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ABSTRACT. In the past, numerical prediction of regional avalanche danger using statistical methods with
meteorological input variables has shown insufficiently accurate results, possibly due to the lack of snow-
stratigraphy data. Detailed snow-cover data were rarely used because they were not readily available
(manual observations). With the development and increasing use of snow-cover models this deficiency
can now be rectified and model output can be used as input for forecasting models. We used the
output of the physically based snow-cover model SNOWPACK combined with meteorological variables
to investigate and establish a link to regional avalanche danger. Snow stratigraphy was simulated for the
location of an automatic weather station near Davos, Switzerland, over nine winters. Only dry-snow
situations were considered. A variety of selection algorithms was used to identify the most important
simulated snow variables. Data mining and statistical methods, including classification trees, artificial
neural networks, support vector machines, hidden Markov models and nearest-neighbour methods were
trained on the forecasted regional avalanche danger (European avalanche danger scale). The best results
were achieved with a nearest-neighbour method which used the avalanche danger level of the previous
day as additional input. A cross-validated accuracy (hit rate) of 73% was obtained. This study suggests
that modelled snow-stratigraphy variables, as provided by SNOWPACK, are able to improve numerical
avalanche forecasting.

INTRODUCTION

Regional avalanche forecasting attempts to predict current
and future snow stability, relative to a given triggering level
on the scale of a mountain range or a considerable fraction
thereof (e.g. McClung and Schaerer, 2006). Forecasts are
issued on a daily basis to warn the public about the level
of avalanche danger. These public bulletins play a key role
in the prevention of avalanche fatalities. Adequate avalanche
warnings, combined with avalanche education and efficient
rescue, have probably prevented an increase of avalanche
fatalities in parallel with the increased recreational use of
avalanche terrain, at least in some countries (Harvey and
Zweifel, 2008). Reliable and consistent avalanche forecasts
are therefore very much needed. To assess the avalanche
danger level, most avalanche warning services rely on a com-
bination of manual observations, automatic weather stations,
weather forecasts (includingmodel output) and snow profiles
(Meister, 1995). For the locations of the automatic weather
stations in the Swiss Alps, the amounts of new snow and
drifting snow are additionally derived from the numerical
snow-cover model SNOWPACK (Lehning and others, 1999;
Lehning and Fierz, 2008). Based on all these data, the
forecaster uses experience, intuition and local knowledge of
the mountain range to estimate and describe the avalanche
danger in the public bulletin.
Over the past decades there have been many attempts

to create an objective process of danger evaluation, which
may also work as a support tool for the avalanche warning
service. The French model chain SAFRAN/Crocus/MÉPRA
(SCM) provides automated avalanche danger prediction for
virtual slopes (Durand and others, 1999) and is the only
real operational derivation of a risk level on the basis
of physical snow modelling. Durand and others (1999)
published a contingency table between modelled risk and

avalanche activity with a hit rate of 75%. Since Murphy
(1991) described the difficulties of comparison between two
forecasting systems under different conditions (e.g. different
datasets), the published accuracy measures of the studies
described below are not further reviewed here. Several
studies have used observations of avalanche activity as
an indicator of the avalanche danger (e.g. Buser, 1983;
Heierli and others, 2004; Pozdnoukhov and others, 2008).
As Schweizer and others (2003) pointed out, the problem
with this target parameter is that it does not distinguish
between lower danger levels and that observations may be
inconsistent, mainly due to limited visibility during times of
avalanche activity. Schweizer and Föhn (1996) forecasted
the avalanche danger level instead of the avalanche activity
using commercial decision-making software. Input variables
included snow-cover information observed manually. They
trained their models using a verified danger level instead of
the forecasted one. The verification was based on additional
data and observations, including data not yet available at
the time of the forecast. The cross-validated hit rate was
63%, but adding knowledge in the form of expert rules
to the system, the performance improved to a hit rate of
∼70%.However, their models did not run fully automatically
but required manual input of the snow-cover information.
Brabec and Meister (2001) used a nearest-neighbour method
with only meteorological variables and snow information,
such as penetration depth or surface characteristics, so that
the model could be run for the whole area of the Swiss Alps.
The accuracy was only ∼52%. The absence of snow-cover
information was given as a reason for the poor results.
Model output from snow-cover models, such as SNOW-

