ON ALGEBRAIC NUMBER FIELDS
WITH UNIQUE FACTORIZATION

Ian G. Connell

(received April 2, 1962)

In this note we obtain some simple criteria which show
that in certain algebraic number fields factorization of
elements is not unique. All the arguments depend only on
the most elementary ideas (except in §6) so that probably
many of the results are not new. However the proofs are
short and direct and therefore should be of some interest.

1. Introduction. We now list some basic facts, whose
proofs can be found in any of the books listed in the bibliography,
at the same time fixing our notation.

Let O be a zero of the irreducible polynomial
xn-1+. ..+a where a, € Z, the ring of rational
n-1 o i
integers. We denote by Q@) the field obtained by adjoining
@ to the rational field Q, and by J the ring of algebraic
integers in Q(Q); thus ©€J . An integral basis for J isa
set of n elements {wi, e ,wn} C J such that

n
X +a

J = {biwi+. .. +bnwn:bi €z}

(2) (n)

(1):0,9 yeo-,0 of

The conjugates of @ are the zeros ©

n R
the polynomial x +...+a ; these algebraic integers may or
o

may notbe in J. Every element a€J is a polynomial in 9
with rational coefficients:
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a=C +C0+...+C e , C. eQ
o 1 n-1 i
(though not all such rational polynomials are in J ). The
conjugate s a(i) =a, a(z), v, a(n) of a are defined by
. . ., n-1
o ovc oy v @Y
o 1 n-1 :

The norm of a is defined by

Na = a(i)-af(z) a(n) .

Na e Z and Na=0 if and only if @ =0 ; also N(af) =Na.Np .
The conjugates a(z), cen ,a(n) may or may not be in J ; however
a(z). .. a(n) € J since, as a product of algebraic integers it is

an algebraic integer, and also

Q(Z)...a(n) >= Na/ae Q(e) .

Henceforth Latin letters will denote elements of Z
(except when definitely stated to be elements of Q) and
Greek letters will denote elements of J .

a is called a unit if there exists a B such that aB=1; this
occurs if and only if Ne=11. If a=fe where ¢ is a unit, a and
B are called associates. The elements of J which are neither
0 nor units are either primes or composite numbers, a prime
m being characterized by the property that if w =af , then one
of a,f is a unit. A rational prime p may or may not be a
prime in J ; however if Na=%t p, o is prime. If 7 is
prime so are its conjugates belonging to J and the associates
of these numbers.

Every composite number can be written as a product of
primes, and if factorization into primes is unique (apart from
the order of the factors and ambiguity between associated
primes) we shall say that Q(9) is simple.
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Many of our results will be deduced from

PROPOSITION 1. Let Q{6) be simple and let psHNa
where p is a rational prime. Then there exists a prime
such that Nmw=1p' where t<s and t<n.

Remarks: p ||[Ne means p |Na (p  divides Na) but

ps+1 ‘]"Noz (pS+1 does not divide Na). n=(Q(0):Q) always
stands for the degree of the extension. Actually we shall use
this result only in the weakened form: If p occurs to the first
power in a norm then for some f, NB=%p.

Proof: Let a=mwp... be a factorization of a into
primes. Then Na =Nw-: Np... so that some factor on the
right, say N is divisible by p: Nw=ptu, 1<t<s, pTu.
Now

2 t
N = Tr(v( )...“n’(n)) = pu
2
and 1T( ). .. Tr(n) € J; since factorization is unique, ] p or
m|lu. Ifwr|u, Nm|Nu, i.e., ptu]ul which is impossible

since pTu. Thus w | p and therefore Nv | Np, i.e.,
pfu|p?. Hence u=%1 and t<n.

