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In this note we obtain some simple cr i te r ia which show 
that in certain algebraic number fields factorization of 
elements is not unique. All the arguments depend only on 
the most elementary ideas (except in §6) so that probably 
many of the resul ts a re not new. However the proofs a re 
short and direct and therefore should be of some interest . 

1. Introduction. We now list some basic facts, whose 
proofs can be found in any of the books listed in the bibliography, 
at the same t ime fixing our notation. 

Let 9 be a zero of the irreducible polynomial 

x +a x +. . .+a where a. e Z , the ring of rational 
n-1 o l 

in tegers . We denote by Q(9) the field obtained by adjoining 
9 to the rational field Q , and by J the ring of algebraic 
integers in Q(9); thus 9 € J . An integral bas is for J is a 
set of n elements {w . . . . , w } C J such that 

1 n 

J = {b w +. . .+b w :b. € Z} 
1 1 n n l 

The conjugates of 9 are the zeros 9̂  = 9, 9 , . . . , 9 n of 

the polynomial x +. . .+a ; these algebraic integers may or 
o 

may not be in J . Every element or € J is a polynomial in 9 
with rational coefficients: 
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a = 0 + C O + . . . + C 9 n " , C. e Q 
o 1 n - 1 i 

( though not a l l such r a t i o n a l p o l y n o m i a l s a r e in J ). The 
( 1 ) ( 2 ) ( n ) • • 

con juga te s a = a , a , , . . , a of a a r e def ined by 

n - 1 
a ( j ) = 0 + 0 , 0 ( j ) + . . . + C A (9 ( J ) ) 

o 1 n - 1 

The n o r m of a i s defined by 

(1) (2) (n) 
Nor = a -a . . . a 

Na € Z and NUT = 0 if and only if or = 0 ; a l s o N(a(3) = Nor. Np » 

The con juga tes a , . . . , a m a y o r m a y not be in J ; h o w e v e r 

en . . . a € J s i n c e , a s a p r o d u c t of a l g e b r a i c i n t e g e r s i t i s 
an a l g e b r a i c i n t e g e r , and a l s o 

a ( 2 ) . . . a ( n ) = N a / t t £ Q(0) » 

H e n c e f o r t h L a t i n l e t t e r s wi l l deno te e l e m e n t s of Z 
(excep t when def in i te ly s t a t ed to be e l e m e n t s of Q) and 
G r e e k l e t t e r s wi l l denote e l e m e n t s of J . 

a i s ca l l ed a unit if t h e r e e x i s t s a (3 such tha t ar6 = l ; t h i s 
o c c u r s if and only if Nor=t 1. If or = (3 6 w h e r e € i s a un i t , a and 
p a r e ca l l ed a s s o c i a t e s . The e l e m e n t s of J which a r e n e i t h e r 
0 n o r uni t s a r e e i t h e r p r i m e s o r c o m p o s i t e n u m b e r s , a p r i m e 
TT be ing c h a r a c t e r i z e d by the p r o p e r t y tha t if IT = aÇ> , then one 
of a, p i s a uni t . A r a t i o n a l p r i m e p m a y o r m a y not be a 
p r i m e in J ; h o w e v e r if Na = t p , a i s p r i m e . If TT i s 
p r i m e so a r e i t s con juga t e s be long ing to J and the a s s o c i a t e s 
of t h e s e n u m b e r s . 

E v e r y c o m p o s i t e n u m b e r can be w r i t t e n a s a p r o d u c t of 
p r i m e s , and if f a c t o r i z a t i o n into p r i m e s i s unique ( a p a r t f r o m 
the o r d e r of the f a c t o r s and a m b i g u i t y b e t w e e n a s s o c i a t e d 
p r i m e s ) we sha l l say tha t Q(9) i s s i m p l e . 
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Many of o a r r e s u l t s wil l be deduced f rom 

P R O P O S I T I O N ! . Le t Q(0) be s imple and le t p S | | N a 
w h e r e p i s a r a t i o n a l p r i m e . Then t h e r e e x i s t s a p r i m e TT 
such tha t NIT = £ p* w h e r e t < s and t < n . 

s ., s, s 
R e m a r k s : p 11 Na m e a n s p \Na (p d iv ides Na) but 

s+1 . s+1 
p j Nor (p does not divide Nor). n = (Q(9):Q) a lways 
s t ands for the d e g r e e of the ex tens ion . Actua l ly we shal l u s e 
th i s r e s u l t only in the weakened fo rm: If p o c c u r s to the f i r s t 
p o w e r in a n o r m then for some (3 , N(3 = £ p . 

