INTEGRAL FORMULAE ON QUASI-EINSTEIN MANIFOLDS AND APPLICATIONS

A. BARROS and E. RIBEIRO JR*.
Departamento de Matemática-Universidade Federal do Ceará, 60455-760-Fortaleza-CE, Brazil
e-mail: abbarros@mat.ufc.br,ernani@mat.ufc.br

(Received 4 February 2011; revised 20 June 2011; accepted 22 September 2011)

Abstract

The aim of this paper is to extend for the m-quasi-Einstein metrics some integral formulae obtained in [1] (C. Aquino, A. Barros and E. Ribeiro Jr., Some applications of the Hodge-de Rham decomposition to Ricci solitons, Results Math. $\mathbf{6 0}$ (2011), 245-254) for Ricci solitons and derive similar results achieved there. Moreover, we shall extend the m-Bakry-Emery Ricci tensor for a vector field X on a Riemannian manifold instead of a gradient field ∇f, in order to obtain some results concerning these manifolds that generalize their correspondents to a gradient field.

2010 Mathematics Subject Classification. Primary 53C25, 53C20, 53C21; secondary 53C65.

1. Introduction. One of the motivation to study quasi-Einstein metrics on a Riemannian manifold (M^{n}, g) is their close relation to Einstein metrics, which are warped products, see e.g. [4]. In this subject the m-Bakry-Emery Ricci tensor appears naturally. This tensor is given as follows:

$$
\begin{equation*}
R i c_{f}^{m}=R i c+\nabla^{2} f-\frac{1}{m} d f \otimes d f, \tag{1.1}
\end{equation*}
$$

where $0<m \leq \infty$, while Ric and $\nabla^{2} f$ stand for the Ricci tensor and the Hessian form, respectively. A natural generalisation for the previous tensor is to consider a vector field X instead of a gradient of a smooth function f, more exactly, we define $R i c_{X}^{m}$ as follows:

$$
\begin{equation*}
R i c_{X}^{m}=R i c+\frac{1}{2} \mathcal{L}_{X} g-\frac{1}{m} X^{b} \otimes X^{b}, \tag{1.2}
\end{equation*}
$$

where $X \in \mathfrak{X}(M), X^{b}$ is the 1 -form associated to X, while $\mathcal{L}_{X} g$ stands for the Lie derivative of the vector field X.

A metric g on a Riemannian manifold (M^{n}, X) will be called m-quasi-Einstein metric, or simply a quasi-Einstein metric if the next relation

$$
\begin{equation*}
R i c+\frac{1}{2} \mathcal{L}_{X} g-\frac{1}{m} X^{b} \otimes X^{b}=\lambda g \tag{1.3}
\end{equation*}
$$

[^0]holds for some $\lambda \in \mathbb{R}$. In particular, we have
\[

$$
\begin{equation*}
\operatorname{Ric}(X, X)+\left\langle\nabla_{X} X, X\right\rangle=\frac{1}{m}|X|^{4}+\lambda|X|^{2} . \tag{1.4}
\end{equation*}
$$

\]

Moreover, taking the trace of equation (1.3), we deduce

$$
\begin{equation*}
R+\operatorname{div} X-\frac{1}{m}|X|^{2}=\lambda n . \tag{1.5}
\end{equation*}
$$

We point out that if $m=\infty$, then equation (1.3) reduces to the one associated to a Ricci soliton, as well as when m is a positive integer and X is a gradient vector field, it corresponds to warped product Einstein metrics, for more details see [5]. Following the terminology of Ricci soliton, a quasi-Einstein metric g on a manifold M^{n} will be called expanding, steady or shrinking, respectively, if $\lambda<0, \lambda=0$ or $\lambda>0$.

Definition 1. A quasi-Einstein metric will be called trivial if $X \equiv 0$.
The triviality definition is equivalent to saying that M^{n} is an Einstein manifold. On the other hand, it is well known that on a compact manifold an ∞-quasi-Einstein metric with $\lambda \leq 0$ is trivial, see [6]. The same result was proved in [9] for quasi-Einstein metric on compact manifold with m finite. Besides, we known that compact shrinking Ricci solitons have positive scalar curvature, see for example [6]. An extension of this result for shrinking quasi-Einstein metric with X a gradient vector field and $1 \leq m<\infty$ was obtained in [5].

Before announcing the results we point out that they are generalisations of the results due to $[\mathbf{1 , 1 0}]$ for Ricci solitons. Firstly, we have the following theorem.

Theorem 1. Let $\left(M^{n}, g, X\right), n \geq 3$, be a compact Riemannian manifold satisfying Ric ${ }_{X}^{m}=\lambda g$. Then M^{n} is an Einstein manifold provided:
(1) $\int_{M} \operatorname{Ric}(X, X) \mathrm{dM} \leq \frac{2}{m} \int_{M}|X|^{2} \operatorname{div} X \mathrm{dM}$.
(2) X is a conformal vector field and $\int_{M} \operatorname{Ric}(X, X) \mathrm{d} \mathrm{M} \leq 0$.
(3) $|X|$ is constant and $\int_{M} \operatorname{Ric}(X, X) \mathrm{dM} \leq 0$.