PACK, can provide snow-cover information with the required
resolution in space and time. This study explores whether the
performance of data-based forecasting models can be im-
proved with modelled snow-cover data as additional inputs.
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Fig. 1. Relative frequency of the avalanche danger levels in the
region of Davos. Black columns show the forecasted levels during
the time period considered in this study. Dark grey columns show
the forecasted levels for the study of Brabec and Meister (2001) and
light grey show the verified levels used in the study of Schweizer
and Föhn (1996).

METHODS
Data
In order to establish a link between regional avalanche
danger and modelled snow-cover variables, a test region
was chosen where both modelled snow-cover data and an
estimate of the regional avalanche danger were available.
We selected the region of Davos in the eastern Swiss Alps
(225 km2), which covers typical avalanche-release zones
with an elevation range of 1600–2800ma.s.l. The study
plot in this test region indicates that the automated weather
station Weissfluhjoch, at 2540ma.s.l., shows an average
maximum snow depth of ∼2.2m for the nine winters (1999–
2007; 1229 days) when the required data were available.
The forecast of the regional avalanche danger level

(Fig. 1), which is issued every day at 0800h, was used
as a proxy target parameter since an accurate measure
of the avalanche danger is not available (Meister, 1995).
The frequency of the danger levels in the chosen time
period (black columns) can be seen in Figure 1 (1: ’Low’,
2: ’Moderate’, 3: ’Considerable’, 4: ’High’ and 5: ’Very high’;
’Very high’ did not occur in this time period). The danger
levels ’Moderate’ and ’Considerable’ were most frequent.
The frequency in the chosen time period was substantially
different from that in the periods used in the studies of
Brabec and Meister (2001) (dark grey) and Schweizer and
Föhn (1996) (light grey). For the danger levels ’Low’ to
’Considerable’ the avalanche danger was characterized by
very high persistence. The probability that the avalanche
danger tomorrow will be the same as today was ∼80%.
As input variables, modelled snow-cover data were

generated for the location of Weissfluhjoch. The relevant
processes influencing the regional avalanche danger (e.g.
new snow, wind or weak layer formation) are assumed to be
represented in the chosen study plot. The snow-cover model
SNOWPACK was used to model settling and layering of the
snow cover, as well as its energy and mass balance (Bartelt
and Lehning, 2002; Lehning and others, 2002a,b). This
model requires meteorological data as input. We focused on
dry-snow situations since dry-snow avalanches are the main
threat over most of the winter. For forecasting wet-snow
avalanches models need to be trained separately. For each
winter a date was determined for the beginning of wet-snow
conditions (i.e. 2 weeks before the snow cover modelled

for the Weissfluhjoch study plot became isothermal), which
is usually around the beginning of April. We furthermore
restricted the dataset to days with snow depth >75 cm,
because we think that the stability part of SNOWPACK
produces more reliable results with this restriction. This
restriction excluded only a limited number of days because
the avalanche danger forecast for our region started at about
the time when that snow depth was reached – for most
winters by the end of November.
A stability index (Schweizer and others, 2006) defined

the potential weak layer interface in the modelled snow
cover. Motivated by a study which evaluated stability
from observed snow stratigraphy (Schweizer and Jamieson,
2003), characteristics of the weak and adjacent layer and
of the slab were considered. These model variables were
completed withmeasured and calculated meteorological
and snow-surface variables (e.g. wind velocity, outgoing
longwave radiation or surface albedo).
All statistical methods described here were tested on a

dataset in order to assess their classification capability. This
test dataset (Fig. 1) was used for the study of Schweizer
and Föhn (1996) and contained a verification instead of
a forecast of the regional avalanche danger level and
observed, rather than modelled, snow-cover data as input
variables. This dataset was more reliable than that covering
the years 1999–2007, and therefore adequate to test the
statistical methods for this specific problem. The test dataset
covered ten winters between 1985 and 1994. Unfortunately
no modelled SNOWPACK data can be produced for that
time period, because no automated weather station existed
before the 1990s. This meant that modelled and measured
snow-cover data and their explanatory power could not be
directly compared.

