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Introduction. The concept of a hermitian element of a Banach algebra was first introduced
by Vidav [21] who proved that, if a Banach algebra si has " enough " hermitian elements,
then si can be renormed and given an involution to make it a stellar algebra. (Following
Bourbaki [5] we shall use the expression " stellar algebra " in place of the term " C*-algebra ".)
This theorem was improved by Berkson [2], Glickfeld [10] and Palmer [17]. The improve-
ments consist of removing hypotheses from Vidav's original theorem and in showing that
Vidav's new norm is in fact the original norm of the algebra. Lumer [13] gave a spatial
definition of a hermitian operator on a Banach space E and proved it to be equivalent to
Vidav's definition when one considers the Banach algebra &{E) of continuous linear mappings
of£into£.

In this paper the theory outlined above will be applied to define a normal element of a
Banach algebra and to prove a spectral theorem for such elements. This theorem will then be
exploited to prove analogues of well-known theorems for operators in Hilbert spaces.

We shall use the following standard notations. The symbol N will denote the set
{0, 1, 2 , . . . }, R the set of real numbers, C the set of complex numbers, T1 the unit circle in C,
and z the identity function of R2 onto R2.

The Banach algebras considered here will be assumed to be complex and to have identity
element 1 such that || 11| = 1. For an element x of a Banach algebra si, the spectrum of x,
denoted by sp(;c), is the set of complex numbers A such that X—x ( =A1 —x) is not invertible
in si. The spectral radius of x is the number

p(x) = sup{|A|:Aesp(x)}.

Note that p(x) ^ || x \\.
Let si be a Banach algebra, and let xes i . Since the mapping t -> 11 + tx \\ is a convex

function of R into R, one can define

(p(x)= lim
r->o+ t

An element xesi is hermitian if cp(ix) = cp(— ix) = 0; x is positive if JC is hermitian and has
positive spectrum. Since, for yes/, <p(y) + (p(—y) ^ 0, x is hermitian if both q>(ix) and <p(—ix)
are negative and positive if, in addition, <p(—x) ^ 0. If si is a stellar algebra, x is hermitian
(in the sense above) if and only if x is self-adjoint (x = x*). The function <& of si into R
defined by the equation

<D(x) = sup {<p(kc): AeC, | A| ^ 1}

is a norm on si equivalent to the original norm. The above facts are proved in [4].
We shall list here the basic facts that we shall use throughout the paper.

PROPOSITION A. The element xesi is hermitian if and only if | e"x || = 1 for every te~R.
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PROPOSITION B [21, Hilfsatz 2 (e)]. If xesi is hermitian, sp(x) c R.

PROPOSITION C [2, Lemma 3.1]. Let H be the set of hermitian elements of si. Then
H+ iH is closed in si.

Proof. First note that, if a, beH, then cp(a+ib) ^ (p(a) + q>(ib) = cp(a) = <p(a+ib — ib) ^
q>(a+ib)+ (p(-ib) = cp(a+ib); hence q>(a+ib) = cp(a). Consequently <D(a) ̂  <D(a+#>).

Now let (*„) be a sequence in H+ iH converging to x e si. Write xn = an+ibn, an, bn e H.
By the above discussion (an) is a Cauchy sequence (for O and therefore for the original norm).
Thus the sequence (an) [resp. (bn)] converges to ae si [resp. be si]. But H is closed
[21, Hilfsatz 2(d)]; hence x = (a+ib)eH+iH.

PROPOSITION D [21, II]. If si and 38 are Banach algebras, and u is a norm-decreasing
linear mapping of 28 into si mapping 1 onto 1, then u carries hermitian [resp. positive] elements
of '88 onto hermitian [resp. positive] elements of si.

Proof. For any ye38, (p(u(y)) ^ (p(y). Hence, for xe88 hermitian, q>(iu(x)) ^ <p(ix) = 0
and cp{—IM(JC)) ^ <p( — ix) = 0; furthermore, for x positive, <p( — u(x)) g,cp( — x)^0.

PROPOSITION E [21, Hilfsatz 2(c)]. Ifa+ib = a' + ib' where a, b, a', and b' are hermitian,
then a = a' and b = b'.