In order to proceed we remember a result due to Yau [11], which is a generalisation of Hopf's theorem: A subharmonic function $f: M^{n} \rightarrow \mathbb{R}$ defined over a complete noncompact Riemannian manifold is constant, provided its gradient belongs to $\mathrm{L}^{1}\left(M^{n}\right)$. Recently, this result was extended by Camargo et al. [3] for a vector field X. With the aid of this extension we derive the following result.

Theorem 2. Let $\left(M^{n}, g, X\right)$ be a complete, non-compact Riemannian manifold satisfying Ric ${ }_{X}^{m}=\lambda g$. If $n \lambda \geq R$ and $|X| \in \mathrm{L}^{1}\left(M^{n}\right)$, then M^{n} is an Einstein manifold.

Before proceeding, we make an observation: When $X=\nabla f$ is a gradient field, equation (1.5) enables us to write

$$
\begin{equation*}
R+\Delta f=\frac{1}{m}|\nabla f|^{2}+\lambda n \tag{1.6}
\end{equation*}
$$

Thereby, we derive

$$
\begin{equation*}
\langle\nabla f, \nabla R\rangle+\langle\nabla f, \nabla \Delta f\rangle=\frac{2}{m}\left\langle\nabla_{\nabla f} \nabla f, \nabla f\right\rangle . \tag{1.7}
\end{equation*}
$$

2. Preliminaries. In this section we shall present some preliminaries which will be useful for the establishment of desired results. First we remember Lemma 2.1 due to [10].

Lemma 1. Given a vector field X on a Riemannian manifold $\left(M^{n}, g\right)$, we have

$$
\begin{equation*}
\operatorname{div}\left(\mathcal{L}_{X} g\right)(X)=\frac{1}{2} \Delta|X|^{2}-|\nabla X|^{2}+\operatorname{Ric}(X, X)+D_{X} \operatorname{div} X \tag{2.1}
\end{equation*}
$$

In particular, if $X=\nabla f$ is a gradient field, we have for all $Z \in \mathfrak{X}(M)$

$$
\begin{equation*}
\operatorname{div}\left(\mathcal{L}_{X} g\right)(Z)=2 \operatorname{Ric}(Z, X)+2 D_{Z} \operatorname{div} X \tag{2.2}
\end{equation*}
$$

or in $(1,1)$-tensorial notation

$$
\begin{equation*}
\operatorname{div} \nabla \nabla f=\operatorname{Ric}(\nabla f)+\nabla \Delta f \tag{2.3}
\end{equation*}
$$

Remembering that the diffusion operator is given by $\Delta_{X}=\Delta-D_{X}$, the previous lemma allows us to deduce the following one.

Lemma 2. Let $\left(M^{n}, g, X\right)$ be a Riemannian manifold such that $\operatorname{Ric}_{X}^{m}=\lambda g$. Then we have
(1) $\frac{1}{2} \Delta|X|^{2}=|\nabla X|^{2}-\operatorname{Ric}(X, X)+\frac{2}{m}|X|^{2} \operatorname{div} X$.
(2) $\frac{1}{2} \Delta_{X}|X|^{2}=|\nabla X|^{2}-\lambda|X|^{2}+\frac{1}{m}|X|^{2}\left(2 \operatorname{div} X-|X|^{2}\right)$.
(3) If M^{n} is compact and $\nabla X=0$, then $X=0$.

Proof. Since $\operatorname{div} g=0$, we deduce from the assumptions of the lemma that

$$
\operatorname{div} R i c+\frac{1}{2} \operatorname{div} \mathcal{L}_{X} g-\frac{1}{m} \operatorname{div}\left(X^{b} \otimes X^{b}\right)=0
$$

Next, we use the contracted second Bianchi identity, $\nabla R=2 \operatorname{div} R i c$, to arrive at

$$
\nabla R+\operatorname{div} \mathcal{L}_{X} g-\frac{2}{m} \operatorname{div} X X^{b}-\frac{2}{m}\left(\nabla|X|^{2}\right)^{b}=0
$$

In particular, for any $Z \in \mathfrak{X}(M)$ we have

$$
\langle\nabla R, Z\rangle+\operatorname{div}\left(\mathcal{L}_{X} g\right)(Z)-\frac{2}{m} X^{\mathrm{b}}(Z) \operatorname{div} X-\frac{1}{m}\left(\nabla|X|^{2}\right)^{\mathrm{b}}(Z)=0 .
$$

Therefore, for $Z=X$ we deduce

$$
\begin{equation*}
\operatorname{div}\left(\mathcal{L}_{X} g\right)(X)=-\langle\nabla R, X\rangle+\frac{2}{m} \operatorname{div} X X^{\natural}(X)+\frac{1}{m} \mathcal{L}_{X} g(X, X) . \tag{2.4}
\end{equation*}
$$

Next, we use the relation $\nabla R+\nabla \operatorname{div} X=\frac{1}{m} \nabla|X|^{2}$, jointly with equations (2.1) and (2.4) to arrive at

$$
\begin{aligned}
\frac{1}{2} \Delta|X|^{2}= & |\nabla X|^{2}-\operatorname{Ric}(X, X)-D_{X} \operatorname{div} X+\frac{1}{m} \mathcal{L}_{X} g(X, X)+D_{X} \operatorname{div} X \\
& -\frac{1}{m} X\left(|X|^{2}\right)+\frac{2}{m} \operatorname{div} X X^{b}(X)
\end{aligned}
$$

Hence, we make use of Lemma 1 to conclude the first assertion of the lemma.

