SOME REMARKS ON THE CHARACTERS OF THE SYMMETRIC GROUP

MASARU OSIMA

Introduction. In [2], we derived some character relations of the symmetric group S_{n}. These relations were also obtained in [1] independently. In the present paper, we shall study the properties of these character relations in some detail. In the last section, using a result obtained in [3], we shall further determine the number of modular irreducible representations in a p-block of S_{n}.

1. We shall denote by [α] the irreducible representation of S_{n} corresponding to a diagram $[\alpha]$ of n nodes, and by χ_{α} its character. Similarly we define the irreducible representation $\left[\beta_{\mu}\right]$ of S_{n-u} and its character $\chi_{\beta_{u}}$. We denote by $m(n)$ the number of distinct irreducible representations of S_{n}. Then, as is well known, the number of classes of conjugate elements in S_{n} is equal to $m(n)$.

Let $Q=A . U$ be an element of S_{n} where U is a single cycle of length u, and A is any permutation on the remaining $n-u$ symbols. By the MurnaghanNakayama recursion formula

$$
\chi_{\alpha}(A . U)=\sum_{\beta_{u}} a_{\alpha \beta_{u}} \chi_{\beta_{u}}(A)
$$

Here,

$$
a_{\alpha \beta_{u}}=(-1)^{r_{i}}
$$

if a diagram $\left[\beta_{u}\right]$ of S_{n-u} is obtainable from $[\alpha]$ by the removal of a single u-hook H_{i} with leg length r_{i}, and

$$
a_{\alpha \beta_{u}}=0
$$

otherwise. We set

$$
\mu_{\alpha}^{(u)}=\sum_{\beta_{u}} a_{\alpha \beta_{u}} \chi_{\beta_{u}} .
$$

$\mu_{\alpha}^{(u)}$ is called the (generalized) character of S_{n-u} corresponding to χ_{α}.
Let $A_{1}, A_{2}, \ldots, A_{m(n-u)}$ be a complete system of representatives for the classes of conjugate elements in S_{n-u}. If we set
1.3

$$
Z=\left(\chi_{\alpha}\left(A_{i} \cdot U\right)\right)
$$

then
1.4

$$
Z^{\prime} Z=\left(n\left(A_{i} \cdot U\right) \delta_{i j}\right),
$$

where Z^{\prime} is the transpose of Z and $n\left(A_{i} . U\right)$ is the order of the normalizer $N\left(A_{i} \cdot U\right)$ of $A_{i} . \mathrm{U}$ in S_{n}. Since we have from (1.1),
1.5

$$
Z=\left(a_{\alpha \beta_{u}}\right)\left(\chi_{\beta_{u}}\left(A_{i}\right)\right)=\left(a_{\alpha \beta_{u}}\right) Z_{\beta_{u}},
$$

(1.4) gives
1.6

$$
Z^{\prime}\left(a_{\alpha \beta_{u}}\right) Z_{\beta, y}=\left(n\left(A_{i} \cdot U\right) \delta_{i j}\right)
$$

Hence, if we set

$$
\rho_{\beta_{u}}^{(u)}\left(A_{i} \cdot U\right)=\sum_{\alpha} a_{\alpha \beta_{u}} \chi_{\alpha}\left(A_{i} \cdot U\right), \quad X=\left(\rho_{\beta_{v}}^{(u)}\left(A_{i} \cdot U\right)\right),
$$

then (1.6) becomes
1.8

$$
X^{\prime} Z_{\beta_{u}}=\left(n\left(A_{i} \cdot U\right) \delta_{i j}\right),
$$

that is,
1.9

$$
\sum_{\beta_{u}} \rho_{\rho_{\beta_{u}}^{(u)}}^{(u)}\left(A_{i} \cdot U\right) \chi_{\beta_{u}}\left(A_{j}\right)=n\left(A_{i} \cdot U\right) \delta_{i j} .
$$

