A)=0. Then we can apply
the argument of Steps 1 and 2 in Theorem 3.34. By Proposition 3.32(1),
we have £(S,Y) =1 for indecomposable curves of canonical type Y in S
over F,,. This contradicts Z # 0 and (S, Z) = 0. [

As an immediate corollary, we obtain the following base-point-free theo-
rem.

THEOREM 4.15 (Base-point-free theorem). Let X be a projective normal
surface over F,, and let D be a nef divisor. If k(X,qD — Kx) >0 for some
positive rational number q, then D is semiample.

Proof. Take ¢D — Kx ~g A. We obtain ¢D ~g Kx + A and can apply
the abundance theorem. []

4.4. Examples

In this section, let k£ be an algebraically closed field of arbitrary charac-
teristic. We want to see the difference between k =, and k # F,, by looking
at some examples.

EXAMPLE 4.16 (See Theorems 3.21 and 4.10). If k #F,, then there exist
a smooth projective surface X over k and an elliptic curve C in X such that,
for an arbitrary positive real number e, (Kx +(1+¢€)C)-C <0, C?> <0, and
C is not contractible.

Construction. Consider Answer 4.2 and its construction. There exist a
smooth projective surface X and an elliptic curve C in X such that C? = —1
and C is not contractible. Moreover, we have

(Kx+(1+¢C)-C=(Kx+C)-C+eC-C
=eC-C<0.
This is what we want to show. H

EXAMPLE 4.17 (See Theorems 3.30 and 4.13). If k #F,, then there exist
a smooth projective surface X over k and curves C1 and Cy in X such that

Kx+(14+e)Ci+(1—€)C=0 and
H(X,KX + (1—1—6)01 + (1 —€)C2) = —00

for an arbitrary positive rational number €.
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Construction. Let P:=P!, and let E be an arbitrary elliptic curve. Set
Xo:= P x E. We construct X by applying the elementary transform to the
P!-bundle Xy at two appropriate points. Let e; and ey be points in E which
are linearly independent. Fix two different points p; and ps in P, and set
S1:={p1} x E and Sy :={p2} x E. Then we see that

KXO ~Q —(1 + E)Sl — (1 - E)Sg

for an arbitrary rational number e. Let x1 := (p1,e1) and let zg := (p2,€2).
We take the elementary transform of Xy at z1 and z2 and obtain X. (First,
blow up at x1. Then the proper transform of the fiber through z7 is a (—1)-
curve. Second, contract this (—1)-curve and get another P'-bundle. Repeat
the same thing at z3.) Let C; and Cy be the proper transforms of S; and
So, respectively, and let F; and Fb be the fibers corresponding to x; and
X9, respectively. Then we see that

Kx ~g—(14€)C1 — (1 —€)Cy — eFy + €Fy,
which implies that
Kx+(1+€)C1+(1—¢€)Cy~ge(—F1 + F).

This divisor is numerically trivial. Here we want to show that x(X,—F; +
Fy) = —oo, that is, that —F} 4+ F» is not a torsion. Consider the ruling
m: X — E and one of its sections o : E — X. Then we have F; = 7*e; and
F> =m*ey. Linear independence of e; and e; shows that

Ox (n(—F1 + FQ)) % Ox.

Indeed, if Ox (n(—F) + F3)) ~ Ox, then we have 7*Og(n(—ej +e2)) ~ Ox.
Then, we obtain

Op(n(—e1 +€2)) 2 o* 1" Op(n(—e1 + e2)) ~ 0" Ox ~ Op.

This is a contradiction. U

EXAMPLE 4.18 (See Theorems 3.33 and 4.14). If k # F,, then there exist
a projective smooth surface X over k and an elliptic curve C in X such
that, for an arbitrary positive rational number €, Kx + (1 + €)C is nef,
R(X,Kx+(14¢€)C) >0, and Kx + (14 ¢€)C is not semiample.
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Construction. Set Xo :=P?. Let Cy be an arbitrary elliptic curve in Xo,
and let P,..., Py be points in Cy which are linearly independent. Blow up
at these nine points; then we obtain the surface X. Let C be the proper
transform of Cy. By Kx, = —Cp, we have Kx = —C'. Then

Kx+(14+¢C=¢C

is nef by C2? = 0. It is obvious that x(X, Kx + (1+¢)C) > 0. We prove that
Kx + (1+¢€)C is not semiample. It is sufficient to prove that x(X,C) =0.
Suppose the contrary; that is, suppose that x(X,C) > 1. Then we obtain
nC ~ D for some nonzero effective divisor D with C' ¢ Supp D. Since C -
D =0, Supp(f«(D)|c,) must be contained in Pi,..., Py. This means that
ni P+ - +ngPy = fu(D)|c, ~3nL|c,. Here L is a line in Xy. But this
means that ni Py + -+ + ngPy =0 in the group structure of Cy. This is a
contradiction. 0

85. Log canonical surfaces

5.1. Log canonical singularities
In this section, we describe the log canonical singularities in surfaces by
using the contraction theorem (Theorem 3.21).

DEFINITION 5.1. We say that a pair (X,A) is a log canonical surface if
a normal surface X and an R-divisor A satisfy the following properties:
(1) Kx + A is R-Cartier;
(2) for an arbitrary proper birational morphism f:Y — X and the divisor
Ay defined by

Ky + Ay :f*(KX —l—A),

the inequality Ay <1 holds;
(3) A is effective.