Next, we notice that the second assertion is immediate from the first one just applying (1.4).

Supposing $\nabla X=0$, we have $|X|$ constant as well as $\operatorname{div} X=0$. Hence, the first item of the lemma yields $\operatorname{Ric}(X, X)=0$. Now we use equation (1.4) to deduce

$$
\begin{equation*}
\frac{1}{m}|X|^{4}+\lambda|X|^{2}=0 . \tag{2.5}
\end{equation*}
$$

If λ is non-negative we are done. Otherwise, let us assume $X \neq 0$ to arrive at a contradiction. In fact, equation (2.5) enables us to write $\lambda=-\frac{1}{m}|X|^{2}$. Thus, we obtain

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=\frac{1}{m} X^{b}(X) X^{b}(Y)-\frac{1}{m}|X|^{2} g(X, Y)=0 \tag{2.6}
\end{equation*}
$$

for any Y. So, we conclude that M^{n} is Ricci flat. On the other hand, if we consider Y a non-zero vector orthogonal to X, we get $\operatorname{Ric}(Y, Y)=\frac{1}{m}\left(\langle X, Y\rangle^{2}-|X|^{2}|Y|^{2}\right)=$ $-\frac{1}{m}|X|^{2}|Y|^{2}<0$, giving a contradiction. Then, $\lambda<0$, also implies $X=0$, which finishes the proof of the lemma.

Taking $X=\nabla f$ in the previous lemma and letting $\Delta_{f}=\Delta_{\nabla f}$, we derive the following corollary.

Corollary 1. Under the assumptions of Lemma 2, if in addition $X=\nabla f$, then the following are true.
(1) $\frac{1}{2} \Delta|\nabla f|^{2}=|\nabla \nabla f|^{2}-\operatorname{Ric}(\nabla f, \nabla f)+\frac{2}{m}|\nabla f|^{2} \Delta f$.
(2) $\frac{1}{2} \Delta_{f}|\nabla f|^{2}=|\nabla \nabla f|^{2}-\lambda|\nabla f|^{2}+\frac{1}{m}|\nabla f|^{2}\left(2 \Delta f-|\nabla f|^{2}\right)$.

Writing equation (1.3) in the tensorial language

$$
\begin{equation*}
R_{i j}+\nabla_{i} \nabla_{j} f-\frac{1}{m}(d f \otimes d f)_{i j}=\lambda g_{i j}, \tag{2.7}
\end{equation*}
$$

we have the following lemma.
Lemma 3. Let $\left(M^{n}, g, \nabla f\right)$ be a Riemannian manifold such that $n \geq 3$ and $R i_{\nabla f}^{m}=\lambda g$. Then the following formulae hold:
(1) $\frac{1}{2} \nabla_{i} R=\frac{m-1}{m} R_{i j} \nabla^{j} f+\frac{1}{m}(R-(n-1) \lambda) \nabla_{i} f$.
(2) $\nabla_{k} R_{i j}-\nabla_{j} R_{i k}=R_{i j k s} \nabla^{s} f+\frac{1}{m}\left(R_{i j} \nabla_{k} f-R_{i k} \nabla_{j} f\right)-\frac{\lambda}{m}\left(g_{i j} \nabla_{k} f-g_{i k} \nabla_{j} f\right)$.
(3) $\nabla\left(R+|\nabla f|^{2}-2 \lambda f\right)=\frac{2}{m}\left\{\nabla_{\nabla f} \nabla f+\left(|\nabla f|^{2}-\Delta f\right) \nabla f\right\}$.

Proof. For the first assertion we address the reader to formula (3.12) in Lemma 3.2 in [5]. Now we treat item (2). From equation (2.7) we infer

$$
\begin{aligned}
\nabla_{k} R_{i j}-\nabla_{j} R_{i k}= & -\left(\nabla_{k} \nabla_{j} \nabla_{i} f-\nabla_{j} \nabla_{k} \nabla_{i} f\right) \\
& +\frac{1}{m}\left(\nabla_{k} \nabla_{i} f \nabla_{j} f+\nabla_{k} \nabla_{j} f \nabla_{i} f-\nabla_{j} \nabla_{i} f \nabla_{k} f-\nabla_{j} \nabla_{k} f \nabla_{i} f\right) \\
= & R_{i j k s} \nabla^{s} f+\frac{1}{m}\left(R_{i j} \nabla_{k} f-R_{i k} \nabla_{j} f\right)-\frac{\lambda}{m}\left(g_{i j} \nabla_{k} f-g_{i k} \nabla_{j} f\right),
\end{aligned}
$$

where we interchanged the covariant derivatives to get item (2).