Proof : Le t a = *rrp. . . be a f ac to r i za t ion of a into 
p r i m e s . Then Nor = NTT • Np. . . so that some fac to r on the 
r igh t , say NTT i s d iv i s ib le by p : NTT = p*u, 1 < t < s, p " f u . 
Now 

NTT = IT [TT . . . TT ) = p u 

and TT . . . TT € J ; s ince f ac to r i za t i on i s unique , ÏÏ | p o r 
TT | u . If TT | u , NTT | N U , i. e. , p*u | u n which i s i m p o s s i b l e 
s ince p "j" u . T h u s TT | p and t h e r e f o r e NTT j Np , i. e. , 
p*u j p n . Hence u = £ 1 and t < n . 

2. Quad ra t i c f ie lds (the c a s e n = Z ). Al l q u a d r a t i c 
e x t e n s i o n s of Q a r e of the f o r m Q ( V m ) w h e r e m i s a 
s q u a r e - f r e e r a t i o n a l i n t e g e r . An i n t e g r a l b a s i s for J i s 

{ 1 , V m } if m M m o d 4 

r , V m - 1 x _ 
{ 1 , -r~ = or} if m = 1 m o d 4 

In o t h e r w o r d s , the e l e m e n t s of J a r e a + b V m whe re 
a , b € Z excep t tha t when m = 1 m o d 4 a and b m a y a l so be 
bo th h a l v e s of odd i n t e g e r s . The conjuga tes of a = a + b V m , 
i t se l f and a**' = a - b V n i a r e both in J and 

Na = N a ( Z ) = a. a^ ^ <? - m b 2 . 

If m = 1 m o d 4 and the e l e m e n t i s e x p r e s s e d in t e r m s of the 
i n t e g r a l b a s i s t h i s f o r m u l a b e c o m e s 
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b b 2 2 
N(a + bcr) = N(a - - + - V m ) = a - ab - qb 

m - 1 
whe re q = — 

For convenience we say that m is simple if Q( Vm) 
is simple. We deal with the cases m < 0 and m > 0 separately. 

3. Complex quadratic fields (the case m < 0). Here the 
norm is positive definite: N(a + b V m ) = a^ - mb^ = a ^ + | m | b ^ 
and solving the equation Na = 1 one sees that if m < -3 the 
only units a re i l . m = - 1 , - 2 , - 3 a re known to be simple and 
we res t r i c t ourselves to m < - 3 . 

PROPOSITION 2. (m < -3). If m is simple then m = 1 
mod 4. 

Proof: Suppose that m < -3 is simple and m à 1 mod 4. 
Since m is square-f ree , m = 2 or 3 mod 4, and since m is 
negative |mj=l or 2 mod 4. Thus ei ther | m | = N( Vni) or 
1 + | m | = N(l + Vm) is = 2 mod 4, i. e. , is divisible by 2 
and not by 2^ , and so by proposition 1, NTT = a^ + | m | b ^ = 2 
is soluble in in tegers ; but this is c lear ly impossible. 

PROPOSITION 3. (m < -3) . If m is simple then all 
the-following numbers a re rational p r imes : 

2 2 
N = a - ab - qb 

2 
provided 1 < _N< q and g. c. d. (a,b) = 1. 

Proof: By proposition 2, m = 1 mod 4 so that 

y *? K A "? 

Na = N(a + ho) = a - ab « qb = { a » - } + | q + ~ | b 

m ~" 1 
where q= — < 0 . Clearly if b £ 0, N a > | q | . 

2 
F i r s t we show that if g. c. d. (a, b) =1 and 1 < Na < q 

than a is p r ime . For suppose a = (3y where p = c + dcr and 
v = e + fcr. Then N# = N(3Ny< q so that one of the factors on 
the right, say N(3, satisfies Np < | q | . This implies d = 0 
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and a = ce + cfcr . Hence g. c. d. (ce, cf) = l , ( 3 = c = î l is a 
unit, and a is pr ime. It follows that a**) is pr ime. 