If an element P of S_{n} possesses no u-cycle, then by [2]
1.10

$$
\rho_{\beta_{u}}^{(u)}(P)=0 .
$$

We shall call

$$
\rho_{\beta_{u}}^{(u)}=\sum a_{\alpha \beta_{u}} \chi_{\alpha}
$$

the (generalized) character of S_{n} corresponding to $\chi_{\beta_{u}}$ of S_{n-u}. If we set $T=$ ($\left.n\left(A_{4} \cdot U\right) \delta_{i_{j}}\right)$, then from (1.8) we have

$$
T^{-1} X^{\prime} Z_{\beta_{u}}=I,
$$

where I is the unit matrix. Since X and Z are square matrices,

$$
Z_{\beta_{u}} T^{-1} X^{\prime}=I
$$

Then, from $T^{-1}=\left(g\left(A_{i} \cdot U\right) \delta_{i j}\right) / n$! we have

$$
Z_{\beta u}\left(g\left(A_{i} \cdot U\right) \delta_{i j}\right) X^{\prime}=\left(n!\delta_{i j}\right)
$$

which may be written

$$
\sum_{i} g\left(A_{i} \cdot U\right) \rho_{\beta_{u}}^{(u)}\left(A_{i} \cdot U\right) \chi_{\beta_{u}^{\prime}}^{\prime}\left(A_{i}\right)= \begin{cases}n! & \text { for }\left[\beta_{u}\right]=\left[\beta_{u}^{\prime}\right] \\ 0 & \text { for }\left[\beta_{u}\right] \neq\left[\beta_{u}^{\prime}\right],\end{cases}
$$

where $g\left(A_{i} \cdot U\right)=n!/ n\left(A_{i} \cdot U\right)$.
If A_{i} possesses $t u$-cycles, then we have generally:
$g\left(A_{i} \cdot U\right)=\frac{1}{t+1}$ (number of conjugates of U in S_{n}) \times (number of conjugates of A_{i} in S_{n-u}).

In case $\left[\beta_{u}^{\prime}\right]$ is the 1-representation of S_{n-u}, (1.11) becomes
$1.12 \sum_{i} g\left(A_{i} . U\right) \rho_{\beta_{u}}^{(\mu)}\left(A_{i} . U\right)=\sum_{H} \rho_{\beta_{u}}^{(\nu)}(H)=\left\{\begin{array}{l}n!\text { for the 1-representation }\left[\beta_{u}\right], \\ 0 \text { otherwise } .\end{array}\right.$

Here, H ranges over all elements of S_{n} which possess at least one u-cycle.
Theorem 1. If Q is an element of S_{n} with $t u$-cycles, then

$$
\rho_{\beta_{u}}^{(u)}(Q)=t u \chi_{\beta_{u}}\left(Q^{(u)}\right)
$$

where $Q^{(u)}$ is a permutation on the $n-u$ symbols obtained from Q by the remoscal of a single u-cycle.

Proof. Let $Q^{(u)}$ be conjugate with A_{i}. Then

$$
\rho_{\beta_{u}}^{(u)}(Q)=\rho_{\beta_{u}}^{(u)}\left(A_{i} \cdot U\right) .
$$

If we denote by $n_{x}\left(A_{i}\right)$ the order of the normalizer $N_{u}\left(A_{i}\right)$ of A_{i} in S_{n-u}, then

$$
\sum_{\beta_{u}} \chi_{\beta_{u}}\left(A_{i}\right) \chi_{\beta_{u}}\left(A_{j}\right)=n_{u}\left(A_{i}\right) \delta_{i j} .
$$

Since $n\left(A_{i} \cdot U\right) / n_{u}\left(A_{i}\right)=t u$, we obtain

$$
\sum_{\beta_{u}} t u \chi_{\beta_{u}}\left(A_{i}\right) \chi_{\beta_{u}}\left(A_{j}\right)=n\left(A_{i} \cdot U\right) \delta_{i j} .
$$

This, combined with (1.9), gives

$$
\rho_{\beta_{u}}^{(u)}\left(A_{i} \cdot U\right)=t u \chi_{\beta_{u}}\left(A_{i}\right),
$$

whence

$$
\rho_{\beta_{u}}^{(u)}(Q)=t u \chi_{\beta_{u}}\left(Q^{(u)}\right) .
$$

If we set
1.14

$$
\left(b_{\beta_{u} \beta_{u}^{\prime}}\right)=\left(a_{\alpha \beta_{u}}\right)^{\prime}\left(a_{\alpha \beta_{u}}\right),
$$

then

$$
b_{\beta_{\mu} \beta_{u}^{\prime}}=\sum a_{\alpha \beta_{u}} a_{\alpha \beta_{u}^{\prime}}^{\prime}
$$

and
1.15

$$
\rho_{\beta_{u}}^{(u)}\left(A_{i} \cdot U\right)=\sum_{\beta_{u}} b_{\beta_{u} \beta_{u}^{\prime}} \chi_{\beta_{u}^{\prime}}^{\prime}\left(A_{i}\right) .
$$