Finally, we prove the last item of the lemma. In fact, from item (1) and equation (2.7) we deduce

$$
\begin{aligned}
\frac{1}{2} \nabla\left(R+|\nabla f|^{2}\right) & =\frac{m-1}{m} \operatorname{Ric}(\nabla f)+\frac{1}{m}(R-(n-1) \lambda) \nabla f+\nabla_{\nabla f} \nabla f \\
& =\operatorname{Ric}(\nabla f)+\nabla_{\nabla f} \nabla f-\frac{1}{m} \operatorname{Ric}(\nabla f)+\frac{1}{m}(R-(n-1) \lambda) \nabla f \\
& =\frac{1}{m}|\nabla f|^{2} \nabla f+\lambda \nabla f-\frac{1}{m} \operatorname{Ric}(\nabla f)+\frac{1}{m}(R-(n-1) \lambda) \nabla f .
\end{aligned}
$$

Thus, using $R-n \lambda=\frac{1}{m}|\nabla f|^{2}-\Delta f$ we achieve

$$
\begin{aligned}
\nabla\left(R+|\nabla f|^{2}-2 \lambda f\right) & =\frac{2}{m}\left\{\left(|\nabla f|^{2}+R-n \lambda+\lambda\right) \nabla f-\operatorname{Ric}(\nabla f)\right\} \\
& =\frac{2}{m}\left\{\left(|\nabla f|^{2}+\frac{1}{m}|\nabla f|^{2}-\Delta f+\lambda\right) \nabla f-\operatorname{Ric}(\nabla f)\right\} \\
& =\frac{2}{m}\left\{\left(|\nabla f|^{2}-\Delta f\right) \nabla f+\frac{1}{m}|\nabla f|^{2} \nabla f+\lambda \nabla f-\operatorname{Ric}(\nabla f)\right\} \\
& =\frac{2}{m}\left\{\left(|\nabla f|^{2}-\Delta f\right) \nabla f+\nabla_{\nabla f} \nabla f\right\},
\end{aligned}
$$

which concludes the proof of the lemma.
It is convenient to notice that for $m=\infty$ we derive the classical Hamilton equation [7] for a gradient Ricci soliton:

$$
\begin{equation*}
R+|\nabla f|^{2}-2 \lambda f=C \tag{2.8}
\end{equation*}
$$

where C is constant.
As a consequence of the preceding lemma we obtain the following corollary.
Corollary 2. Let $\left(M^{n}, g, \nabla f\right)$ be a Riemannian manifold such that $n \geq 3$ and $R i c_{\nabla f}^{m}=\lambda g$. Then the following formulae hold:
(1) $\frac{1}{2}\langle\nabla R, \nabla f\rangle=\frac{m-1}{m} R i c(\nabla f, \nabla f)+\frac{1}{m}(R-(n-1) \lambda)|\nabla f|^{2}$.
(2) $\frac{1}{2}|\nabla R|^{2}=\frac{m-1}{m} \operatorname{Ric}(\nabla f, \nabla R)+\frac{1}{m}(R-(n-1) \lambda)\langle\nabla f, \nabla R\rangle$.

Proof. We choose $Z \in \mathfrak{X}(M)$ on item (1) of the quoted lemma to deduce

$$
\begin{equation*}
\frac{1}{2}\langle\nabla R, Z\rangle=\frac{m-1}{m} \operatorname{Ric}(\nabla f, Z)+\frac{1}{m}(R-(n-1) \lambda)\langle\nabla f, Z\rangle . \tag{2.9}
\end{equation*}
$$

Therefore, the corollary follows.
Proceeding, we arrive at the main lemma of this section.
Lemma 4. Let $\left(M^{n}, g, \nabla f\right)$ be a Riemannian manifold satisfying Ric $\nabla_{\nabla f}^{m}=\lambda g$. Then,

$$
\begin{align*}
\frac{1}{2} \Delta R= & -\operatorname{Ric}(\nabla f, \nabla f)-\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2}-\frac{(\Delta f)^{2}}{n}+\lambda \Delta f+\langle\nabla R, \nabla f\rangle \\
& +\frac{1}{m}\left\{|\nabla f|^{2} \Delta f+\operatorname{div}\left(\nabla_{\nabla f} \nabla f-\nabla f \Delta f\right)\right\} . \tag{2.10}
\end{align*}
$$

Proof. Initially we compute the divergence of identity (3) of Lemma 3 to obtain $\Delta R+\Delta|\nabla f|^{2}-2 \lambda \Delta f=\frac{2}{m}\left\{\left\langle\nabla\left(|\nabla f|^{2}-\Delta f\right), \nabla f\right\rangle+\left(|\nabla f|^{2}-\Delta f\right) \Delta f+\operatorname{div}\left(\nabla_{\nabla f} \nabla f\right)\right\}$.