First, we pay attention to only one singular point.

DEFINITION 5.2. We say that (X, A) is a local situation of a log canonical
surface if it satisfies the following properties.

(1) The pair (X, A) is a log canonical surface.
(2) There exists only one singular point z € X.
(3) All prime components of A contain x.
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THEOREM 5.3. Let (X,A) be a local situation of a log canonical surface,
and let f:Y — X be the minimal resolution of X. Then, there exists a
sequence of proper birational morphisms

. fm—l

fy:mﬁmﬂu-+m:zix

with the following properties.

(1) Each'Y; is a normal Q-factorial surface.

(2) Each f; is a proper birational morphism, and E; := Ex(f;) is an irre-
ducible curve.

(3) Each E; satisfies (Ky, + E;) - E; < 0.

(4) Either (a) or (b) holds:
(a) g is an isomorphism;
(b) A=0, and E:=Ex(g) is an irreducible curve such that (Ky + E) -

E=0.

Proof. We assume that we obtain
FYy=vnSnli. 5y Sx

such that each Y; (as well as each f;) satisfies (1), (2), and (3).
We prove that, if we can find a G-exceptional proper curve E; such that
(Ky, + Ej) - Ej <0, then we obtain a contraction of Fj;

fi Y=Y

to a Q-factorial surface Y;y;. If X and Y; are proper, then we obtain
the required morphism f; by Theorem 3.19 and Propositions 3.24, 3.25,
and 3.26. Note that a proper Q-factorial surface is projective (see [F2,
Lemma 2.2]). For the general case, take compactifications as follows. Let
X be a proper normal surface, and let A be an R-divisor on X such that
X < X is an open immersion, (X,A) is a local situation of log canon-
ical surface, and Alx = A. We define Y; by patching Y; and X along
Y; \ Ex(G) ~ X \ {z}. Then, Y; is Q-factorial. Thus, we can reduce the
problem to the case where X and Y; are proper.

If G is an isomorphism, then we obtain (a). Thus, we may assume that
G is not an isomorphism. Then, we can take a G-exceptional curve E;. We
obtain

(Kyj —I—Ej)-EjS(Kyj +Aj)-E;=G"(Kx+A)-E;=0,
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where A; is defined by Ky, +A; = G*(Kx + A). We may assume that
(Ky, + Ej) - Ej = 0. In this case, the coefficient of E; in A; is 1.

First, assume that Ex(G) is reducible. Then, there exists a G-exceptional
curve B such that Ej N E} # (. Then, we have

(Ky]. —|—E§»)-E}<(Kyj +Aj)-EJ,-:G*(Kx+Aj)'E}:0.

This is what we want to show.

Second, assume that E :=Ex(G) is irreducible. Since (Ky, + E) - E' <
0, we consider the two cases (Ky, + E)- E <0 and (Ky, + F)-E=0. If
(Ky, + E) - E <0, then this means (a). Assume that (Ky, + E)- E =0. We
show that A =0. If A #0, then we have

(Kyj +E)~E< (Kyj +Aj)-E:O.
This means (b). 0

This theorem teaches us that non-Q-factorial log canonical singularities
are made by the case (b). Applying the same argument as above, we obtain
the global version as follows.

THEOREM 5.4. Let (X,A) be a log canonical surface, and let f:Y — X
be the minimal resolution of X. Then, there exists a sequence of proper
birational morphisms

. fm—l

fzyzzyoﬁylg-- i . ¢

with the following properties.

(1) Each'Y; is a normal Q-factorial surface.

(2) Each f; is a proper birational morphism, and E; := Ex(f;) is an irre-
ducible curve.

(3) Each E; satisfies (Ky, + E;) - E; <0.

(4) FEither (a) or (b) holds:
(a) g is an isomorphism;

(b) g(Ex(g))NSupp A =0, and, for every point Q € g(Ex(g)), g~ (Q) =
E is a proper irreducible curve such that (Ky + E) - E=0.

In particular, Kx and all prime components of A are Q-Cartier.
Proof. This follows from the same argument as for Theorem 5.3. [l

REMARK 5.5. By Theorem B.4, we see that Z has, at worst, rational
singularities. But we do not use this fact in this paper.
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5.2. Minimal model theory for log canonical surfaces

In this section, we consider the minimal model theory for log canonical
surfaces. We have already proved the cone theorem in Section 3.2. Thus, let
us consider the contraction theorem.

THEOREM 5.6 (Contraction theorem). Let (X,A) be a projective log
canonical surface, and let R = R>[C] be a (Kx + A)-negative extremal
ray. Then there exists a morphism ¢r: X — Y to a projective variety Y
with the following properties:

(1) let C" be a curve on X, and then ¢r(C’) is one point if and only if
[C'] € R;

(2) ¢«(Ox)=0y;

(3) if L is a line bundle with L -C =0, then nL = (¢R)*Ly for some line
bundle Ly on'Y and for some positive integer n;

(4) p(Y)=p(X)—1;

(5) (Y, (¢Rr)«(A)) is a log canonical surface if dimY = 2.