Performance measures
The quality of a method was assessed by a cross-validated
hit rate (HR) for all danger levels and by the true skill score
(TSS) for each of the four danger levels separately (Doswell
and others, 1990; Wilks, 1995).
Since both input and target variables were autocorrelated

(e.g. a weak layer might have an influence over a long
time period), random cross-validation turned out not to be a
useful method, giving unrealistically high hit rates. Therefore,
each winter was forecasted using a model and a variable
selection based on the remaining eight winters, i.e. both
model parameters and input variables could change in this
cross-validation scheme.
It seems useful to draw special attention to days on which

the danger level changed: first, these days might be the most
important to predict correctly; second, because of the high
persistence of the target parameter, an obviously useless
forecast which always predicts the level of the previous day,
would show good hit rates for all days. Introducing HR and
TSS for only those days on which the danger level changed
helped to identify methods which tended to a persistent
forecast. Similarly, the HR and TSS were also considered for
the days on which the modelled danger level increased or
decreased.

Variable selection
Since the snow-cover model delivers a large number of
variables at high temporal resolution, variable selection is
useful, firstly for data reduction, which increases the speed
of the final statistical forecasting model, secondly to achieve
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an overall improved performance and thirdly to understand
which variables are important (Guyon and Elisseef, 2006).
For many variables, it may make sense to also consider

their sum, mean, extreme values or rate, for different time
intervals or time lags. For example, the 24 hour change of
the air temperature may be more correlated with the regional
avalanche danger than the midday value, or the previous
day’s snowfall more correlated than that of the current day.
This leads to a rapid increase in the number of possible
variables. A simple univariate variable selection, a Fisher’s
discriminant analysis (e.g. Bishop, 2006), was performed to
determine for each variable the two most important derived
variables. After this step, a large number (300) of variables
still remained. Subsequently a rating of this variable set was
carried out with Fisher’s discriminant analysis. An alternative
ranking was obtained with univariate classification trees
(Breiman and others, 1998). To avoid overfitting, the best
tree was determined by a pruning algorithm based on cross-
validation, and the number of terminal nodes was limited to
ten. The cross-validated HR of these univariate pruned trees
delivered a ranking between the variables. Only variables
that were not pairwise linearly correlated (r2 < 0.6) were
considered. Since correlated variables are not redundant
per se, the redundancy of excluded variables was visually
examined with scattergraphs (Guyon and Elisseef, 2006).
For support vector machines (SVM) a variable selection
algorithm was used, based on the Fisher’s discriminant
analysis in combination with SVM (Chen and Lin, 2006).
Additionally, for the nearest-neighbour method (KNN) a

combination with a genetic algorithm (GA) was used to rank
variable relevancy (Li and others, 2001). Several variable
subsets (each of ten variables) were tested with the KNN
method. ’Good variable subsets’ (see below for the selection
criteria) were stored in a final pool. Once the final pool
was filled to a certain threshold, the cardinality of each
single variable was interpreted as a relevancy ranking: the
more often a single variable was selected as a member of a
good variable subset, the more relevant the single variable
was assumed to be. Since testing all possible ten-member
variable subsets of 300 different variables would cost too
much computing time, a GA was used as a search tool
to create ’good parameter subsets’: the GA maximized a
fitness function which depended on the selected variable
subsets. The fitness function was a combination of the three
different hit rates described above (i.e. for all days, for the
days on which the avalanche danger level changed and for
the days on which the modelled danger level changed). In
more detail, the GAwas initiated with 100 randomly selected
ten-member variable subsets. The GA then determined a
maximum by continuous mutation and stored it in the
final pool. This procedure was reiterated until the final
pool contained 100 variable subsets, which was enough to
achieve reproducible results.
For all methods variables were scaled linearly to

[−1,C . − C1], except for categorical variables which were
translated to Booleans for each category. As input for the
statistical methods, subsets of the 5, 10 and 30 most
important variables of each algorithm were tested.