(2) 
Thus we have N = Nor = aa expressed as a product of 

p r imes . Since b ^ 0 , none of the associates t a , t a* ' of 
a and «(2) is rational. If N were not a rational pr ime, say 
N = st, 1 < s < N, then either (i) s and t are pr imes in J or 
(ii) st splits further into a product of more than two pr imes in 
J. Either case leads to non-unique factorization, contrary to 
supposition. 

Putting b = 1 we obtain 

2 , , 
COROLLARY 1. If m < -3 is simple, a - a + | q | is 

a rational pr ime f o r a = l , 2 , . . . , | q | - l . In par t icular , | q | 
is a rational pr ime. 

Since m = 1 mod 4 , | m | = 3 or 7 mod 8. If | m | = 8t + 7 
then |qj = ( | m | + 1) /4 = 2t + 2 which is not pr ime if t > 0 . 
Thus if m < -7 then | m | = 3 mod 8. 

Putting b = 2 we obtain 

COROLLARY 2. If m < -7 is simple 

2 2 
a - 2a + 4 | q | = (a - 1) + | m | 

is a rational pr ime for a = 1, 3, 5, . . . , | q | - 2 . In par t icular , 
| m | is a rational p r ime. 

Since | m | = 3 mod 8, | q | - 2 is odd. The largest value 
of N occurs with a = | q | - 2 and N < q2 demands that 
m < -15 ; of the remaining possible m , -11 and -15 , the 
corol lary is clearly t rue for the former, and the la t ter is not 
simple by corol lary 1. 

To the modulus 24 we have the possibili t ies 
I 1ml 1 
1 24t + 3 

24t + 11 
1 24t + 19 

1 kl 1 
6t + 1 
6t + 3 
6 t+ 5 

comments 
| m | not pr ime if t > 0 
| q | not prime if t > 0 

1 

Thus we have 
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COROLLARY 3. If m < - 1 1 i s s i m p l e then | m | =19 
m o d 24. 

COROLLARY 4. If m < -7 i s s i m p l e and p i s a 

r a t i o n a l p r i m e < | q | then the L e g e n d r e symbo l M r = - 1 . 

Proof : Since | m | i s a p r i m e = 3 m o d 8, -j—-r = - 1 . 
1 | m | / 

T h u s le t p > 2. By the law of q u a d r a t i c r e c i p r o c i t y what we 

m u s t p r o v e i s — = - 1 . Now p < | q | < | m | so tha t p "f" m 
, / m I . _ _ / m l 2 

and — £ 0- Suppose *— = 1 ; then x = m m o d p for 
I D / 1 x> I 

s o m e x £ 0 . T h u s x = m •+ kp and we m a y a s s u m e p | k ; 

t 2 

fo r if p jk , (x + p) = m + k ' p w h e r e k ' = k + 2 x + p i s not 

d iv i s ib l e by p . Hence p o c c u r s to the f i r s t p o w e r in the 
2 

n o r m kp = x - m = N ( x + ^ / m ) and t h e r e f o r e NTT = N(a + bcr ) 

= p < jqj i s so lub le . F r o m above the inequa l i ty i m p l i e s 
2 

b = 0 ; but then Na = a = p -, a c o n t r a d i c t i o n . T h u s 

m 

P 
= - 1 . -r 

It i s known tha t m i s s i m p l e in the c a s e s 

- 1 , - 2 , - 3 , - 7 , - 1 1 , - 1 9 , - 4 3 , - 6 7 , - 1 6 3 , 

and tha t a t m o s t one m o r e s i m p l e n e g a t i v e m e x i s t s [6] . 
It i s i n t e r e s t i n g to note tha t the two c r i t e r i a t ha t | m | and 
Jqj be p r i m e l ead one i m m e d i a t e l y to t h e s e n u m b e r s . In 
e l i m i n a t i n g m < - 1 6 3 one h a s to u se o c c a s i o n a l l y o t h e r 
c r i t e r i a given by the p r o p o s i t i o n such a s j q | + 2 i s p r i m e , 
| m | + 4 i s p r i m e , e t c . 

* One can give an a l t e r n a t i v e proof a s s u m i n g tha t | m | i s a 
r a t i o n a l p r i m e = 3 m o d 4 , and the t h e o r e m in [4] , p . 318. 
It i s e a s y to see tha t p i s not r a m i f i e d and does not sp l i t ; 
i . , 1 m l 
h e n c e p i s i n e r t and — = - 1 . 