PROPOSITION F [17, Theorem]. If si is (algebraically) spanned by its hermitian elements
(i.e. si = H+iH), the mapping x->x* is an involution on si under which si becomes a stellar
algebra. (Ifx = a+ib (a, b hermitian) then x* = a-ib.)

PROPOSITION G [21]. If xesi is hermitian and quasi-nilpotent (sp(*) = {0}), then x = 0.

1. The spectral theorem for normal elements of a Banach algebra. In this section we
shall introduce the concept of a normal element of a Banach algebra and prove a spectral
theorem for such elements. This theorem depends on the theory of C '(R2)-scalar elements
(a concept due to Foias (see [6]) and Maeda [16]; see [20] for a complete exposition and for
further references).

We shall denote by C'(R2) the Banach algebra of continuous, complex-valued functions
defined on R2 having limits at oo and by Jf (R2) the set of continuous functions with com-
pact support. Note that C'(R2) is a stellar algebra, and that it can be identified with the
direct sum of C0(R

2) and C where C0(R
2) is the stellar algebra of continuous functions on R2

vanishing at oo.

DEFINITION. An element JC of a Banach algebra si is C '(R2)-5ca/ar if there exists a
continuous representation u of C '(R2) into si mapping 1 onto 1 and such that, for every
/eJf(R2) taking the value 1 on sp(x), u(f) = 1 and u(zf) = x.

REMARK. It follows from [6, Corollary 1.6, p. 98] that, for any C'(R2)-scalar element
xesi, there is only one representation u as described in the definition above. It is called the
C'(R2)-scalar representation for x. Furthermore, for any/, geC'(R2) which agree on sp(*),
«(/) = "(0) [6, Theorem 1.6, p. 60].
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If si and 38 are Banach algebras, a linear mapping of 38 into si is involutive if it maps
hermitian elements of 38 into hermitian elements of si.

PROPOSITION 1.1. Let si be a Banach algebra, 38 a stellar algebra, and u a continuous
representation of 38 into si mapping 1 onto 1. Then u is involutive if and only ifu has norm 1.

Proof. If u has norm 1, use Proposition D to conclude that u is involutive. To prove the
converse consider the closure, si', of the image of u. Since 38 is (algebraically) spanned by its
hermitian elements, and since u is involutive, si' is spanned by its hermitian elements (use
Proposition C). Thus, by Proposition F, si' is a stellar algebra. A standard result from the
theory of stellar algebras [5, Proposition 1, p. 66] now applies.

DEFINITION. Let si be a Banach algebra. An element xesi is normal if there exist
commuting elements a, be si such that

(1) a"1/)" is hermitian for every m, weN;
(2) x = a + ib.

We shall call a the real part of x and b the imaginary part of x. (Note that, by Proposition E,
a and b are unique.)

If £ is a Banach space, an operator T on E is normal if T is normal as an element of the
Banach algebra -£?(£).

LEMMA 1.1. Let Xbe a compact Hausdorff space, si a Banach algebra, and xesi. Suppose
that there exists a continuous representation v of C(X) into si which has 1 and x in its image
(in particular u(l) = 1). Then there exists a C'(R2)-scalar representation u for x such that

HI^HI-
Proof. Define u(f) = v(foh), where heC(X) is such that x = v(h).

THEOREM 1.1 (The spectral theorem in Banach algebras). An element xesi is normal if
and only ifx is C '(R2)-scaIar and the C '(R2)-scaIar representation for x has norm 1.

Proof. First suppose that x is normal. Let a be the real part of x, b the imaginary part
of x, and let 38 be the smallest closed subalgebra of si containing the set {a, b,\). By
Proposition F and the Gelfand Isomorphism Theorem [5, Theoreme 1, p. 67] there exists an
isometric isomorphism v of C(sp (x)) onto 38. One now uses Lemma 1.1 to obtain the desired
conclusion.

To prove the converse suppose that u is the C '(R2)-scalar representation of x (so that
I u I = 1). Let r and s be elements of C '(R2) such that

r(z) = m{z) and s(z) = J(z)

for every z e sp (x), and let

a = «(r) and b = u(s).