Statistical methods
In order to find an optimal link between input variables and
predicted regional avalanche danger, we used the following
statistical methods:

classification trees (TREE),

artificial neural networks (ANN),

nearest-neighbour methods (KNN),

support vector machines (SVM),

hidden Markov models (HMM).

In the following each method is described in more detail.
A simple classification tree with only one measured

variable, the 3 day sum of the new snow (HN3d meas),
performed very well and was therefore used as a benchmark
for more complex models with more (especially modelled)
input variables. For this tree and more complex trees using
more input variables, generalization was achieved with a
pruning algorithm using ten-fold cross-validation on the
training sets.
Artificial neural networks, both feed-forward and recurrent

(e.g. Elman, 1990; Bishop, 2006), with different set-ups
(hidden layer size, training algorithms, early stopping or
Bayesian regularization) were trained for each winter. Since
results depend on the initial weights, the networks were
initialized five times and the mean of the results was
considered. The results of ANNs discussed in the next section
were gained with a recurrent network which used adaptive
learning, 100 hidden neurons and 100 passes through the
sequence.
The nearest-neighbour approach as used by Brabec and

Meister (2001) was applied for a direct comparison to
previous work. In addition, this method was modified in
two ways. (1) The avalanche danger level of the previous
day was used as an additional input to predict the current
day. With this information the training dataset was reduced:
only those days that showed the same avalanche danger
level on the previous day were considered as possible
nearest neighbours for the current day. This implicated an
even more unbalanced classification problem due to the
persistence of the target parameter. (2) The classification
was modified. A decision boundary was used to determine
whether the danger level should change to a new value
on a particular day. Using ten nearest neighbours, three
of these days must show a higher (or lower) danger level.
This decision boundary was obtained by optimizing the TSS
(Heierli and others, 2004). Subsequently the danger level
was determined with a majority vote between the neighbours
showing higher (or lower) danger levels. For breaking a tie
the nearest neighbour among them was used. Weights in
KNNmethods allow certain variables to have more influence
while calculating the distance between nearest neighbours.
Optimal weights were determined with a GA (Purves and
others, 2003).
SVM (Schölkopf and Smola, 2001) were applied to the

problem using the 2001 LIBSVM software package of
C.-C. Chang and C.-J. Lin (software available at http://
www.csie.ntu.edu.tw/ cjlin/libsvm). Gaussian radial basis
functions with radius γ were used as kernel functions.
Cross-validation on the training sets was performed to
obtain γ and the penalty variable, C (Chen and Lin,
2006).
In addition, hidden Markov models were used, since they

are able to predict time series (Rabiner, 1989; Bishop, 2006).
To obtain a discrete input for the HMM, the continuous input
vectors were mapped into a discrete codebook index with
K-means vector quantization.
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Fig. 2. Variable selection with the GA/KNN method for winter
1999/2000. Frequency (y axis) for each single variable (x axis) in
the final pool. The 12 variables selected are marked; the two most
important were (1) HN and (2) the 3 hour rate of outgoing longwave
radiation.

RESULTS
Variable selection
Since the variables were selected for each forecasted winter
separately, we present in this section a summary of the results
obtained for each winter. In Table 1 the most important
variables are listed, selected by the three methods: Fisher’s
discriminant analysis (Fisher); univariate classification trees
(TREE); and the combination of genetic algorithm and nearest
neighbour (GA/KNN) described above. In the last column
the sign of correlation with the avalanche danger level is
given to allow a plausibility check. Except for the variables
strain rate of the weak layer, 3 hour rate of crust thickness
and net longwave radiation, a physical interpretation can
easily be given. Important variables were the new-snow
depth (HN, HN3d ) and the other new-snow variables with
larger values at higher avalanche danger levels. Surface