1 P 
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Assuming that -163 is simple, corollary 1 gives the 
famous result of Euler that 

2 
a - a + 41 

is a rational pr ime for the 40 consecutive values 
a = 1, 2, . . . , 40; corollary 3 gives 

2 
163 163 

5 
163 

37 
163 

- 1 

It seems that D. H. Lehmer [7] used a cr i ter ion such as that 
given in the last corollary to show that if the one possible 
simple m < -163 exis ts , then m < - 5 . 1 0 ' . 

I have since discovered that Frobenius [ l ] proved 
proposition 3 in 1912. However his point of view was different: 
he found polynomials which like Euler ' s have many consecutive 
pr ime values and he related his resul ts to the theory of 
quadratic forms. 

4. Real quadratic fields (the case m > 0). Very much 
less is known about which m > 0 are simple. Proposition 1 
does give some information; It is convenient to t rea t the case 
p = 2 separately. 

PROPOSITION 4. (m > 0). Let m ^ l mod 4 and let 
m be simple. Then 

(1) m has no pr ime factor* = 5 mod 8. 

(2) If m has a pr ime factor = 3 mod 8 then it has no prime 
factor = 7 mod 8, and conversely. 

Proof: One of -m = N( Vm) , 1 - m = N(l + Vm) is 
2 

divisible by 2 and not by 2 . Hence by proposition 1, at 
2 2 , 

least one of a - mb = 1 2 is soluble. If q is any prime 
2 

factor of m this implies a = 1 2 mod q. But if q = 5 mod 8, 

* We often use f pr ime 1 when it is c lear from the context that 
we mean ' rational prime1 . 
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/ 2 i [ - 2 1 — = — = - l ; this proves the first asser t ion . 
I q / 1 q I 

If q represen t s a pr ime =3 mod 8 and q a pr ime 

=.7 mod 8 then 

- I = - * > -* i . . . i i . i . l f i ^ i . . . . 
q 3 / i q7 / i ^ 7 

. 2 2 
We must show that q~q7 | rn is impossible . If a - mb =2 
is soluble we would have a =2 mod q ; but the l is t of 

Legendre symbols above shows that this congruence is 
2 2 

impossible. Similarly a - mb = -2 would imply 
2 

a = -2 mod q , which is impossible. 

Pass ing to p r imes > 2 we have 

PROPOSITION 5. (m > 0). Let m be simple and let 
p > 2 be a rational pr ime for which m is a quadratic residue 

(i. e. — = 0 or 1). Then 
1 P / 

(1) m can have no p r ime factor q = 1 mod 4 for which 

= -1 . P 
q / 

(2} If s and t a re any two pr ime factors of m distinct from 

p and = 3 mod 4 then P 
s 

P 
t 

2 
Proof: Since m is a quadratic residue mod p, x = m + 

for some x and k and we may assume p ^ k . Fo r if p | k 
4- 2 , 2 

then p ] x since otherwise we would have p | x whence 
2, 2 

p Jm =x - kp , contradicting the fact that m is square- f ree . 
t 2 

Thus if p J k , (x + p) = m + kf p where k' = k + 2x + p is not 
divisible by p. 

Hence p occurs to the f irs t power in the norm 
kp = N(x + V m ) , and by proposition 1 at leas t one of 
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a - mb = - p , i 4p is soluble. (The cases "£ 4p occur when 
2 2 

m = 1 mod 4 ; for then N(x + y *Jm) = x - my where x and 
y are either integers or both halves of odd in tegers ; in the 
la t ter case we multiply through by 4 to c lear denominators). 
If q = 1 mod 4 and q | m we have a = t p , t 4p mod q and 

since 
±1 

q 
t± 

q 
= 1 , the solubility of one of these 

2 
congruences is equivalent to the solubility of a =p mod q 

P Hence — 
1 q 

4 - l 

Now let s and t be pr ime divisors of m distinct 
2 2 

from p and =3 mod 4. If a - mb = (4)p is soluble (where 

I p 

P 
t I 

2 2 
= 1 ; if a - mb = -(4)p is soluble then 

or since s = t = 3 mod 4 , 

in any case . P 
s 

£ 
s 

p 
t 

s j 
Thus 

t 

£ 
t 

= 1, 

For convenience we now restate two par t icular cases . 

COROLLARY 1. (m > 0 simple). The case p = 3: Let 
m = 0 or 1 mod 3. Then 

(1) m can have no pr ime factor = 5 mod 12. 