2. Quadratic fields (the case n =2 ). All quadratic
extensions of Q are of the form Q(~/m) where m isa
square-free rational integer. An integral basis for J is

{1,V m} if m #1 mod 4

v m-1
2

{1,

=g} if m=1mod4

In other words, the elements of J are a + by m where
a,beZ except that when m =1 mod 4 a and b may also be
both halves of odd integers. The conjugates of a=a+b+vm,
itself and ol =a - b 4/m are bothin J and

Na = Nea = a.«a = a =-mb

If m =1 mod 4 and the element is expressed in terms of the
integral basis this formula becomes
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b 2
N(a + bo) = N(a—-z+%-\/m) = a -ab-qbz,

m -1
4

where q =

For convenience we say that m is simple if Q(+/m)
is simple. We deal with the cases m < 0 and m > 0 separately.

3. Complex quadratic fields (the case m < 0). Here the
norm is positive definite: N(a + b+/m) =a2 - mb? = a2+]m[b2
and solving the equation Na =1 one sees that if m < -3 the
only units are t4. m=-1,-2,-3 are known to be simple and
we restrict ourselves to m < -3.

PROPOSITION 2. (m< -3). If m is simple then m =1
mod 4.

Proof: Suppose that m < -3 is simple and m # 1 mod 4.
Since m 1is square-free, m =2 or 3 mod 4, and since m is
negative |m|z1 or 2 mod 4. Thus either |m| =N(4/m) or
1+ |m| =N(1 +4/m) is =2 mod 4, i.e., is divisible by 2
and not by 22, and so by proposition 1, Nm=a + [m[b2 =2
is soluble in integers; but this is clearly impossible.

PROPOSITION 3. (m< -3). If m is simple then all
the following numbers are rational primes:

2
N = a2 - ab - gb
. 2
provided 1 < N<q and g.c.d.(a,b)=1.

Procf: By proposition 2, m =1 mod 4 so that

2
2
Na=N(a + bo) =a” - ab-qb® = {2 -5 + [q+ b

m - 1
4

where q = < 0. Clearlyif b#0, Na> |qf .

2
First we show that if g.c.d.(a,b)=1 and 1 < Na< g
than o is prime. For suppose_o = By where f =c + do- and

Yy=e+ foo. Then Na =NBNy< g so that one of the factors on
the right, say N, satisfies NB < |[q|. This implies d =0
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and a=ce+ cfo. Hence g.c.d.(ce,cf)=1, B=c=1t1 isa
unit, and « is prime. It follows that oA2) is prime.

Thus we have N =Na = aa(z) expressed as a product of
primes. Since b #0, none of the associates t o, i‘a(z) of
@ and ol?) is rational. If N were not a rational prime, say
N =st, 1 < s<N, then either (i) sand t are primesin J or
(ii) st splits further into a product of more than two primes in
J. Either case leads to non-unique factorization, contrary to
supposition.

Putting b =1 we obtain

COROLLARY 1. If m< -3 is simple, a®a [q] is
a rational prime for a=1,2,...,|q| - 1. In particular, |q
is a rational prime.

Since m=1mod4, |m|=30or7mod8. If |m|=8t+7
then |q| =(|m| + 1) /4 =2t + 2 which is not prime if t> 0.
Thus if m < -7 then |m| =3 mod 8.

Putting b =2 we obtain

COROLLARY 2. If m< -7 is simple

az- 2a + 4|q| = (a - 1)Z+ |m|

is a rational prime for a=1,3,5,...,|q|-2. In particular,
|m| is a rational prime.

Since |m| =3 mod 8, [q] - 2 is odd. The largest value
of N occurs with a = |q] - 2 and N < q® demands that
m < -15 ; of the remaining possible m , -14 and -15, the
corollary is clearly true for the former, and the latter is not
simple by corollary 1.

To the modulus 24 we have the possibilities

|  |m] l lal 1 comments
24t + 3 6t + 1 |m| not prime if t>0
24t + 11 6t + 3 |q| not prime if t> 0

24t + 19 6t + 5 -———

Thus we have
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COROLLARY 3. If m< -11 is simple then |m| =19
mod 24.