Proof of the case where C? > 0. First, we prove that there exists a curve
D in X such that D is Cartier, D is ample, and R>o[C] = R>o[D]. Since
X is a projective normal surface, we can apply Bertini’s theorem. Then
the complete linear system of a very ample divisor has a smooth member D
such that DN Sing(X) = (). Note that D is a Cartier divisor. Let f: X' — X
be the minimal resolution, and let D’ be the proper transform of D. Since
f*(C) is a nef and big divisor, we obtain

nf*(C)~D' +E

for some effective divisor F¥ and some positive integer n. By sending this
equation by f., we obtain

TLCND+f*(E)

Since R>o[C] is extremal, we have R>o[C] = R>o[D]. Thus, we obtain
p(X) =1, because we can apply the same argument as the one in the proof
of Theorem 3.21. Set Y := Speck. Then ¢r: X — Y satisfies (1), (2), and
(4). We want to prove (3). This follows from Lemma 5.7 because Kx + A
is antiample. U

LEMMA 5.7. Let (X,A) be a projective log canonical surface. Let L be a
nef line bundle such that L — (Kx + A) is ample. Then, L is semiample.
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Proof. By Bertini’s theorem, there exists a smooth curve C' such that
nL—n(Kx +A)~C,

C'NSing(X) =0, and C is not a component of A. Let f: X' — X be the
minimal resolution, and let C’ be the proper transform of C. Then we obtain

nf (L) =nf*(Kx +A) ~ f*(C).

Since f*(C)=C", we have
* !/ 1 /
F1(L) ~g o+ A =,

where A’ is defined by Kx/ + A’ = f*(Kx + A). Since A’ + (1/n)C" is a
boundary, f*(L) is semiample by Theorems 3.41 and 4.14. Therefore, so
is L. Q

In the proof of the case where C? <0 in Theorem 3.21, we use only the
assumption of Q-factoriality in the form that Kx and C are Q-Cartier and
Kx + A is R-Cartier. Since Ky is Q-Cartier and Kx + A is R-Cartier by
Theorem 5.4, it is sufficient to prove that C is Q-Cartier.

Proof of the case where C? =0. It is sufficient to prove that R>o[C] =
R>o[D] for some Q-Cartier curve D. Let f: X’ — X be the minimal reso-
lution. Since f*(C)? =0 and f*(C) - Kxs <0, we obtain x(X’, f*(C)) = 1.
Therefore, f*(C) is semiample by Proposition 3.23. We consider the fibra-
tion 7 : X’ — B obtained by the complete linear system |nf*(C)| for some
n > 0. For an arbitrary f-exceptional curve E, we have E - f*(C) =0. This
means that an arbitrary exceptional curve is in some fiber of 7. Thus, there
exists an integral fiber D’ of m with D’ NEx(f) = () by Proposition 5.8. This
means that f(D’) = D is Cartier and that nC = D. This is what we want
to show. []

PROPOSITION 5.8. Let m: X — S be a dominant morphism from a normal
surface X to a curve S with m,Ox = Og. Then there exists a nonempty open
subset S in S such that all scheme-theoretic fibers of w| -1 (gn : 7 1(S") = S
are integral.

Proof. See, for example, [Bal, Corollary 7.3]. 0
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For the proof of the case where C? < 0, we consider the relation between
the non-Q-factorial log canonical singularities and extremal curves C' with
C? < 0. Since we want to prove that C is Q-Cartier, it is necessary to
consider the case where C' passes through the singular points of (b) in
Theorem 5.3. The following lemma demonstrates that these singularities
are actually Q-factorial.

LEMMA 5.9. Let (X, A =0) be a local situation of a log canonical surface,
and let x be the singular point of X. Assume that this singularity is (b) in
Theorem 5.3. If a proper curve C in X satisfies C - Kx <0, C?> <0, and
x € C, then X is Q-factorial.

Proof. We use the notation in (b) of Theorem 5.4. It is sufficient to prove
that E ~ P! by Propositions 3.25 and 3.26. Let Cz be the proper transform
of C. Then, we obtain

C3 <Cz-g*(C)=C* <0,
Cy - Kz<Cy - (Kz+E)=Cgz-g"(Kx)=C-Kx <0.

Thus, we obtain Cz ~ P!, and Cy is a curve generating a K z-negative
extremal ray. Let ¢ : Z — Z’ be the contraction of C'z. Since ¢ : E — ¢(E) =:
E’ is a birational morphism, it is sufficient to prove that E’ ~P!. We would
like to prove that

(Kz +E')-E' <.

Let us consider the discrepancy d defined by
Kz +E=9¢"(Kz +E')+dCy.
Here, by taking the intersection with E, we obtain
0=(Kz +E)-E'+dCz-E

by (Kz+ E)-E=0. By x € C, we see that Cz - E is a positive number.
Thus, it is sufficient to prove that d is a positive number. The inequality

0>Kx -C=g"(Kx)-Cz=(Kz+E)-Cz=dC%

shows that d is positive. 0

PROPOSITION 5.10. Let (X,A) be a log canonical surface. If a proper
curve C in X satisfies C - (Kx + A) <0 and C? <0, then C is Q-Cartier.
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Proof. By Theorem 5.3 and Lemma 5.9, C passes through only Q-factorial
points. {

Thus, we complete the proof of the Theorem 5.6. Next, we consider the
abundance theorem. But this immediately follows from the Q-factorial case.