(2) If m has a pr ime factor =7 mod 12 then it has no pr ime 
factor = 11 mod 12 , and conversely. 

COROLLARY 2. (m > 0 simple). The case p = 5 : Let 
m = 0, 1 or 4 mod 5* Then 

(1) m has no pr ime factor = 13 or 17 mod 20. 

(2) If m has a pr ime factor = 3 or 7 mod 20 then it has no 
pr ime factor = 11 or 19 mod 20 ; and conversely. 

Looking at the values 0 < m < 101 one readily verifies 
that the following a re not simple: 
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By proposition 4: 1 0 , 1 5 , 2 6 , 3 0 , 3 5 , 3 9 , 4 2 , 5 5 , 5 8 , 7 0 , 7 4 , 7 8 , 8 7 , 
91 ,95 ; 

By corol lary 1: 10,15, 30, 34, 51, 55, 58, 70, 82, 85, 87; 

By corol lary 2: 2 6 , 3 4 , 3 9 , 5 1 , 6 5 , 6 6 , 7 4 , 8 5 , 9 1 . 

Complementing, the following m are possibly simple: 
2 , 3 , 5 , 6 , 7 , 1 1 , 1 3 , 1 4 , 1 7 , 1 9 , 2 1 , 2 2 , 2 3 , 2 9 , 3 1 , 3 3 , 3 7 , 38 ,41 ,43 , 
46, 47, 53, 57, 59, 61, 62, 67, 69, 71 , 73, 77, (79), 83, 86, 89, 93, 94, 
97, 101; and in fact these a re precisely the simple m < 101 
with the single exception of 79 ; 79 is the only non-simple 
pr ime < 101. (See [12], p. 355, in conjunction with the 
correc t ions noted in [3], p. 386. } 

5. Cubic fields. Without aiming at complete generality, 
let us consider Q(0) where 9 is a zero of the i r reducible 
cubic x + ax + b , a , b € Z . The discr iminant of the 
polynomial is [13, p. 82] 

d = d(0) 3 2 
-4a - 27b 

and the discr iminant of the field Q(9) is 

A = t\ (0) = 
(2) (2) (2) 

W l W 2 W 3 
(3) (3) (3) 

w w_ w 
1 2 3 

where {w , w , w } is an integral bas is for J . (The 

definition of A for a field of any degree over Q is the obvious 
generalization of this formula. ) It can be shown that A =f d 
where f = f(9) e Z is called the conductor. Moreover it can 
be shown that the elements of J a re all of the form 
a = r + s9 + t9 where r, s , t £ Q and the denominators of 
r, s , t , when writ ten in reduced form, a re all d ivisors of f. 
(There a re further res t r ic t ions on r, s , t . *) 

* Cf. the quadratic case: there f = 1 or 2 and when f = 2 we were 
allowed denominators of 2 provided both the numera to r s were 
odd. Also f = 2 if and only if m = 1 mod 4. There is no such simple 
c r i te r ion in the cubic case although the following facts a r e useful 
[3]: (i) A > 49, or A < -23 ; (ii) Z\ s O o r l mod 4. 
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Without going into further detail we give the following 
consequence of proposition 1. 

PROPOSITION 6. Let Q(0) be simple; let p > 2 be a 
rational pr ime such that p = 2 mod 3, -3d is a quadratic 
residue mod p, and p f g . c. d. (a, b). Then p is a cubic 
residue mod q for every rational pr ime divisor q of 
g . c .d . (a, b) such that q "f f . 

Proof: Noting that 9 ( 1 ) + 9^2) + 9 ( 3 )= 0 , 

0 ( l ) e ( 2 ) + Q ( 2 ) 9 ( 3 ) + e ( 3 ) e ( l ) = a ) e ( l ) e ( 2 ) 0 ( 3 ) = . b f 

direct calculation shows that 

N ( r + sG + t0 2 ) = ( r + s 9 { 1 W 1 ) 2 , ( r + s 9 ( 2 W 2 ) 2 ) { r + sG ( 3 )
+ tQ { 3 ) 2 ) 

3 2 2 2 3 2 2 3 
— r -2ar t+ars +art »bs -abst +b t + 3brst. 