albedo, 3 hour rate of the slab thickness and relative humidity
can also be related to new-snow situations, although they
are not pairwise linearly correlated. The snow transport
index (Lehning and Fierz, 2008) was also selected by all
three algorithms with larger index values (more drifting and
blowing snow) at higher levels. Higher maximum wind
speeds in the last 24hours were also correlated with higher
avalanche danger levels. The deformation index (Lehning
and others, 2004) was also found to be important, despite
the fact that a bug has recently been discovered in the
description of the temperature dependence, although the
index should still describe a relation between critical and
actual stress in the bonds. As the definition suggests, small
index values are correlated with high avalanche danger.
The variable crust is positively correlated to the number
of elapsed days without snowfall and therefore negatively
correlated to avalanche danger. The modelled profile type
’Four’ (Schweizer and Lütschg, 2001) was related to the
danger level ’Considerable’. The profile type ’Four’ is the
most frequent in the dataset which describes a weak base.
Although a weak base is not by itself conclusive (Schweizer
and Wiesinger, 2001), it makes sense that a weak base
is related to the danger level ’Considerable’ as a sign of
structural instability. Small bond size and low density of the
weak layer might also be considered as signs of structural
instability.
A result of a variable selection with the combination of

GA/KNN methods can be seen in Figure 2, which shows
every single variable on the x axis and their frequency
in the final pool on the y axis. Variables with a high
pick-frequency were interpreted as important. This method
selected, amongst others, the 3 hour rate of the outgoing
longwave radiation, which was highly correlated with the
rate of the snow-surface temperature. Strong warming of
the snow surface before midday was related to lower
avalanche danger. It is worth noting that this method chose
especially meteorological or snow-surface variables. This
may be because the avalanche danger level of the previous

Table 1. Overview of the variable selection results

Selected by algorithm

Selected variable Measured/modelled Fisher TREE GA/KNN Sign of correlation with target

24 hour new-snow sum (HN) Modelled × × × +
72hour new-snow sum (HN3d ) Modelled × × × +
24hour rate of HN3d Modelled × +
3hour new-snow sum on day 1 Modelled × × +
Deformation index Modelled × × × –
Strain rate of weak layer Modelled × × –
Thickness of surface crust on south slopes (crust) Modelled × –
3 hour rate of crust thickness Modelled × +
Snow transport index Modelled × × × +
Profile type ’Four’ Modelled × 3∗
Bond size of weak layer Modelled × –
Density of weak layer Modelled × –
3 hour rate of slab thickness on day 1 Modelled × +
3hour rate of outgoing longwave radiation Modelled × –
Net longwave radiation Modelled × –
Surface albedo Modelled × +
24hour maximum wind speed Measured × +
Relative humidity Measured × +

∗To distinguish between ’Considerable’ and the other danger levels.
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Table 2. Input variables used in the BRABEC model (Brabec and
Meister, 2001)

Description Weight

New-snow depth (cm) 5
Snow depth (cm) 1
Weather and intensity (code) 1
East component of wind (kt) 3
North component of wind (kt) 3
Air temperature (◦C) 2
Snow temperature (◦C) 2
Snow surface (code) 1
Penetration depth (cm) 2
Density of new snow (kgm−3) 2
72 hour new-snow sum (cm) (HN3d meas) 2
72 hour rate of air temperature (◦C) 3

day was introduced as an additional input. This already
provides a certain level of stability to the system so that snow-
stratigraphy variables become less important. Accordingly,
only weather or surface properties were important because
they describe the change in danger level. To confirm this
hypothesis, the GA/KNN method was performed without this
additional information. However, the classification power of
the KNN method without this additional information of the
danger level on the previous day was too poor to reach
a conclusion. Better methods were too computationally
demanding for combination with the GA.