Using Bochner's formula: $\frac{1}{2} \Delta|\nabla f|^{2}=\operatorname{Ric}(\nabla f, \nabla f)+\left|\nabla^{2} f\right|^{2}+\langle\nabla f, \nabla \Delta f\rangle$, and writing $\left|\nabla^{2} f\right|^{2}=\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2}-\frac{1}{n}(\Delta f)^{2}$, we have

$$
\begin{aligned}
\frac{1}{2} \Delta R= & -\operatorname{Ric}(\nabla f, \nabla f)-\left|\nabla^{2} f-\frac{\Delta f}{n} g\right|^{2}-\frac{(\Delta f)^{2}}{n}+\lambda \Delta f-\langle\nabla \Delta f, \nabla f\rangle \\
& +\frac{2}{m}\langle\nabla \nabla f \nabla f, \nabla f\rangle+\frac{1}{m}\left\{\left(|\nabla f|^{2}-\Delta f\right) \Delta f-\langle\nabla \Delta f, \nabla f\rangle+\operatorname{div}\left(\nabla_{\nabla f} \nabla f\right)\right\}
\end{aligned}
$$

Next, we invoke equation (1.6) to write

$$
\langle\nabla \Delta f, \nabla f\rangle=\left\langle\nabla\left(n \lambda+\frac{1}{m}|\nabla f|^{2}-R\right), \nabla f\right\rangle=\frac{2}{m}\left\langle\nabla_{\nabla f} \nabla f, \nabla f\right\rangle-\langle\nabla R, \nabla f\rangle
$$

Then, the last relation for $\frac{1}{2} \Delta R$ turns into

$$
\begin{aligned}
\frac{1}{2} \Delta R= & -\operatorname{Ric}(\nabla f, \nabla f)-\left|\nabla^{2} f-\frac{\Delta f}{n} g\right|^{2}-\frac{(\Delta f)^{2}}{n}+\lambda \Delta f+\langle\nabla R, \nabla f\rangle \\
& +\frac{1}{m}\left\{\left(|\nabla f|^{2}-\Delta f\right) \Delta f-\langle\nabla \Delta f, \nabla f\rangle+\operatorname{div}\left(\nabla_{\nabla f} \nabla f\right)\right\} .
\end{aligned}
$$

At this point we use $\operatorname{div}(\nabla f \Delta f)=(\Delta f)^{2}+\langle\nabla \Delta f, \nabla f\rangle$ to achieve the formula in the statement, which finishes the proof of lemma.

3. Proofs of the results stated in the introduction.

3.1. Proof of Theorem 1. First we integrate identity (1) of Lemma 2 to infer

$$
\frac{1}{2} \int_{M} \Delta|X|^{2} \mathrm{dM}=\int_{M}|\nabla X|^{2} \mathrm{dM}-\int_{M} \operatorname{Ric}(X, X) \mathrm{dM}+\frac{2}{m} \int_{M}|X|^{2} \operatorname{div} X \mathrm{dM}
$$

This yields

$$
\begin{equation*}
\int_{M}|\nabla X|^{2} \mathrm{dM}=\int_{M} \operatorname{Ric}(X, X) \mathrm{dM}-\frac{2}{m} \int_{M}|X|^{2} \operatorname{div} X \mathrm{dM} \tag{3.1}
\end{equation*}
$$

Since we are assuming that the right-hand side of (3.1) is less than or equal to zero, we obtain $\nabla X=0$. So, assertion (3) of Lemma 2 allows us to conclude the first item.

Proceeding, we know that there exists a smooth function ρ on M, for which

$$
\begin{equation*}
\mathcal{L}_{X} g=2 \rho g \tag{3.2}
\end{equation*}
$$

In particular, $\left\langle\nabla_{X} X, X\right\rangle=\rho|X|^{2}$. Moreover, taking the trace of both members of equation (3.2) we also obtain

$$
\begin{equation*}
\operatorname{div} X=n \rho \tag{3.3}
\end{equation*}
$$

On the other hand, we notice that

$$
\begin{aligned}
\operatorname{div}\left(X|X|^{2}\right) & =|X|^{2} \operatorname{div} X+2\left\langle\nabla_{X} X, X\right\rangle \\
& =(n+2) \rho|X|^{2} .
\end{aligned}
$$

Since M^{n} is compact, we use Stokes' formula to obtain

$$
\begin{equation*}
\int_{M} \rho|X|^{2} \mathrm{dM}=0 \tag{3.4}
\end{equation*}
$$

Thereby, using this result jointly with relation (3.1), we conclude that $\nabla X=0$, since we are assuming $\int_{M} \operatorname{Ric}(X, X) \mathrm{dM} \leq 0$. Therefore, using assertion (3) of Lemma 2, we conclude that M^{n} is an Einstein manifold.

Finally, if $|X|$ is constant, we can apply Stokes' formula on equation (3.1) to derive

$$
\begin{equation*}
\int_{M}|\nabla X|^{2} \mathrm{dM}=\int_{M} \operatorname{Ric}(X, X) \mathrm{dM} \tag{3.5}
\end{equation*}
$$

From here we conclude the proof of the theorem.
Remark 1. We notice that for $n=2$, we may write equation (3.1) as follows

$$
\begin{equation*}
\int_{M}|\nabla X|^{2} \mathrm{dM}=\frac{1}{2} \int_{M} K|X|^{2} \mathrm{dM}-\frac{2}{m} \int_{M}|X|^{2} \operatorname{div} X \mathrm{dM}, \tag{3.6}
\end{equation*}
$$

where K stands for the Gaussian curvature. In particular we have:

- If $|X|$ is a non-null constant, then M^{2} has genus zero or one.
- If X is a non-trivial conformal vector field and K is constant, then M^{2} is isometric to $\mathbb{S}^{2}(r)$.
3.2. Proof of Theorem 2. Taking into account that $\operatorname{Ric}_{X}^{m}=\lambda g$, then by equation (1.5) we arrive at

$$
\begin{equation*}
m \operatorname{div} X=|X|^{2}+m(n \lambda-R) \tag{3.7}
\end{equation*}
$$

Thus, if $(n \lambda-R) \geq 0$, then we have $m \operatorname{div} X \geq 0$. On the other hand, if $|X| \in L^{1}(M)$, we may invoke Proposition 1 in [3] to derive that $\operatorname{div} X=0$. Next, we may use equation (3.7) to conclude that $X \equiv 0$ as well as $n \lambda=R$. Therefore, M is an Einstein manifold and we finish the proof of the theorem.
4. Integral formulae for quasi-Einstein manifolds. In this section we shall show some integral formulae for a compact quasi-Einstein manifold M^{n}, which are generalisation of the formulae obtained for Ricci solitons in [1]. Those formulae enable us to derive some rigidity results for such a class of manifolds.

Theorem 3. Let $\left(M^{n}, g, \nabla f\right)$ be a Riemannian manifold satisfying $R i c_{\nabla f}^{m}=\lambda g$. Then we have

$$
\begin{aligned}
\frac{1}{2} \Delta_{f} R= & -\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2}-\frac{(\Delta f)^{2}}{n}+\lambda \Delta f+\frac{1}{2}\langle\nabla f, \nabla R\rangle+\frac{1}{2}\langle\nabla f, \nabla \Delta f\rangle \\
& +\frac{1}{m} \operatorname{div}\left(\nabla_{\nabla f} \nabla f-\Delta f \nabla f\right)
\end{aligned}
$$

Proof. First of all we use Lemma 4 to obtain the following equation

$$
\begin{align*}
\frac{1}{2} \Delta R-\frac{1}{2}\langle\nabla R, \nabla f\rangle= & -\operatorname{Ric}(\nabla f, \nabla f)-\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2}-\frac{(\Delta f)^{2}}{n}+\lambda \Delta f+\frac{1}{2}\langle\nabla R, \nabla f\rangle \\
& +\frac{1}{m}|\nabla f|^{2} \Delta f+\frac{1}{m} \operatorname{div}\left(\nabla_{\nabla f} \nabla f-\nabla f \Delta f\right) \tag{4.1}
\end{align*}
$$

Now, using the definition of diffusion operator and substituting identity (1) of Corollary 2 in the preceding equation, we obtain

$$
\begin{aligned}
\frac{1}{2} \Delta_{f} R= & -\operatorname{Ric}(\nabla f, \nabla f)-\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2}-\frac{(\Delta f)^{2}}{n}+\lambda \Delta f \\
& +\frac{m-1}{m} \operatorname{Ric}(\nabla f, \nabla f)+\frac{1}{m}(R-(n-1) \lambda)|\nabla f|^{2}+\frac{1}{m}|\nabla f|^{2} \Delta f \\
& +\frac{1}{m} \operatorname{div}\left(\nabla_{\nabla f} \nabla f-\nabla f \Delta f\right)
\end{aligned}
$$

From here we deduce

$$
\begin{aligned}
\frac{1}{2} \Delta_{f} R= & -\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2}-\frac{(\Delta f)^{2}}{n}+\lambda \Delta f-\frac{1}{m} \operatorname{Ric}(\nabla f, \nabla f) \\
& +\frac{1}{m}(R+\Delta f-n \lambda)|\nabla f|^{2}+\frac{1}{m} \lambda|\nabla f|^{2}+\frac{1}{m} \operatorname{div}(\nabla \nabla f \nabla f-\nabla f \Delta f)
\end{aligned}
$$

Next, using $R+\Delta f-n \lambda=\frac{1}{m}|\nabla f|^{2}$, we infer

$$
\begin{aligned}
\frac{1}{2} \Delta_{f} R= & -\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2}-\frac{(\Delta f)^{2}}{n}+\lambda \Delta f \\
& +\frac{1}{m}\left\{-\operatorname{Ric}(\nabla f, \nabla f)+\frac{1}{m}|\nabla f|^{4}+\lambda|\nabla f|^{2}+\operatorname{div}\left(\nabla_{\nabla f} \nabla f-\nabla f \Delta f\right)\right\}
\end{aligned}
$$

On the other hand, using equation (1.4) with $X=\nabla f$, we have

$$
\begin{equation*}
-\operatorname{Ric}(\nabla f, \nabla f)+\frac{1}{m}|\nabla f|^{4}+\lambda|\nabla f|^{2}=\left\langle\nabla_{\nabla f} \nabla f, \nabla f\right\rangle=\frac{m}{2}(\langle\nabla f, \nabla R\rangle+\langle\nabla f, \nabla f\rangle), \tag{4.2}
\end{equation*}
$$

where for the last equality we have used equation (1.7). Substituting this in the above formula for $\Delta_{f} R$, we get the expression in the statement, which completes the proof of the theorem.