3 
Hence N(r-9) = r +ar+b . 

Now the conditions on p ensure the solubility of 
x + ax + b = 0 mod p. For by Cardan' s formula [13] we must 
f i rs t be able to extract the square root \/~3d ; that i s , «3d 
must be a quadratic residue mod p. Secondly, we must be 
able to extract two certain cube roots. But since p = 2 mod 3 
all residues mod p are cubic residues so that every residue 
has a unique cube root. 

3 
Thus x + ax + b = 0 mod p is soluble and we wish to 

show that it has a non-repeated root x = r, i. e. , one for which 
the derivative 3r^ + a i 0 . Clearly this is t rue if there is 
just one root. If there a re three roots and every root is 
repeated we have x^ + ax + b = (x - r)* whence 0 = -3 r , 
a = 3r 2 , b = - r^ , and since p ^ 3 , a =b =.0 ; but this 
contradicts p"j"g.c, d. (a ,b) . 

3 2 
Thus for some r we have r + a r + b = k p , p " j " ( 3 r + a). 

We may assume p ^ k ; for if p | k replace r by r + p to 
get a new k not divisible by p : (r + p P + a(r + p) + b = 
p(k + 3r + a + 3rp + p^) = pk1 , p ~f~ k' . Hence p occurs to 
the first power in the norm N ( r - 9 ) = r ^ + ar + b = k p and by 
proposition 1, N T T ^ N ^ 1 + s ' 9 + t 1 9^}=p is soluble. (Since 
N(-a) = -N(or) we need consider only the positive sign* ) Now 
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q | a , q J b , q ' f f so tha t NIT = T' = p m o d q w h e r e r ' = u / v , 
u , v € Z and q~f~v . T h i s i m p l i e s tha t x^ = p m o d q i s soluble 
and tha t p i s a cubic r e s i d u e m o d q. Q. E . D. 

In the i m p o r t a n t c a s e a = 0 we can give a m o r e speci f ic 

r e s u l t . Since \ M T = - \Jb and Q(- «Jb) = Q( \ / b ) , we m a y 

r e s t r i c t o u r s e l v e s to Q( \/b) w h e r e b i s a p o s i t i v e c u b e - f r e e 
i n t e g e r . Wr i t e b = h k 2 w h e r e hk i s s q u a r e - f r e e . Then an 
i n t e g r a l b a s i s for J i s ([8], v o l . 2 , p . 104): 

{ 1 , a= <\l\k2 , (3= A 3 / h 2 k } if 9 Î ( h 2 - k 2 ) , 

and { v = - | (1 + ha + k(3), a , p} if 9 | (h 2 - k 2 ) . 

Thus the only p r i m e o c c u r r i n g in a d e n o m i n a t o r i s 3. 

3 / 
COROULARY: If Q( \ / b ) i s s i m p l e then b h a s no 

p r i m e fac to r = 1 m o d 3. 

Proof : The only p r o p e r t i e s of q u s e d in the p r e c e e d i n g 
proof w e r e q | g - c. d. ( a , b ) and tha t q d o e s not o c c u r in a 
d e n o m i n a t o r . T h u s a l l we r e q u i r e of q h e r e i s t ha t q | b and 
q £ 3. T h u s suppose q = 1 m o d 3 and q | b . If p *\ b and p = 2 
m o d 3, by the p r o p o s i t i o n p i s a cubic r e s i d u e m o d q. But 
only one t h i r d of the r e s i d u e s m o d q a r e cubic r e s i d u e s and 
we wi l l have the r e q u i r e d c o n t r a d i c t i o n if we can show tha t a 
p = u m o d q e x i s t s for any u ^ 0 m o d q. T h i s fol lows f r o m the 
fact tha t g. c. d. ((2 - u)q + u, q) = 1 so tha t t h e r e a r e inf ini te ly 
m a n y p r i m e s in the p r o g r e s s i o n 

p = 3qx + (2 - u)q + u » x = 1, 2, 3, . . . 

= 2 m o d 3, = u m o d q . 

3 / 
F o r e x a m p l e , Q( \y ~t ) i s not s i m p l e . See [10] for a 

t ab l e of da ta r e l a t i n g to cubic f i e lds . 