COROLLARY 4. If m< -7 is simple and p is a

Tr—i—I} =-1.

rational prime <|ql then the Legendre symbol

- 2
Proof: Since |m| is a prime =3 mod 8, (m) =-1.
Thus let p> 2. By the law of quadratic reciprocity what we

must prove is (—13— ):-1. Now p< |q| < |m| sothat pTm
# 0. Suppose

and | — — |=1; then x zm modp for

some x#0. Thus x =m + kp and we may assume ka;
for if plk, (x+p)2=m+k’p where k”=k+ 2x+ p 1is not
divisible by p . Hence p occurs to the first power in the
norm Kkp =x2 - m =N(x +4/m) and therefore Nt =N(a + bo)
= p< |q| is soluble. From above the inequality implies

2
b=0; butthen Na=a =p- a contradiction. Thus

It is known that m is simple in the cases
"1,—27'3y'7y'11:"'19:"'43,‘67,“163,

and that at most one more simple negative m exists [6].
It is interesting to note that the two criteria that |m| and
lql be prime lead one immediately to these numbers. In
eliminating m < -163 one has to use occasionally other
criteria given by the proposition such as ]q] + 2 is prime,
[ml + 4 is prime, etc.

* One can give an alternative proof assuming that |m| isa
rational prime = 3 mod 4, and the theorem in [4] , p. 318.
It is easy to see that p is not ramified and does not split;

hence p is inert and (2 =-1.
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Assuming that -163 is simple, corollary 1 gives the
famous result of Euler that

2
a =-a+ 41

is a rational prime for the 40 consecutive values
a=1,2,...,40; corollary 3 gives

B (] - ] e 3]

It seems that D. H. Lehmer [7] used a criterion such as that
given in the last corollary to show that if the one possible
simple m < -163 exists, then m < -5. 109.

I have since discovered that Frobenius [1] proved
proposition 3 in 1912. However his point of view was different:
he found polynomials which like Euler's have many consecutive
prime values and he related his results to the theory of
quadratic forms.

4. Real quadratic fields (the case m > 0). Very much
less is known about which m > 0 are simple. Proposition 1
does give some information; It is convenient to treat the case
p =2 separately.

PROPOSITION 4. (m > 0). Let m £1 mod 4 and let
m be simple. Then

(1) m has no prime factor* = 5 mod 8.
(2) If m has a prime factor = 3 mod 8 then it has no prime
factor = 7 mod 8, and conversely.

Proof: One of ~-m=N(A/m), {1 -m=N(1 ++Vm) is
divisible by 2 and not by 22. Hence by proposition 1, at
least one of a2 - mb2 =1 2 is soluble. If q is any prime

factor of m this implies az =12 mod q- Butif q=5mod38,

* We often use 'prime' when it is clear from the context that
we mean ' rational prime'.

157

https://doi.org/10.4153/CMB-1962-017-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1962-017-5

-2 . .
- ) = -1 ; this proves the first assertion.
q

-

If q3 represents a prime =3 mod 8 and 9 a prime

Nl I\

=7 mod 8 then

(E_) hi,(i_):i,(i_ -1, (:_2_ -1
93 93 97 97

We must show that q:‘lq7 [m is impossible. If a2 - mb2 =2
is soluble we would have a =2 mod 93 but the list of
Legendre symbols above shows that this congruence is
impossible. Similarly a2 - mb2 = -2 would imply

2
a = -2 mod q which is impossible.

Passing to primes > 2 we have

PROPOSITION 5. (m > 0). Let m be simple and let
P> 2 be a rational prime for which m 1is a quadratic residue

(i. e.

%) =0 or 1). Then

(1)' m can have no prime factor q =1 mod 4 for which

(3 )=-1.

q

(2) If s and t are any two prime factors of m distinct from
p and =z 3 mod 4 then P % )

2
Proof: Since m 1is a quadratic residue mod p, x =m + kp
for some x and k and we may assume p T k. Forif pl|k

2, 2
then p Tx since otherwise we would have p ]x whence
2 2
p lm=x -kp, contradicting the fact that m is square-free.
2
Thus if pfk , (x+p) =m + k'p where k' =k + 2x+ p is not
divisible by p.