As a consequence of this theorem, we deduce the following integral formulae.

Corollary 3. Let $\left(M^{n}, g, \nabla f\right)$ be a compact orientable Riemannian manifold satisfying Ric $c_{\nabla f}^{m}=\lambda g$. Then we have
(1) $\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{dM}=\frac{3}{2} \int_{M}\langle\nabla f, \nabla R\rangle \mathrm{dM}+\frac{n+2}{2 n} \int_{M}\langle\nabla f, \nabla \Delta f\rangle \mathrm{dM}$.
(2) $\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{dM}+\frac{n+2}{2 n} \int_{M}(\Delta f)^{2} \mathrm{dM}=\frac{3}{2} \int_{M}\langle\nabla f, \nabla R\rangle \mathrm{dM}$.
(3) $\int_{M} R i c(\nabla f, \nabla f) \mathrm{dM}+\frac{3}{2} \int_{M}\langle\nabla f, \nabla R\rangle \mathrm{dM}=\frac{3}{2} \int_{M}(\Delta f)^{2} \mathrm{dM}$.
(4) M^{n} is an Einstein manifold, if $\int_{M}\langle\nabla R, \nabla f\rangle \mathrm{d} \mathrm{M} \leq 0$.
(5) Suppose that f is not constant and there exists $\mu: M^{n} \rightarrow \mathbb{R}$ solution of the equation $\frac{n+2}{2 n} \Delta f+\frac{3}{2} R=\mu$, such that $\mu \perp \Delta f$, in the L^{2} inner product. Then M^{n} is conformally equivalent to a unit sphere \mathbb{S}^{n}, but not isometric.

Proof. Since M^{n} is compact, we can use Theorem 3 and Stokes' formula to infer

$$
\begin{aligned}
\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{dM}= & \int_{M}\left(\lambda-\frac{\Delta f}{n}\right) \Delta f \mathrm{dM}+\int_{M}\langle\nabla f, \nabla R\rangle \mathrm{dM} \\
& +\frac{1}{2} \int_{M}\langle\nabla f, \nabla(R+\Delta f)\rangle \mathrm{dM}
\end{aligned}
$$

Next, we use relation (1.6) to write $\int_{M}\left(\lambda-\frac{\Delta f}{n}\right) \Delta f \mathrm{dM}=\frac{1}{n} \int_{M}\left(R-\frac{1}{m}|\nabla f|^{2}\right) \Delta f \mathrm{dM}$. Then, Stokes' formula gives

$$
\left.\frac{1}{n} \int_{M}\left(R-\frac{1}{m}|\nabla f|^{2}\right) \Delta f \mathrm{dM}=-\frac{1}{n} \int_{M}\langle\nabla f, \nabla R\rangle \mathrm{d} \mathbf{M}+\left.\frac{1}{n m} \int_{M}\langle\nabla f, \nabla| \nabla f\right|^{2}\right\rangle \mathrm{d} \mathrm{M} .
$$

On the other hand, we notice that equation (1.6) yields $\nabla(R+\Delta f)=\frac{1}{m} \nabla\left(|\nabla f|^{2}\right)$. By using this datum on the previous equation, we have

$$
\begin{equation*}
\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{dM}=\frac{3}{2} \int_{M}\langle\nabla f, \nabla R\rangle \mathrm{dM}+\frac{n+2}{2 n} \int_{M}\langle\nabla f, \nabla \Delta f\rangle \mathrm{dM}, \tag{4.3}
\end{equation*}
$$

which ends the first assertion.
Proceeding, since $\int_{M}\langle\nabla f, \nabla \Delta f\rangle \mathrm{dM}=-\int_{M}(\Delta f)^{2} \mathrm{dM}$, we obtain from equation (4.3) that

$$
\begin{equation*}
\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{dM}=\frac{3}{2} \int_{M}\langle\nabla f, \nabla R\rangle \mathrm{d} \mathrm{M}-\frac{n+2}{2 n} \int_{M}(\Delta f)^{2} \mathrm{dM} \tag{4.4}
\end{equation*}
$$

which gives the second item.
Next, we integrate Bochner's formula to get

$$
\begin{equation*}
\int_{M} \operatorname{Ric}(\nabla f f, \nabla f) \mathrm{d} \mathbf{M}+\int_{M}\left|\nabla^{2} f\right|^{2} \mathrm{~d} \mathrm{M}+\int_{M}\langle\nabla f, \nabla \Delta f\rangle \mathrm{d} \mathrm{M}=0 . \tag{4.5}
\end{equation*}
$$

Since $\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{dM}=\int_{M}\left|\nabla^{2} f\right|^{2} \mathrm{dM}-\frac{1}{n} \int_{M}(\Delta f)^{2} \mathrm{dM}$, we can use once more Stokes' formula to arrive at

$$
\begin{equation*}
\int_{M} \operatorname{Ric}(\nabla f, \nabla f) \mathrm{dM}+\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{~d} \mathrm{M}=\frac{n-1}{n} \int_{M}(\Delta f)^{2} \mathrm{dM} \tag{4.6}
\end{equation*}
$$