Clearly x = a+ib. For m,neN, d"b" = u{rms") is hermitian by Proposition D.
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COROLLARY 1. An element xesi is normal if and only if x is C '(R2)-scalar and the
Cl(R2)-scalar representation for x is involutive.

COROLLARY 2. Let E be a Banach space. A necessary and sufficient condition for an
operator T 6 i f ( £ ) to be C '(R2)-ica/ar is that there exist a norm on E, equivalent to the original
norm, under which T is normal.

Proof. The sufficiency follows easily from previous results. To prove necessity suppose
that r is C '(R2)-scalar and let U be the C '(R2)-scalar representation for T. By Theorem 1.1
we need only exhibit an equivalent norm on E such that, when E is endowed with the new
norm, | U || = 1. Such a norm is given by

REMARK. Corollary 2 above is valid in the context of Hilbert spaces [15, 22]. However,
the proof given above can not be used in this case since the new norm need not be a Hilbert
space norm.

COROLLARY 3. Ifxes/ is normal, then \\x\\ = p(x).

Proof. Let u be the C '(R2)-scalar representation for x, and choose fe C '(R2) of norm
p(x) and such that/(z) = z for zesp(x). Then || x \ = | |«( /) | ^ || / 1 | = p(x).

COROLLARY 4 [2, Theorem 2.1]. If pu ...,pn are non-zero disjoint projections {hermitian
idempotents) in a Banach algebra si and Xu ..., Xn are complex numbers, then

| .E^-P* |i = sup {| A,- j : 1 ̂  i ^ «}.

In particular, if p is a non-trivial projection, \\p | = || 1 —p | = 1.

Proof. For fe C '(R2) define «(/) e si by

Then u is an involutive C'(R2)-scalar representation for x = £ XiPi. By Proposition 1.1 and

Theorem 1.1, x is normal. By Corollary 3,

REMARK. A necessary and sufficient condition for an idempotent/>e.s/ to be a projection
is that Ij?+A(l —p) I = 1 for every XeJ1. To prove this fact simply use the equality

I*'" I = I e '> + e-''(l -p))\\ = \\p+e-»(l-p)\\

together with Proposition A. This equivalence was first noted by Palmer [18].
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EXAMPLE. If E = C2 with the norm (x, y) -» | x \ + \ y | and P is the idempotent in
defined by

P(x,y)

| P | = | / - P | | = 1. However

Hence P is not hermitian.
E. Berkson has shown [3] that the above example is valid when C2 is endowed with the

" p-notm " for any p such that 1 ̂ p 5jj oo, p # 2 .
For the next two results we shall need two definitions. An element x of a Banach algebra

si is power hermitian if x" is hermitian for every n e N. The element x is unitary if x is normal
and invertible and if both x and x~y have norm 1. If si is a stellar algebra, then every
hermitian element is power hermitian. However, there is an example of a hermitian operator
on a Banach space which is not power hermitian [14].

PROPOSITION 1.2 [4]. If a and b are commuting hermitian elements of a Banach algebra
si, and ifx = a+ib has real spectrum, then x is hermitian (i.e. b = 0). Consequently, the element
xesf is power hermitian if and only ifx is normal and has real spectrum.

Proof. The hypotheses of the proposition imply that p(e~ ia)p(eb) = p(e~lx) = 1; hence,
by [5, Cor. to Prop. 5, p. 26] and the fact that p{eia) = p\e~ia) = 1, p(eb) = 1. Similarly,
p(e~b)= 1. By the Spectral Mapping Theorem, b is quasi-nilpotent and therefore 0 by
Proposition G.

PROPOSITION 1.3 (see [19]). A normal element x of a Banach algebra si is unitary if and
on/)'i/sp(x)cT1.

Proof. The fact that a unitary element has a spectrum contained in T1 follows from the
Spectral Mapping Theorem. To prove the converse, let u be the C '(R2)-scalar representation
for x, and let/eC'(R2) be the identity on T1 and have norm 1. From the fact that ff= 1 on
sp(x), x~l = «(/); the result follows.