Hence p occurs to the first power in the norm
kp =N(x + Vm), and by proposition 1 at least one of
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a" -mb =%p, t4p is soluble. (The cases T 4p occur when

- 2 2
m =1 mod 4 ; forthen N(x+y4/m)=x -my where x and
y are either integers or both halves of odd integers; in the
latter case we multiply through by 4 to clear denominators).

If qz1mod 4 and gq|m we have az

. ( 11 te
since | — —
q

congruences is equivalent to the solubility of a =p mod q .

'E)#—i.

sfp, f4pmodq and

=1, the solubility of one of these

Hence

Now let s and t be prime divisors of m distinct

2 2
from p and =3 mod 4. If a - mb =(4)p is soluble (where

the factor 4 may or may not be present), we have -ISZ ’ =
2 2 -p | -
(tg =1; if a -mb =-(4)p issolublethen(-i}=(—f—):
or since s=t=z3mod 4, E = f—)=-1. Thus '
E } = B in any case.
S t

For convenience we now restate two particular cases.
COROLLARY 1. {(m > 0 simple). The case p=3: Let
m=z=0 or 1 mod 3. Then
(1) m can have no prime factor =5 mod 12.

(2) If m has a prime factor =7 mod 12 then it has no prime
factor =14 mod 12 , and conversely.

COROLLARY 2. (m > 0 simple). The case p=5: Let
m=z0,1 or 4 mod 5. Then

(1) m has no prime factor =13 or 17 mod 20.

(2) If m has a prime factor =3 or 7 mod 20 then it has no
prime factor =z 11 or 19 mod 20 ; and conversely.

Looking at the values 0 <m < 101 one readily verifies
that the following are not simple:
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10, 15, 26, 30, 35, 39, 42,55,58,70,74, 78, 87,
91,95;

10, 15, 30, 34,51, 55,58, 70, 82, 85, 87;

By proposition 4:

By corollary 1:

By corollary 2: 26, 34,39,51, 65,66, 74,85,91.

Complementing, the following m are possibly simple:
2,3,5,6,7,11,13,14,17,19, 21,22, 23,29, 31, 33, 37, 38,41, 43,
46,47,53,57,59,61,62,67,69,71,73,77,(79), 83, 86, 89,93, 94,
97,101; and in fact these are precisely the simple m < 104
with the single exception of 79 ; 79 1is the only non-simple
prime < 101. (See [12], p. 355, in conjunction with the
corrections noted in [3], p. 386.)

5. Cubic fields. Without aiming at complete generality,
let us consider Q(O0) where O is a zero of the irreducible
cubic x% + ax+ b , a,beZ. The discriminant of the
polynomial is [13, p. 82]

d = d(9) = -4a3 - 27b‘2
and the discriminant of the field Q(©) is
w w 2

1 2 3
_ - (2) (2) (2)

Ao=D0 ()= w V2 V3
LB 63

1 2 3

where {wi,wz,w3} is an integral basis for J . (The

definition of A\ for a field of any degree over Q is the obvious
generalization of this formula.) It can be shown that A = £24
where f=1£(0)e Z 1is called the conductor. Moreover it can
be shown that the elements of J are all of the form

a=r+ s0 + tOZ where r,s,te Q and the denominators of
r,s,t, when written in reduced form, are all divisors of f.
(There are further restrictions on r,s,t . %)

* Cf. the quadratic case: there f =1 or 2 and when f =2 we were
allowed denominators of 2 provided both the numerators were

odd. Also f =2 if and only if m =1 mod 4. There is no such simple
criterion in the cubic case although the following facts are useful
[3]: (i) A >49, or A < =23 ; (ii) A =0 or 1 mod 4.
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Without going into further detail we give the following
consequence of proposition 1.