Now, comparing equation (4.6) with the second item we arrive at

$$
\int_{M}\left\{\operatorname{Ric}(\nabla f, \nabla f)+\frac{3}{2}\langle\nabla f, \nabla R\rangle\right\} \mathrm{dM}=\frac{3}{2} \int_{M}(\Delta f)^{2} \mathrm{dM}
$$

as we want.
On the other hand, if $\int_{M}\langle\nabla R, \nabla f\rangle \mathrm{dM} \leq 0$, in particular this occurs if R is constant, we deduce, from the second item, that

$$
\begin{equation*}
\int_{M}\langle\nabla R, \nabla f\rangle \mathrm{dM}=0 \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{dM}+\frac{n+2}{2 n} \int_{M}(\Delta f)^{2} \mathrm{dM}=0 \tag{4.8}
\end{equation*}
$$

This implies that $\nabla^{2} f=\frac{1}{n}(\Delta f) g$ and $\Delta f=0$. Hence, we can apply Hopf's theorem to deduce that f is constant, which implies that M^{n} is an Einstein manifold.

Finally, we notice that $\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{dM}=\int_{M}\left\langle\nabla f, \nabla\left(\frac{n+2}{2 n} \Delta f+\frac{3}{2} R\right)\right\rangle \mathrm{dM}$. So, if $\frac{n+2}{2 n} \Delta f+\frac{3}{2} R=\mu$, with $\int_{M} \mu \Delta f \mathrm{dM}=0$, we have $\nabla^{2} f=\frac{1}{n}(\Delta f) g$. Since f is not constant, this allows us to apply Theorem 2 due to Ishara and Tashiro [8] to conclude that M^{n} is conformally equivalent to a unit sphere \mathbb{S}^{n}. Moreover, if we have an isometry between M^{n} and \mathbb{S}^{n}, then its scalar curvature R would be constant. From assertion (2), we conclude that $\int_{M}\left|\nabla^{2} f-\frac{(\Delta f)}{n} g\right|^{2} \mathrm{dM}+\frac{n+2}{2 n} \int_{M}(\Delta f)^{2} \mathrm{dM}=0$. Then, the previous assertion yields that f must be constant, which contradicts our assumption on f. Hence, we complete the proof of the corollary.

As a consequence of this corollary, we derive the next result.
Corollary 4. Let $\left(M^{n}, g, \nabla f\right)$ be an orientable compact Riemannian manifold satisfying Ric $\mathrm{Vf}_{\mathrm{f}}^{m}=\lambda \mathrm{g}$. Then ∇f can not be a non-trivial conformal vector field.

Proof. Let us suppose that ∇f is a non-trivial conformal vector field, i.e. $\mathcal{L}_{\nabla f} g=$ $2 \rho g$ with ρ not constant. Therefore, we can apply Theorem II. 9 from [2] to deduce that

$$
\begin{equation*}
\int_{M} \mathcal{L}_{\nabla f} R \mathrm{dM}=\int_{M}\langle\nabla f, \nabla R\rangle \mathrm{dM}=0 \tag{4.9}
\end{equation*}
$$

Then, the previous corollary enables us to finish the proof.
Remark 2. We point out that $\int_{M}\langle\nabla f, \nabla R\rangle \mathrm{dM}=0$ in dimension two for m finite is always valid. In fact, since $\nabla\left(e^{-\frac{t}{m}}\right)$ is a conformal field and the Dirichlet integral is a conformal invariant, the claim follows from Theorem II. 9 from [2]. Therefore, if $\left(M^{2}, g, \nabla f\right)$ is a compact quasi-Einstein manifold, then it is trivial by Corollary 3 , see also [5] and [9].

Acknowledgement. The authors would like to thank the referee for comments and valuable suggestions.

REFERENCES

1. C. Aquino, A. Barros and E. Ribeiro, Jr, Some applications of the Hodge-de Rham decomposition to Ricci solitons, Results Math. 60 (2011), 245-254. Doi:10.1007/s00025-01100166-1.
2. J. P. Bourguignon and J. P. Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Am. Math. Soc. 301 (1987), 723-736.
3. F. Camargo, A. Caminha and P. Souza, Complete foliations of space forms by hypersurfaces, Bull. Braz. Math. Soc. 41 (2010), 339-353.
4. J. Case, On the nonexistence of quasi-Einstein metrics, Pacific J. Math. 248 (2010), 227-284.
5. J. Case, Y. Shu and G. Wei, Rigity of quasi-Einstein metrics, Diff. Geo. Appl. 29 (2010), 93-100.
6. M. Eminenti, G. La Nave and C. Mantegazza, Ricci solitons: The equation point of view, Manuscripta Math. 127 (2008), 345-367.
7. R. S. Hamilton, The formation of singularities in the Ricci flow, Surv. Diff. Geom. 2 (1993), 7-136 (International Press, Cambridge, MA).
8. S. Ishihara and Y. Tashiro, On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ. 9 (1959), 19-47.
9. D. S. Kim and Y. H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Am. Math. Soc. 131 (2003), 2573-2576.
10. P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), 329-345.
11. S. T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670.

[^0]: *Both partially supported by CNPq-BR.