Theorem 2. If A_{i}. U possesses $t_{i} u$-cycles, then

$$
\left|b_{\beta_{u} \beta_{u}^{\prime}}\right|=u^{m(n-u)} \prod_{i} t_{i} .
$$

Proof. From (1.6) and (1.13), we have

$$
Z_{\beta_{u}}^{\prime}\left(a_{\alpha \beta_{u}}\right)^{\prime}\left(a_{\alpha \beta_{u}}\right) Z_{\beta_{u}}=Z_{\beta_{u}}^{\prime}\left(b_{\beta_{u} s_{u}^{\prime}}^{\prime}\right) Z_{\beta_{u}}=\left(n\left(A_{i} . U\right) \delta_{i j}\right)
$$

and

$$
Z_{\beta_{u}}^{\prime} Z_{\beta_{u}}=\left(n_{u}\left(A_{i}\right) \delta_{i j}\right)
$$

Hence

$$
\left|b_{\beta_{, k} \beta_{\mathrm{a}}^{\prime}}\right|=\prod_{i} n\left(A_{i} . U\right) / \prod_{i} n_{u}\left(A_{i}\right)=\prod_{i}\left(t_{i} u\right)=u^{m(n-u)} \prod_{i} t_{i}
$$

Let $A=B . V$ be an element of S_{n-u}, where V is a single cycle of length v ($v \neq u$) and B is any permutation on the remaining $n-(u+v)$ symbols. We shall denote by $\left[\beta_{u+v}\right]$ an irreducible representation of $S_{n-(u+v)}$. Then, for the character $\mu_{\beta_{v}}^{(v)}$ of $S_{n-(u+v)}$ corresponding to $\chi_{\beta_{u}}$, we have

$$
\chi_{\beta_{u}}(B . V)=\mu_{\beta_{u}}^{(0)}(B)=\sum_{\beta_{u+v}} a_{\beta_{u} \beta_{u+v}} \chi_{\beta_{u+v}}(B)
$$

Theorem 3. Let $\rho_{\beta_{u+}}^{(u)}$ be the character of S_{n-0} corresponding to $\chi_{\beta_{w+}}$. Then

$$
\rho_{\beta_{u}}^{(u)}(Q)=\sum_{\beta_{u+\bullet}} a_{\beta_{u} \beta_{u+}, \rho_{\beta_{u}}}^{(u)}\left(Q^{(v)}\right),
$$

where Q is an element of S_{n} with at least one v-cycle and $Q^{(v)}$ is a permutation on the $n-v$ symbols obtained from Q by the removal of a single v-cycle.

Proof. For Q without u-cycle, we have by (1.10)

$$
\rho_{\beta_{u}}^{(u)}(Q)=0, \quad \rho_{\beta_{u+}}^{(u)}\left(Q^{(v)}\right)=0
$$

For Q with $t u$-cycles, we have by Theorem 1

$$
\rho_{\beta_{u}}^{(u)}(Q)=t u \chi_{\beta_{u}}\left(Q^{(u)}\right), \quad \rho_{\beta_{u+}}^{(u)}\left(Q^{(v)}\right)=t u \chi_{\beta_{u+v}}\left(Q^{(u, v)}\right)
$$

where $Q=Q^{(u)} \cdot U=Q^{(v)} . V=Q^{(u, v)} \cdot U . V$. It follows from (1.16) that

$$
\begin{aligned}
\sum_{\beta_{u+\bullet}} a_{\beta_{u} \beta_{u+},} \rho_{\beta_{u+v}}^{(u)}\left(Q^{(v)}\right) & =t u \sum_{\beta_{u+v}} a_{\beta_{u} \beta_{u+\bullet}} \chi_{\beta_{u+v}}\left(Q^{(u, v)}\right) \\
& =t u \mu_{\beta_{u}}^{(v)}\left(Q^{(u, v)}\right)=t u \chi_{\beta_{u}}\left(Q^{(u)}\right)=\rho_{\beta_{u}}^{(u)}(Q) .
\end{aligned}
$$