PROPOSITION 6. Let Q(O) be simple; let p> 2 be a
rational prime such that p =2 mod 3, -3d is a quadratic
residue mod p, and p 1 g.c.d.(a,b). Then p is a cubic
residue mod q for every rational prime divisor q of
g.c.d.(a,b) such that q 1 f.

(1), 2, (3

Proof: Noting that © =0,
o) (2 | 5(2) ((3) | ((3) () o) (@) ((3)
direct calculation shows that
N(r+sQ+t92) = (r+se(1)+to(“2) (r+sQ(2)+tQ(2)2) (r+ 50(3)+t9(3)2)

2 2 2 2 .23
= r3-2ar ttars +art —bs3—abst +b t +3brst.
, .
Hence N(r-0)=r +ar+b .

Now the conditions on p ensure the solubility of
x3 + ax+ b =0 mod p- For by Cardan's formula [13] we must
first be able to extract the square root \/-3d ; thatis, -3d
must be a quadratic residue mod p. Secondly, we must be
able to extract two certain cube roots. But since pz2 mod 3
all residues mod p are cubic residues so that every residue
has a unique cube root.

Thus x3 + ax+ b =0 mod pis soluble and we wish to
show that it has a non-repeated root x=1r, i.e., one for which
the derivative 3ré+a# 0. Clearly this is true if there is
just one root. If there are three roots and every root is
repeated we have x34+ax+bz=(x- r)3 whence 0=-3r,
a=z3r%, bz-r3, and since Pp# 3, a=b=0; butthis
contradicts pT g.c.d.(a,b).

Thus for some r we have 1'3 +ar+b=kp, p‘]"(3r2+a).
We may assume ka; for if p l k replace r by r+ p to
get a new k not divisible by p: (r+ p)3 +a(r+p)l+b=
plk+ 3r% + a+ 3rp+ p2) =pk' , pT k'. Hence p occurs to
the first power in the norm N(r - 8) = r3+ar+b= kp and by
proposition 1, N7 =N(r' + s'6 + t' 02) =p is soluble. (Since
N(-a) = -N(a) we need consider only the positive sign.) Now
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3
qla, qlb, q’f'f so that Nw =z r’ =z p mod q where r”=u/v,
u,veZ and q‘rv . This implies that x3 =zp mod q is soluble
and that p 1is a cubic residue mod q. Q. E.D.

In the important case a =0 we can give a more specific
. 3 — 3 3 3
result. Since N\/-b=- /b and Q(- A/b)=Q( S/b), we may

. 3 .
restrict ourselves to Q( ’\/b) where b 1is a positive cube-free
integer. Write b =hk? where hk is square-free. Then an
integral basis for J is ([8], vol.2, p.104):

‘ 3 2 3/ .2 2 2
{1, a= \/hk , B= 'k } if 9T (" -k,
1 , 2 2
and{y=3(1+ha+k;3),a,g3} if 9 | (h” -k").
Thus the only prime occurring in a2 denominator is 3.

3
COROLLARY: If \/b) is simple then b has no
prime factor =1 mod 3.

Proof: The only properties of q used in the preceeding
proof were gq|g.c.d.(a,b) and that q does not occur in a
denominator. Thus all we require of q here is that q|b and
q #3. Thus suppose =1 mod 3 and q|b. If pTb and p=2
mod 3, by the proposition p is a cubic residue mod q. But
only one third of the residues mod q are cubic residues and
we will have the required contradiction if we can show that a
p=umod q exists for any u #0 mod q. This follows from the
fact that g.c.d.{(2 - u)g + u, q) =1 so that there are infinitely
many primes in the progression

P = 3gx+(2-ujg+u, x =1,2,3,...

=2 mod 3, =umodgq.

For example, @ ‘\3/7 ) is not simple. See [10] for a
table of data relating to cubic fields.