THEOREM 5.11. Let (X,A) be a proper log canonical surface. If Kx + A
is nef, then Kx + A is semiample.

Proof. Take the minimal resolution and apply Theorems 3.41 and 4.14.
0

86. Relativization

6.1. Relative cone theorem
In this section, we consider the relativization of the cone theorem. But
this is not difficult by the following proposition.

PROPOSITION 6.1. Let w: X — S be a proper morphism from a nor-
mal surface X to a variety S. If dim7w(X) > 1, where w(X) is the scheme-
theoretic image of m, then we have

NE(X/S)=NE(X/S) =Y Rx[C|]

finite

Moreover, the Stein factorization m: X LN S satisfies one of the follow-

myg assertions.

(l-irr) Ifdim7(X)=1 and all fibers of 6 are irreducible, then NE(X/S) =
R>o[C] and C? =0. In particular, p(X/S) =1.

(1-red) Ifdimn(X)=1 and 0 has at least one reducible fiber, then each C;
has negative self-intersection number.

(2) Ifdim7(X) =2, then each C; has negative self-intersection number.

Proof. Note that dim7(X)=dimT and that NE(X/S)= NE(X/T).

(1-irr) All fibers are numerically equivalent. This is what we want to show.

(1-red) By Proposition 5.8, general fibers of 6 are irreducible. Therefore,
there are only finitely many reducible fibers. Since all fibers are numerically
equivalent, NE(X/S) is generated by the curves in the reducible fibers.
Because all fibers of 6 are connected, curves in reducible fibers have a neg-
ative self-intersection number.

(2) By 0.0x = Or, we see that 6 is birational. Since the exceptional
locus is a closed set, only finitely many curves are contracted by 6. Each
contracted curve has negative self-intersection number. 0
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Using this proposition, we obtain the following relative cone theorem.

THEOREM 6.2. Let m: X — S be a projective morphism from a normal
surface X to a variety S. Let A be an effective R-divisor such that Kx + A
is R-Cartier. Let A=Y b;B; be the prime decomposition. Let H be an R-
Cartier m-ample R-divisor on X. Then the following assertions hold:

(1) NE(X/S) = NE(X/S) ka0 + X Rso[CH;

(2) NE(X/S) = NE(X/S) iy 80850+ Spuiee B20lCi];

(3) each C; in (1) and (2) is rational or C; = B; for some B; with BJQ- <0;

(4) there exists a positive integer L(X,S,A) such that each C; in (1) and
(2) satisfies 0 < —C; - (Kx +A) < L(X,S,A).

Proof. If dimm(X) =0, then the assertion follows from Theorem 3.13.
If dim7(X) > 1, then assertions (1), (2), and (4) immediately follow from
Proposition 6.1. We prove (3). Let C be a (Kx + A)-negative proper curve
which generates an extremal ray, and 7(C') is one point. We may assume
that C' # B; for all B; with sz < 0. Take the Stein factorization of :

ﬂ:Xi)T—)S.

Let us take the Nagata compactification of T and its normalization 7.
Moreover, take the normalization X of a compactification of X — T. We
obtain the following commutative diagram:

open ==
X X
immersion
open =
T T
immersion

In X, we can apply (BB2) in the sense of Definition 3.6 to C. Then we
obtain
pnC =Mum OCC/ +7Z

for a positive integer n, a nonnegative integer «, a curve C’, and a sum of
rational curves Z. We consider the two cases dim7T =1 and dim7T = 2.
Assume that dim T = 1. Take an ample divisor A on 7. Since C-0" A =0,
the prime components of Z must be f-vertical. In advance, let ¢y € C' be
a point, in the notation of Definition 3.6, such that cg is not contained in
any curve C” # C which is contained in the fiber containing C. Then, there
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exists a prime component Z; of Z with ¢o € Z;. Here Z; must be C. In
particular, C is rational, and this is what we want to show.

Assume that dim7 = 2. Then, T is a proper normal surface. Since
5*(040/ + Z) =Mum 0, each prime component of Z is f-exceptional. The
remaining proof is the same as the case of dim7T = 1. U

We give an upper bound L(X,S,A) in the case where A is an R-boundary.

PROPOSITION 6.3. Let w: X — S be a projective morphism from a normal
surface X to a variety S. Let A be an R-boundary such that Kx + A is
R-Cartier. If R is a (Kx + A)-negative extremal ray of NE(X/S), then
R =R>¢[C], where C is a rational curve such that —(Kx + A)-C <3.

Proof. If dimm(X) =0, then the assertion follows from Proposition 3.15.
Thus, we assume that dim7(X) > 1. We can write R = R>o[C] for some
curve C. We show that C' satisfies the desired properties. By dim7(X) > 1
and Proposition 6.1, we see that C? < 0. Then, by Lemma 3.9, we have

Since

(Kx+C)-C<(Kx+A)-C<0,
by Lemma 3.16, we see that C is rational. U

6.2. Relative contraction theorem
In this section, we consider the relativization of the contraction theorem.

THEOREM 6.4. Let m: X — S be a projective morphism from a normal
surface X to a wvariety S. Let A be an R-divisor. Moreover, one of the
following conditions holds:

(QF) X is Q-factorial, and A is an R-boundary;

(FP) k=TF,, and A is an effective R-divisor;

(LC) (X,A) is a log canonical surface.