The next proposition, which we shall state here without proof, is analogous to Theorem 1
of [19].

PROPOSITION 1.4. If x is a normal, invertible element of a Banach algebra si, then there
exist a positive, power hermitian element yes/ and a unitary element zesi such that x = yz.
Furthermore, if a is the real part ofz and b is the imaginary part ofz, then y, a, and b commute
and ykambn is hermitian for every k, m,ne N.

If xesi is 5°°(R2)-scalar, the assumption of invertibility can be omitted from the
hypotheses of Proposition 1.4. (For the definition of ̂ "(R2) see §2.)

2. Scalar operators. In this section we shall examine the preceding results in the context
of the scalar operators of Dunford [7, 8]. We shall begin by reviewing some notation and
known theorems, most of which are taken from [11].

We shall let 2?°°(R2) denote the set of bounded Borel-measurable functions from R2 into
C. With the usual addition, multiplication, involution and norm, U^R 2 ) is a stellar algebra,
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and C '(R2) is a stellar subalgebra of 5°°(R2). For any subset A of R2, q>A will denote the
characteristic function of A; A is a Borel set if and only if <pA e -8°°(R2). If A is a Borel subset
of R2 and if U is a function whose domain is BX(R2), we shall use the symbol UA in place of
U((pA). Note that, if U is a representation of ^"(R2) into a ring J^ , UA is idempotent.

Let £ be a Banach space. A continuous representation U of ^"(R2) into Sf(E) is
standard if, for any bounded sequence (/„) in 5°°(R2) converging pointwise to 0, the sequence
(£/(/„)) converges strongly to 0 in £?(E). An operator TeJif(E) is scalar if there exists a
standard representation £/ of B^fR2) into JSfCE) mapping 1 onto / and such that, for every
bounded Borel subset A of R2, U(z<pA) — UA T. (These operators were called scalar-type by
Dunford [8].)

If Te&(E) is scalar, there is only one standard representation that has the properties
listed above. It is called the spectral representation for T. Furthermore, U(zf) = U(f)T for
every /e2?°°(R2) with compact support.

The following theorem, which is proved in [12], summarizes the relationship between
scalar and C'(R2)-scalar operators in weakly complete Banach spaces. A proof, based on
the theory of spectral measures as developed in [11], can be given.

THEOREM 2.1. On a weakly complete Banach space E, an operator TeSC(E) is scalar if
and only if it is C '(R2)-scalar. Furthermore, if U is the spectral representation for T, then the
restriction of U to C'(R2) is the C'(R2)-scalar representation for T.

COROLLARY 1. IfTe -S?(£) is scalar and if U is the spectral representation for T, then the
following assertions are equivalent:

(1) T is normal.
(2) U has norm 1.
(3) U(f) is hermitianfor every realfeB^iR2).
(4) UA is hermitianfor every Borel subset ofR2.

COROLLARY 2 [1, Theorem 4.2; 9]. Let E be a weakly complete Banach space. An
operator TeSC(E) is scalar if and only if there is a norm on E, equivalent to the original norm,
under which T is normal.

The following corollary follows easily from Theorem 2.1 and Corollary 1.

COROLLARY 3 (The spectral theorem in Hilbert spaces). If T is a normal operator on a
Hilbert space H, then T is scalar. Furthermore, if U is the spectral representation for T, then
UA is hermitianfor every Borel subset A o/R2.

EXAMPLE. Let E= C(K) where K is an infinite compact subset of R2. For every
geC(R2) define U(g)e&(E) by U(g)x = gx (xeE), and let T= U{z). Then the restriction
of U to C '(R2) is a C '(R2)-scalar representation for T. (As a matter of fact U has a norm 1
and therefore T is normal.)

On the other hand, let (/„) be a discrete convergent sequence in K. Let (Qn) be a sequence
of open subsets of R2 such that the sequence of closures is disjoint and such that tneQn for
every «eN. For each neN, let/, be a unit vector in E with support contained in Qn. Then
(/„) is a bounded sequence in 5°°(R2) converging pointwise to 0, but the sequence (U(fn)l)
does not converge in E. Consequently, T is not scalar.
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