7. An inequality for the class number. Here we must
assume a knowledge of ideal theory and the definition of the class
number h = h(0) of Q(8) ; (Q(P) is simple if and only if h = 1).

Our reason for including this section in the present note, which
up till now has been on a completely elementary level, is that
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proposition 1 which gave criteria for h> 1 is susceptible of a
rather obvious generalization which gives criteria for h > 2,
h> 3, etc. We recall that n =(Q(0):Q) ; {w ,....,w } will
denote an integral basis. 1 n

PROPOSITION 7. Let the rational prime p split
completely in Q(0) and let pS©> 1 be the minimum power
of p such that

N(aiw

-+ SO -
+...+a w = , g.c.d. =1.
1 ) -P g {ai}

Then h>s andif n=2, s |h.
- o o

Proof: We have

(p) = J’1 Fz"' 4

n
where no two of the prime ideals yi are equal. Taking norms,
n
= N N ... N

P NS NP, NP

so that
= N = ... =N = .

Nfi fZ fn P

Let £ be one of the ‘Pi and let

S
P> =) = (bw+ ..+ w)

2
be the least power of F# which is principal. Then #, £ ...,
£ 5~ (1) give rise to distinct classes and the class group has a
subgroup of order s ; hence s|h. If g=g.c.d. {bi} and
b =gc, . taking norms we have NFS=pS= gnN(c1w1+. ..) and
therefore g=1 or g=p. If g=p, Jos=(p)(c wo+...)

11

contradicting (p) = fi' . fn' Thus g=1, NB =t ps and by

the definition of so we have so <s<h.

Now let n =2. The only prime ideals whose norms are

powers of p are Pi and 2 Hence
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‘ t t
1 2 :
(@) = (a,w, +a,w)= boi FZ (p) = Pi ¥

t t -t
2 1 2
where we may assume t1 > tZ > 0. Thus (@) =(p) )91
and
t t -t
2
((aw +aw)/p ) =f11
t
is an integral ideal so that (a,w, +a, )/P must be an

integer. Hence tZ =0, (a) = fiti and therefore t‘1 > s .
Taking norms, ps° = pti so that so = t1 > s ; from above

‘s < s ; thus s =s and since slh, s Ih.
o— o o

We now give only the simplest corollaries which relate
to (Vvm), m<O0.

COROLLARY 1. Let m< 0, m=1mod 4 andlet p

be the smallest rational prime such that*

h(y m) > ogl- m/4)
log p

= ):1. Then
P

Proof: The condition (_r_n_) =1 means that p splits in
2 2 s s
Q(«/ m) . Solving a~ + |m|b =p © or 4p © for minimal 5,

s
with g.c.d.(a,b) =1, we seethat b#0 and p ©> (|m|+1)/4.
Thus

h>s slog{([m|+1) 4} log(-m 4)
- o-— log p log p

COROLLARY 2. Let m< 0 and m =1 mod 4 and let

p be the smallest rational prime > 2 such that -% ) =1.
Then h(+/m)> (log |m]|)/log p .
2 .
* —I; ): (-i)(m 1')/8; as usual, m 1is assumed square-free.
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Proof: We must exclude p =2 since it is now ramified.
s

2 2
Again p splits and solving a~ + |m|b~ = p © we see

s
p ©> |m| (strict inequality since % ’ #0, i.e., pTm)

and the result follows.

2
through values =1 mod 8, by corollary 4. Similarly corollary
2 gives various arithmetical progressions of m such that
h = oo . Thus

Since (Ln')=1 if m=1 mod8 h-o0 as m-—>-®

COROLLARY 3. h(4/m) is unbounded as m — - o .
This result is obviously not deep and is not to be

compared with Heilbronn's theorem [5] that h - o as
m — - o (through all values).

The author would like to thank Doctors J. Lambek,
C. Riehm, and D. Sussman for their help during the
preparation of this note.
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