Let R=TR>o[C] be a (Kx + A)-negative extremal ray in NE(X/S). Then

there exists a surjective S-morphism ¢r: X —Y to a variety Y projective

over S with the following properties:

(1) let C" be a curve on X, and then ¢r(C") is one point if and only if
[C'] € R;

(2) (¢r)«(Ox)=Oy;
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(3) if L is an invertible sheaf with L -C =0, then nL = (¢r)*Ly for some
invertible sheaf Ly on'Y and for some positive integer n;

(4) p(Y/8)=p(X/8)— 1;

(5) if dimY =2, then Y is Q-factorial (resp., (Y, (¢pRr)«(A)) is log canoni-
cal) in the case of (QF) (resp., (LC)).

These three proofs of (QF), (FP), and (LC) are the same essentially.
Thus, we prove only the case when (QF).

Proof of Theorem 6./. Let 6: X — T be the Stein factorization of 7. We
see that dim7T =0, dim7T =1, or dim7T = 2. But the case dimT = 0 follows
from Theorem 3.21. Thus, we may assume that dim7T =1 or dim7T = 2.

Now let us take the compactification. First, take the Nagata compactifi-
cation of T' and its normalization T. Second, take the compactification X of
X — T. Moreover, if necessary, replace it by its normalization and a reso-
lution of the singular locus in X \ X. We obtain the following commutative
diagram:

X open Y
immersion
({ 0
T open =

— T

immersion

Then, X is projective normal Q-factorial and T is proper normal. Let A
be the R-boundary such that its restriction to X is A and A has no prime
components contained in X \ X.

Assume that C? < 0. This follows from Theorem 3.21 because C' is a
(K~ + A)-negative extremal curve in the cone of the absolute case NE(X).

Assume that C? > 0. Then, by Proposition 6.1, we see that p(X/T) =1
and that dim7T = 1. Set Y :=T. The assertions (1), (2), and (4) are trivial.
We want to prove (3). Note that all fibers of 6 are irreducible but that the
compactification § may have reducible fiber G =" G;. Then, by

0>(K7+Z)G:(Ky+Z)ZG“

we obtain 0 > (K + A) - G; for some irreducible component G; of the
fiber G. Thus, by Theorem 3.21, we may assume that all fibers of # are
irreducible. Therefore, each fiber F of 0 is (K5 + A)-negative. It is sufficient
to prove that F' generates an extremal ray of NE(X). By Theorem 3.13, we
have

FED+ZTiC¢,
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where D € W(Y)KY+ZZO, r; € R>g, and each C; generates a (K + A)-
negative extremal ray. Since F' is nef, we have F'- D =F - C; =0 for all i.
Here recall that all fibers of @ are irreducible. This means that C; is some
fiber with the reduced structure. Thus, we obtain F = qC; for some positive
number ¢, and F' generates an extremal ray. U

Then, we obtain the minimal model program in full generality.

THEOREM 6.5 (Minimal model program). Let w: X — S be a projective
morphism from a normal surface X to a variety S. Let A be an R-divisor
on X. Assume that one of the following conditions holds:

(QF) X is Q-factorial, and 0 < A <1;
(FP) k=TF,, and 0 <A;
(LC) (X,A) is a log canonical surface.

Then, there exists a sequence of proper birational morphisms

(XvA) = (XO)AO) ﬂ; (X17A1) ﬂ) e ¢:>1 (XSaAS) = (XTaAT)a

where (Pi—1)«(Di—1) =1 A,

with the following properties.

(1) Each X; is a normal surface, which is projective over S.

(2) Each (X;,A;) satisfies (QF), (FP), or (LC) according to the above
assumption.

(3) For each i, Ex(¢;) =: C; is a proper irreducible curve such that

(KXi+Ai)'Ci<0

and such that C; generates an extremal ray of NE(X/S).

(4) Let 7" : X1 — S be the S-scheme structure morphism; (X1, AT) satisfies
one of the following conditions:

(a) Kyt + Al is wf-nef;

(b) there is a projective surjective S-morphism p: X1 — Z to a smooth
curve Z such that Z is projective over S, pu«Ox+ = Oy, —(K; + A
is p-ample, and p(X1/Z) =1;

(c) X1 is a projective surface, —(K x+ + A') is ample, and p(XT) = 1.

In case (a), we say that (XT, At) is a minimal model of (X, A) over S.
In cases (b) and (c), we say that (XT,A") is a Mori fiber space over S.
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6.3. Relative abundance theorem

In this section, we consider the relativization of the abundance theorem.
To restate the problem from the absolute case to the relative case, let us
consider the following lemma.

LEMMA 6.6. Let m: X — S be a morphism from a projective normal Q-
factorial surface X to a projective variety S. Let A be an R-boundary on
X. If Kx + A is m-nef, then there exists an ample line bundle F on S such
that A+ 7*(F) ~g A’ for some R-boundary A" and Kx + A’ is nef.

Proof. Take the Stein factorization of 7
X571 %8

Take an arbitrary ample line bundle H on S. Since o is a finite morphism,
o*(H) is also ample. We may assume that ¢*(H) is very ample by replacing
H with its multiple. Note that ¢*(4H) is very ample. We want to prove
that F := 4H satisfies the assertion. If dim7 = 0, then the assertion is
obvious. Thus, we can consider the following two cases: (1) dim7" =1 and
(2) dimT = 2.