Statistical methods
The a priori capability of the statistical methods was
compared with the cross-validated HR of the test dataset
(verified danger levels). Classification trees had the lowest
performance, while SVM, ANN, HMM and the KNN method
using the avalanche danger level of the previous day as an
additional input achieved HRs of ∼60%. These results were
comparable to the DAVOS4 model (63%) used by Schweizer
and Föhn (1996) and the Kohonen neural network (61%)
used by Schweizer and others (1994).
Since the distribution of the forecasted avalanche danger

level of the dataset covering the years 1999–2007 (Fig. 1)
was substantially different to previous studies (Schweizer and
Föhn, 1996; Brabec and Meister, 2001), results were not
directly comparable. Therefore the method used by Brabec
and Meister (2001) with measured meteorological data as
input (BRABEC) was applied to the time period of this study.
In the following, results will be given for a selection

of models, which represent the range of model quality.
No results for SVM are presented since they delivered no
additional improvements. The selected models and their
input variables are:

BRABEC (Brabec and Meister, 2001; input variables and
their weights are presented in Table 2).

Classification tree with only the measured variable
HN3d meas as input (TREE).

HiddenMarkov model (HMM) with the five best variables
selected by the Fisher’s discriminant analysis.

Recurrent artificial neural network (ANN) with the
five best variables selected by the Fisher’s discriminant
analysis.

BRABEC    TREE HMM ANN KNN KNN_vg
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Fig. 3. Comparison of the various model performances for all days.
Abbreviations are explained in the text. The black column is the
cross-validated HR of all danger levels, the grey columns the cross-
validated TSS value for each of the four danger levels (lightest to
darkest indicate ’Low’ to ’High’).

Nearest-neighbour method with the 12 best variables
selected by the GA/KNN combination and the avalanche
danger level of the previous day as an additional input
(KNN).

Same KNN method as above, but with the same input
variables as used in BRABEC (i.e. no modelled variables)
and the avalanche danger level of the previous day as an
additional input (KNN vg).

Figure 3 shows the performance of the selected methods
considering all days. All new methods reached a higher
HR than the BRABEC method (55%). Even the simple
TREE method achieved a remarkable HR of 65%. However,
the TREE method produced only the most frequently used
danger levels ’Moderate’ and ’Considerable’. Thus the TSS
values of the other danger levels were 0%. For most of
the nine winters the split value for 3 day sum of new snow
(HN3d meas) was 12cm, which discriminated between the
danger levels ’Moderate’ and ’Considerable’. The variable
HN3d meas was also amongst the input variables for the
BRABEC method (Brabec and Meister, 2001). Using prior
probabilities, classification trees are, in general, also able
to handle unbalanced target parameters as exist in our case
(Fig. 1). Whereas this improved the TSS value for the danger
levels ’Low’ and ’High’, it produced insufficient overall hit
rates. Also more variables did not improve the results.
The other methods achieved better hit rates and better true

skill scores for each single danger level. With an HR of 73%,
the KNN method performed best.
Considering all days, the KNN vg method (as KNN, but

with measured, not modelled, input variables) achieved
similar results to the KNN method. However, Figure 4
indicates the weakness of that method; it shows the same
methods and performance measures as in Figure 3, but only
for those days on which the target parameter changed. The
low values in HR and TSS indicate that the KNN vg method
did not predict these important days satisfactorily. All other
methods showed similar hit rates. For the KNN method it
is interesting that the TSS values were greater for the higher
avalanche danger levels. It seems to be easier for this model
to predict an increase in avalanche danger than a decrease.
TheHMM and ANNmethods best predicted a decrease in the
avalanche danger, which can be seen by the more balanced
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Fig. 4. Comparison of the various model performances for days on
which the danger level changed. Abbreviations are explained in the
text. The black column is the cross-validated HR of all danger levels,
the grey columns the cross-validated TSS value for each of the four
danger levels (lightest to darkest indicate ’Low’ to ’High’).