7. An inequa l i ty for the c l a s s n u m b e r . H e r e we m u s t 
a s s u m e a knowledge of idea l t h e o r y and the def ini t ion of the c l a s s 
n u m b e r h = h(0) of Q(0) ; (Q{0) i s s i m p l e if and only if h = 1). 
Our r e a s o n for inc luding t h i s s ec t ion in the p r e s e n t no te , which 
up t i l l now h a s b e e n on a c o m p l e t e l y e l e m e n t a r y l e v e l , i s tha t 
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proposition 1 which gave cr i te r ia for h > 1 is susceptible of a 
ra ther obvious generalization which gives c r i te r ia for h > 2, 
h > 3, etc. We recall that n = (Q(0):Q) ; { w , . . . , w } will 

, -, . I n 
denote an integral bas is . 

PROPOSITION 7. Let the rational pr ime p split 
completely in Q(Q) and let p s ° > 1 be the minimum power 
of p such that 

N(a w +. • .+a w ) = t p S ° , g. c. d. { a } = 1 . 
1 1 n n ^ 5 l i J 

Then h > s and if n = 2, s |h. 
— o o1 

Proof: We have 

(P) = p . f2... r 
1 £ n 

where no two of the pr ime ideals a . a r e equal. Taking norms , 

P
n = N F N F ... up 

1 2 n 
so that 

N / 7 , = N P . = . . . = N f = p . 1 2 n 

Let F be one of the <P. and let 

= (P) = (b w +. . .+b w ) 
1 1 n n 

2 
be the least power of P which is principal. Then P, P , . . . , 
j p s ^ ( l ) give r ise to distinct c lasses and the class group has a 
subgroup of order s ; hence s |h . If g = g. c. d. {b.} and 
b. = gc. , taking norms we have N f s = p s = gnN(c w +. . . ) and 

therefore g = l or g = p . I^ .g=P» P = (p)(c w +. . . ) 

contradicting (p) = Y . . . o . Thus g = 1, N(3 = t p and by 

the definition of s we have s < s < h . 
o o — — 

Now let n = 2. The only prime ideals whose norms a r e 
powers of p a re F and o . Hence 
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1 Z 

where we may assume t > t > 0 . Thus (a) = (p) jr 
J. "™" £ ' J. 

and 

( ( a i W l + a 2 W 2 ) / p i ) = ^ 1 
2, ĉ> 1 2 

l
2 is an integral ideal so that ( a . w . + a- w ) / p mas t be an 

integer. Hence t = 0 , (a) = j ^ *1 and therefore t > s . 
s t^ 

Taking no rms , p ° = p so that s = t > s ; from above 
s < s ; thus s = s and since s ih , s |h . 
o ~ o ' o 

We now give only the simplest coro l la r ies which relate 
to Q(V m) , m < 0 . 

COROLLARY 1. Let m < 0 , m = 1 mod 4 and let p 

be the smallest rational pr ime such that* ' 

M /m\ -, log (- m/4) h( V m) > =-
log p 

= 1. Then 
P / 

Proof: The condition j J = 1 means that p splits in 
2 , , 2 ^ s s 

Q ( V m ) • Solving a + | m | b =p ° or 4p ° for minimal s 
s ° 

with g. c. d. (a,b) = 1 , we see that b ^ O and p ° > ( | m | + l ) / 4 . 
Thus 

h > s ^ log { ( l m [ + 1) 4} ^ log ( - m 4) 
- o - log p log p 

COROLLARY 2. Let m < 0 and m = 1 mod 4 and let 
/ m \ 

p be the smallest rational pr ime > 2 such that — = 1 , 

Then h( Vm) > (log | m | ) / log p . 

J m j (m 2 - l ) / 8 T , -
* — = (-1} ; a s usual , m is assumed square- f ree . 
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Proof: We must exclude p = 2 since it is now ramified. 

Again p splits and solving a + | m | b = p ° we see 
S / m 

p ° > | m | (s t r ic t inequality since — | £ 0 , i. e. , p ~fm) 
and the result follows. » 

Since = 1 if m = 1 mod 8, h -* co as m -* - oo m 

through values =1 mod 8, by corollary 1. Similarly corollary 
2 gives various ar i thmetical progressions of m such that 
h -* oo . Thus 

COROLLARY 3. h(Vm) is unbounded as m -+ - oo . 

This result is obviously not deep and is not to be 
compared with Heilbronn1 s theorem [5] that h -*• oo as 
m .-»• - oo (through all values). 

*r n» «f 

The author would like to thank Doctors J. Lambek, 
C. Riehm, and D. Sussman for their help during the 
preparat ion of this note. 
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