(1) Assume that dim7 = 1. In this case, T" is a smooth projective curve,
and general fibers of 6 are integral by Proposition 5.8. Thus, we can take a
hyperplane section

Pi+--+P,=Ge|oc*(4H)|

such that P; # P; for all i # j, 0~1(P,) is integral for each i, and 071(P;) is
not a component of A for each i. Therefore, for an R-boundary A’ defined
by

A=A+ 0%(G),

Kx + A’ is nef by Theorem 3.13 and Proposition 3.15.

(2) Assume that dim 7" = 2. In this case, T is a normal projective surface,
and 6 is birational. By Bertini’s theorem, we can take an irreducible smooth
hyperplane section G € |0*(4H)| such that Supp G N(Ex(0)) =0 and G is
not a component of 6,(A). Then, A’ := A + 0*(G) is an R-boundary, and
Kx + A’ is nef by Theorem 3.13 and Proposition 3.15. 0

We can prove the relative abundance theorem for Q-factorial surfaces
with R-boundary.
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THEOREM 6.7. Let m: X — S be a projective morphism from a normal
Q-factorial surface X to a variety S. Let A be an R-boundary. If Kx + A
is m-nef, then Kx + A is m-semiample.

Proof. We may assume that S is affine. Moreover, by taking Nagata’s
compactification, we may assume that S is projective and that X is projec-
tive Q-factorial. Note that the hypothesis of m-nefness may break up by tak-
ing the compactification. But, by running a (Kx + A)-minimal model pro-
gram over S, we may assume this hypothesis. Thus, we can apply Lemma 6.6.
Note that F' and A’ are the same notation as Lemma 6.6. Since Ky + A’ is
nef, Ky + A’ is semiample by the abundance theorem of the absolute case.
By Kx + A’ ~g Kx + A+ 7*(F), Kx + A is m-semiample. 0

We obtain the following theorem by applying the same argument.

THEOREM 6.8. Let m: X — S be a projective morphism from a normal
surface X to a variety S, defined over E,. Let A be an effective R-divisor.
If Kx + A is m-nef, then Kx + A is w-semiample.

Proof. We can apply the same proof as the one for Theorem 6.7. 0

The log canonical case immediately follows from the Q-factorial case.

THEOREM 6.9. Let m: X — S be a projective morphism from a log canon-
ical surface (X,A) to a variety S. If Kx + A is w-nef, then Kx + A is
w-semiample.

Proof. Take the minimal resolution, and apply Theorem 6.7. 0

We summarize the results obtained in this section.

COROLLARY 6.10. Let m: X — S be a projective morphism from a normal
surface X to a variety S. Let A be an R-divisor on X. Assume that one of
the following conditions holds:

(QF) X is Q-factorial, and 0 < A <1;
(FP) k=TF,, and 0 <A;
(LC) (X,A) is a log canonical surface.

If Kx + A is m-nef, then Kx + A is w-semiample.
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Appendix A. Base-point-free theorem

In this section, we consider the base-point-free theorem. First, we prove
the following nonvanishing theorem.

THEOREM A.l. Let X be a projective normal Q-factorial surface, and
let A be a Q-boundary. Let D be a nef Cartier divisor. Assume that D —
(Kx + A) is nef and big and that (D — (Kx + A)) - C >0 for every curve
C C SuppLA. Then k(X,D) > 0.

Proof. If k =T, then the assertion follows from Theorem 4.15. Thus, we
may assume that k # F,.

Assume that (X, D) = —o0, and we derive a contradiction. Let f: X' —
X be the minimal resolution, let Kx/+ A’ = f*(Kx+A), and let D' = f*D.

STEP 1. We may assume that «(X’, Kx/) = —oc.

Indeed, we have k(X' Kx/) < k(X' Kx/ + A") = k(X,Kx + A) = —o0.
Note that, if x(X,Kx + A) >0, then we have x(X,D)=kr(X,D — (Kx +
A)+ (Kx + A)) > 0. This is what we want to show.

STEP 2. In this step, we show that h?(X’, D') =0.
By Serre duality, we have

(X', D"Y=h"(X'Kx —D')  and
H(X/,KX/ —D/) SH(X/,KX/ —i—A/—D/):K}(X,Kx—l-A—D) = -0
because —(Kx + A — D) is nef and big.

STEP 3. In this step, we prove that X’ is an irrational ruled surface.
It is sufficient to prove that x(Ox) <0. Since h%(X',D’) = h?(X',D’) =
0, by the Riemann—Roch theorem, we obtain

1
AN X', D) =x(Ox:) + 5D' (D' — Kx).
Since

D' (D'—Kx)=D-(D-Kx) and
K(X,D—Kx)>r(X,D—(Kx+A)) =2,

we have D' - (D' — Kx/) > 0 by the nefness of D. Therefore, we get 0 >
—hl(X/,D/) > X(OX’)-
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Let m: X' — Z be its ruling. By Theorem 3.20, 7 factors through X.

STEP 4. We reduce the proof to the case where there is no curve C' in X
such that D-C =0 and C? < 0.