TSS values between each danger level. Also the simple TREE
method was reasonably able to predict the days on which
the target parameter changed. As the variable HN3d meas
is used as input, it may not be surprising that the TREE
method was able to predict an increase in danger level, but a
decrease was also predicted correctly in ∼50% of all cases.
Since the detection of days on which the avalanche danger

decreased or increased is important information, models
were trained for the binary criteria ’Increase or not’ and
’Decrease or not’. However, no improvement was achieved
for these, at first glance, simpler classification problems
compared to the methods which forecast the four avalanche
danger levels. In the case of decreasing danger, one possible
explanation is that it might be very difficult for human
forecasters to decide consistently whether the avalanche
danger level should decrease on a certain day and not on
the day(s) before or after. Therefore, it might also be difficult
to find reasons in the parameter space of the input variables
presented to the statistical methods. In the case of increasing
danger, the reasons for the change in danger level might
differ between danger levels, especially between an increase
from ’Low’ to ’Moderate’ and from ’Considerable’ to ’High’.
This information is lost if the models are trained only on the
binary criteria.
As we saw an improvement when adding the avalanche

danger level of the previous day as additional information to
the KNN method, this procedure was also implemented for
the other methods. Due to the persistence of the target value,
this implicated a highly unbalanced classification problem.
Althoughmost methods provided a formal method to include
this additional information, (e.g. prior probabilities (Breiman
and others, 1998) or different penalties in the training error
function), none of the methods showed an improvement.
A final test was whether the spatial variability of the input

variables had additional classification power. Simulations of
virtual slopes of the four main aspects and the flat field at two
automated weather stations (Weissfluhjoch (2540ma.s.l.)
and Hahnengretji (2490ma.s.l.)) in the test region were
used as input for the statistical methods. The variability was
implemented either (1) as the maximum difference between
the ten simulations of each variable or (2) with additional
categorical data describing the station and the aspect of the
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Fig. 5. The avalanche danger forecasted and modelled with the KNN
method for winter 1999/2000.

simulations. Neither option improved the performance of the
statistical methods.
Figure 5 shows a comparison between the KNN method

and the forecasted avalanche danger for a representative
winter.

DISCUSSION AND CONCLUSION
The object of this paper was to analyse whether modelled
variables of the snow-cover model SNOWPACK improve
the performance of forecasting models that use statistical
methods, in comparison to models that are based only
on measured weather data. The simple classification tree
which uses only one measured (not modelled) variable
(HN3d meas) distinguishes well between the two most
frequent danger levels of ’Moderate’ and ’Considerable’.
With measured meteorological input variables, as used
by Brabec and Meister (2001), a more balanced model
performance for all danger levels resulted, but with a
strong decrease in the hit rate (HR), independent of
the statistical method used. Using additional SNOWPACK
variables increased the overall hit rate and produced a
balanced performance for all danger levels at the same
time. The best results were achieved with a nearest-
neighbour method which used the avalanche danger level
of the previous day as additional input. A cross-validated
HR for all days of 73% was obtained. Evaluating the
accuracy of the models for the days only on which
the target parameter changed (e.g. the avalanche forecast
changed from ’Considerable’ to ’High’) showed that it is
only possible to obtain reasonable results with additional
SNOWPACK variables. These findings suggest that for a
balanced performance between all danger levels and for
good overall accuracy, especially for days when the danger
level changes, modelled snow-stratigraphy data, as provided
by SNOWPACK, are needed.
Model performance did not improve using SNOWPACK

simulations of two automated weather stations and/or virtual
slope simulations. This may lead to the conclusion that
the modelled snow-cover variation (though limited) was not
related to regional avalanche danger. Similarly, Schweizer
and others (2003), who found typical measured point
stability distributions for the regional danger levels, did not
find a relation between mean stability and stability variation.
However, we think that considering spatial variability is
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important for assessing local to regional avalanche danger.
Our conclusion only concerns the situation in which we
tried to include more than one meteorological station of
the region in the analysis. This approach does not deal
with the important local variability, which is given by
variations in local energy balance (Helbig and others, in
press), or preferential deposition and drifting snow (Lehning
and others, 2008).
Nonetheless, a hit rate of ∼70% reveals a remarkable