Let C be such a curve. We have (Kx + C) - C <0 by the assumption.
(Indeed, if C' C Suppc A, then

—(Kx+C)-C>—(Kx+A)-C=(D-(Kx+A))-C>0.
If C ¢ SuppLA_, then
—(Kx+C)-C>—(Kx+A)-C=(D-(Kx+A))-C>0.)

This shows that C' = P! and that C is contractible. Moreover, this induces a
contraction map ¢g: X — Y to a Q-factorial surface Y, and the irrationality
of X shows that 7 factors through Y. Let g.D = Dy, and let g.(A) = Ay-.
Then, we have Kx + A = ¢*(Ky + Ay ) + aC for some nonnegative rational
number a. Therefore, it is easy to see that Y has all the assumptions of X.

STEP 5. We reduce the proof to the case where Kx + A is not nef. In
particular, there is at least one (Kx 4+ A)-negative extremal ray.

If Kx + A is nef, then D =D — (Kx + A) 4+ (Kx + A) is nef and big,
and this is what we want to show. Thus, we may assume that Kx + A is
not nef.

STEP 6. We reduce the proof to the case where D = 0.

The nefness of D and k(X,D) = —co show that D? = 0. Since D and
D — (Kx + A) are nef, we have (D — (Kx +A))-D=—(Kx+A)-D>0.
We consider the two cases —(Kx +A)-D=0and —(Kx +A)-D >0. If
—(Kx +A)-D =0, then we obtain D =0 by the bigness of D — (Kx + A).
This is what we want to show. If —(Kx + A)-D > 0, then we have Kx -
D < 0. Two conditions Kx - D <0 and D? =0 mean that x(X,D) =1 by
resolution and the Riemann—Roch theorem. This case is excluded.

STEP 7. By Steps 4 and 6, there exists no curve C with C? < 0. By Step 5
and the classification of extremal rays, we have p(X) < 2. Since there is a
surjection X — Z to a curve Z, we have p(X) # 1. Thus, we obtain p(X) = 2.
Here, —(Kx + A) is ample because —(K x + A) is nef and big and because of
Step 4. Moreover, by Step 4, there are two extremal rays inducing the struc-
ture of the Mori fiber space to a curve. By Proposition 3.15, every extremal
ray is generated by a rational curve. This contradicts the irrationality of Z.
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This completes the proof. 0

Using the nonvanishing theorem, we obtain the following base-point-free
theorem.

THEOREM A.2. Let X be a projective normal Q-factorial surface, and
let A be a Q-boundary. Let D be a nef Cartier divisor. Assume that D —
(Kx + A) is nef and big and that (D — (Kx + A)) - C >0 for every curve
C CSuppLAl. Then D is semiample.

Proof. By Theorem A.1, we may assume that (X, D) > 0. But by Propo-
sition 3.23, we may assume that (X, D) =0 or 2. By the same argument as
Step 4 in the proof of Theorem A.1, we may assume that there is no curve
C in X with D-C =0 and C? < 0. Thus, if x(X, D) =2, then D is ample.
This is what we want to show. Hence, the remaining case is (X, D) = 0. We
have linear equivalence to the effective divisor nD ~ Y d;D;. Assume that
3> d;D; # 0, and let us get a contradiction. Since D? =0 and D is nef, we
have D - D; =0 for all ¢. Moreover, we get DZ-2 > 0 by the above reduction.
Then, we obtain D? = D; - D =0. Since D — (Kx + A) is nef and big, we
have

(D—(Kx+A)) Di=—(Kx +A)-D; >0.

This means that Kx - D; < 0. Then DZ-2 =0 and Kx - D; <0 show that
k(X,D;) =1 by taking a resolution and applying the Riemann—Roch theo-
rem. This contradicts (X, D) =0. U

The following example demonstrates that the base-point-free theorem
does not hold only under the boundary condition.

ExampLE A.3. If k+# E,, then there exist a smooth projective surface X
over k, an elliptic curve C in X, and a divisor D such that Kx + C =0
and the divisor D =D — (Kx + C) is nef and big but not semiample.

Construction. Let Xo :=P?, and let Cj be an elliptic curve in Xy. Let
Pi,..., Pig be 10 points which are linearly independent. Blow up these 10
points. We obtain the surface X, and let C be the proper transform of
Cy. Then Kx +C =0 and C is not contractible by Answer 4.2 and its
construction. On the other hand, take an ample divisor H, and let D be
the divisor D := H + qC with (H + qC) - C =0. It is easy to check that D
is nef and big. Because C' is not contractible, D is not semiample. 0

We can also prove a base-point-free theorem under the following assump-
tion.
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THEOREM A.4. Let X be a projective normal Q-factorial surface, and let
A be a Q-boundary. Let D be a nef Cartier divisor. Assume that D — (K x +
A) is semiample. Then D is semiample.

Proof. Set r:=k(X,D — (Kx + A)). There are three cases: (0) k=0,
(1) k=1, and (2) Kk =2.

(0) Assume that x = 0. By the semiampleness, we obtain D — (Kx +
A) ~q 0. Thus, we can apply the abundance theorem to D. Then we obtain
the desired result.

(1) Assume that x = 1. By the semiampleness, the complete linear system
In(D — (Kx + A))| induces a morphism o : X — B to a smooth projective
curve. By Proposition 5.8, we can find a boundary

A ~gD— (Kx +A)

such that A + A’ is a Q-boundary. Thus, we can apply the abundance
theorem to Ky + A+ A’.

(2) Assume that x = 2. The complete linear system |[n(D — (Kx + A))|
induces a birational morphism f: X — Y to a normal projective surface.
Since n(D — (Kx + A)) = f*(Hy), Hy is an very ample line bundle on Y.
By Bertini’s theorem, we can find a member G € |Hy| such that

1 *
A—i—ﬁf (G)

is a boundary. Thus, we can apply the abundance theorem. 0

Appendix B. Rational singularities

In this section, we consider the relation between the minimal model pro-
gram and the rational singularities.

DEFINITION B.1. Let X be a normal surface, and let f:Y — X be a
resolution of singularities. We say that X has at worst rational singularities
if R' f,Oy = 0. This property is independent of the choice of resolutions of
singularities.

If X is a normal surface whose singularities are at worst rational, then
X is Q-factorial by [L, Proposition 17.1]. Let us give an alternative proof of
this result.
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PrOPOSITION B.2. Let X be a normal surface. If X has at worst rational
singularities, then X is Q-factorial.

Proof. Note that, if g: Z — X is a proper birational morphism, and if £
is a g-exceptional curve, then E ~ P!

We may assume that X is affine. Thus, we may assume that X is projec-
tive. Let f:Y — X be the minimal resolution. Let £ be an f-exceptional
curve. By Proposition 3.24, we can contract E, and we obtain

Yoy Lx
By Propositions 3.25 and 3.26, X’ is Q-factorial. Assume that f’ is not an
isomorphism. Then we can take an f’-exceptional curve E’. By the same

argument, we can contract E’ to a Q-factorial surface. Repeat the same
procedure. Then, we see that X is (Q-factorial. 0

The Kodaira vanishing theorem does not hold in positive characteristic.
But we obtain the following relative vanishing theorem.

THEOREM B.3. Let f: X — Y be a proper birational morphism from a
smooth surface X to a normal surface Y. Let L be a line bundle on X such
that

L=;Kx+E+N,

where E is an effective f-exceptional R-boundary and N is an f-nef R-
divisor. If E;- N >0 for every curve E; with E; C _EJ, then R'f.(L)=0.
Proof. For a proof, see [KoK, Section 2.2]. 0

In this paper, we often use the contraction of P*. For example, the minimal
model program of Theorem 3.27 is the composition of the contractions of
C ~P! with (Kx +C)-C < 0. The following theorem shows that the R! of
such contractions vanishes.

THEOREM B.4. Let g:Y — Z be a proper birational morphism between
normal surfaces such that C :=Ex(g) is an irreducible curve. If (Ky + C') -
C <0, then R'g.(Oy)=0.

Proof. Let f: X — Y be the minimal resolution of Y, and let C'x be the
proper transform of C. Set Kx + Cx + Ax = f*(Ky + C). Then we have

—LAx1=Kx + ({Ax} —i—Cx) — f*(Ky +C)
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We apply Theorem B.3 and obtain
RY(go f).Ox(—LAx1) =0

by —f*<Ky + C) -Cx >0.
If LAx1=0, then we obtain
R'g.(Oy) = R'g.(f.0x) C R'(go [)«(Ox) =0

by the Grothendieck—Leray spectral sequence. Thus, we may assume that
LAx1#0. Since

0—=Ox(—LAx1) > O0x - 0., —0,
we obtain

0— fLOx(—LAx1) = Oy -C—0,
Cc f*OLAXJ7

where C is the cokernel of f,Ox(—LAx1) — Oy. Since f,O. A, is a sky-
scraper sheaf, so is C. Thus, we obtain

R'g.(f.Ox(—LAx 1)) = R'g.(Oy) — R'g.(C) =0.
By the Grothendieck—Leray spectral sequence, we obtain
R'g.(f:Ox(—LAx 1)) C RYgo f).Ox(—LAx 1) =0.

Therefore, we have R!g.(Oy) = 0. {

As corollaries, we obtain the results on minimal models and canonical
models for surfaces with rational singularities.

COROLLARY B.5. Let m: X — S be a projective morphism from a normal
surface X to a variety S. Let A be an R-boundary. Assume that X has at
worst rational singularities. Then, the following assertions hold.

(1) The surface X is Q-factorial. In particular, by Theorem 6.5, we can
run a (Kx + A)-minimal model program over S

(X,A) = (X0, A0) 3 (X1,A0) B .. %50 (X, A,

where (Qbifl)*(Aifl) = AZ
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(2) Each X; has at worst rational singularities.

Proof. Assertion (1) follows from Proposition B.2. Each extremal con-
traction in a minimal model program of (X,A) satisfies the condition of
Theorem B.4. This implies (2). 0

COROLLARY B.6. Let m: X — S be a projective morphism from a normal
surface X to a variety S. Let A be an R-divisor such that 0 < A < 1. If
X has at worst rational singularities, and if Kx + A is w-big, then the
canonical model of (X,A) over S has at worst rational singularities.

Proof. By Corollary B.5 we may assume that Kx + A is m-nef and 7-big.
If (Kx +A)-C =0 for some curve C such that 7(C) is one point, then
(Kx +C)-C <0 because 0 < A < 1. Therefore, we can contract this curve
C, and C satisfies the condition of Theorem B.4. Repeat this procedure and
obtain the required assertion. U
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