discrepancy between the operational avalanche danger
forecast by human experts and a statistical model. Since
we have tested a wealth of methods with a huge range
of complexity, we feel that the main problem is that it
seems impossible to reproduce the human decision on the
avalanche danger with the input used in our analysis. This
missing link was recognized as a problem in the study
of Schweizer and Föhn (1996), despite the fact that they
used observed snow-cover variables. A study by Schweizer
and others (2008) showed that a level of uncertainty exists
in the detection of unstable slopes with rutschblock tests
and snow profiles (probability of detection of 70%). Such
snow profile interpretations are important arguments for the
human prediction or verification of the regional avalanche
danger level. Two possible conclusions remain: (1) additional
information, which is not formalized at present, enters the
decision process, such as the experience and intuition of the
individual; (2) the forecasted danger level is not a good target
variable, since it might be erroneous due to incorrect data
at the time of the forecast or due to variations in human
perception (McClung and Schaerer, 2006).
An operational prediction of the avalanche danger level

with a statistical model augmented with SNOWPACK
variables as additional input variables would include the
following steps. First, the present snow cover is simulated
with measured data; second, the development of the snow
cover is predicted with forecasted meteorological data for the
next day. This predicted snow cover provides the additional
input variables for the statistical methods. This would be a
fully automated process which could be applied to the whole
area of the Swiss Alps.
In comparison to the study of Durand and others (1999),

who compared the output of the French SCM chain to
avalanche activity (which can be forecasted reliably without
modelled snow-cover parameters; e.g. Pozdnoukhov and
others, 2008), our study presented models trained and tested
on the regional avalanche danger, as forecasted in the public
avalanche bulletin. Using this target parameter, the models
with modelled snow-cover input variables performed better
than models that used mainly meteorological input variables.
Our study also showed that the uncertainty in the

prediction of the avalanche danger level needs to be
quantified. For example, the shift in the danger level
distribution to the intermediate danger levels that obviously
occurred during previous years should be clarified.
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Lehning, M., H. Löwe, M. Ryser and N. Radeschall. 2008.
Inhomogeneous precipitation distribution and snow trans-
port in steep terrain. Water Resour. Res., 44(W7), W07404.
(10.1029/2007WR006545.)

Li, L., C.R. Weinberg, T.A. Darden and L.G. Pedersen. 2001. Gene
selection for sample classification based on gene expression

https://doi.org/10.3189/002214309790152429 Published online by Cambridge University Press

https://doi.org/10.3189/002214309790152429


768 Schirmer and others: Statistical avalanche danger forecasting

data: study of sensitivity to choice of parameters of the GA/KNN
method. Bioinformatics, 17(12), 1131–1142.

McClung, D. and P. Schaerer 2006. The avalanche handbook. Third
edition. Seattle, WA, The Mountaineers.

Meister, R. 1995. Country-wide avalanche warning in Switzerland.
In Proceedings of the International Snow Science Workshop,
30October–3 November 1994, Snowbird, Utah, USA. Snowbird,
UT, International Snow Science Workshop, 58–71.

Murphy, A.H. 1991. Forecast verification: its complexity and
dimensionality. Mon. Weather Rev., 119(7), 1590–1601.

Pozdnoukhov, A., R.S. Purves and M. Kanevski. 2008. Applying
machine learning methods to avalanche forecasting. Ann.
Glaciol., 49, 107–113.

Purves, R.S., K.W. Morrison, G. Moss and D.S.B. Wright. 2003.
Nearest neighbours for avalanche forecasting in Scotland:
development, verification and optimisation of a model. Cold
Reg. Sci. Technol., 37(3), 343–355.

Rabiner, L.R. 1989. A tutorial on hidden Markov models and
selected applications in speech recognition. Proc. IEEE, 77(2),
257–286.

Schölkopf, B. and A.J. Smola. 2001. Learning with kernels: support
vector machines, regularization, optimization, and beyond.
Cambridge, MA, MIT Press.
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