2. We shall consider the character of a representation $[\alpha]$ for an element $Q=B . V . U$. where U, V are cycles of lengths $u, v(u \neq v)$, and B is a permutation on the remaining $n-(u+v)$ symbols. Applying the Murnaghan-Nakayama recursion formula twice, we obtain

$$
\chi_{\alpha}(Q)=\sum_{\beta_{u}} a_{\alpha \beta_{u}} \chi_{\beta_{u}}(B . V)=\sum_{\beta_{u}} a_{\alpha \beta_{u}} \sum_{\beta_{u}+v} a_{\beta_{u} \beta_{u+\bullet}} \chi_{\beta_{u+}}(B)
$$

and

$$
\chi_{\alpha}(Q)=\sum_{\beta_{v}} a_{\alpha \beta_{\imath}} \chi_{\beta_{v}}(B . U)=\sum_{\beta_{v}} a_{\alpha \beta_{v}} \sum_{\beta_{u+v}} a_{\beta_{v} \beta_{u+\imath}} \chi_{\beta_{u+v}}(B) .
$$

Here, $\left[\beta_{u}\right],\left[\beta_{v}\right],\left[\beta_{u+v}\right]$ are representations of $S_{n-u}, S_{n-p}, S_{n-(u+p)}$ respectively. Then it follows that

$$
\sum_{\beta_{u}} a_{\beta_{u} \beta_{u+},} a_{\alpha \beta_{u}}=\sum_{\beta_{v}} a_{\beta_{v} \beta_{u+}} a_{\alpha \beta_{v}},
$$

that is, in matrix form

$$
\left(a_{\alpha \beta_{u}}\right)\left(a_{\beta_{u} \beta_{u}+v}\right)=\left(a_{\alpha \beta_{v}}\right)\left(a_{\beta_{v} \beta_{u}+v}\right) .
$$

We set

$$
\left(a_{\alpha \beta_{u}+\boldsymbol{v}}^{*}\right)=\left(a_{\alpha \beta_{u}}\right)\left(a_{\beta_{u} \beta_{u+v}}\right)
$$

Then we can define the character

$$
\mu_{\alpha}^{(u, v)}=\mu_{\alpha}^{(r, u)}
$$

of $S_{n-(x+\eta)}$ corresponding to χ_{α} and the character

$$
\rho_{\beta_{u+}}^{(u, v)}=\rho_{\beta_{k}, .}^{(r, u)}
$$

of S_{n} corresponding to $\chi_{\beta_{u+v}}$ as follows:
2.5

$$
\begin{align*}
\mu_{\alpha}^{(u, v)} & =\sum_{\beta_{u+v}} a_{\alpha \beta_{u}+,}^{*} \chi_{\beta_{u}+\cdot} \\
\rho_{\beta_{u+v}}^{(u, v)} & =\sum_{\alpha} a_{\alpha \beta_{u}+,}^{*} \chi_{\alpha} .
\end{align*}
$$

The character $\rho_{\beta_{u, t}, v}^{(u, v)}$ is called the character of type (u, v). Equation (2.1) shows that
2.6

$$
\rho_{\beta_{u+v}}^{(u, v)}=\sum_{\beta_{u}} a_{\beta_{u} \beta_{u}+\varepsilon} \rho_{\beta_{u}}^{(u)}=\sum_{\beta_{v}} a_{\beta_{v} \beta_{u+}, \rho_{\beta_{v}}^{(v)}}^{(v)} .
$$

Generally we can define by the same way, the character

$$
\begin{aligned}
& \rho_{\beta_{u}+v+\cdots+\ldots, w}^{(u, v, \ldots, w)}
\end{aligned}
$$

of type ($u, v, \ldots, w)$ of S_{n} corresponding to

$$
\chi_{\beta_{u+v}+\ldots+w}
$$

of $S_{n-(u+v+\ldots+w)}$. Let $G_{1}, G_{2}, \ldots, G_{z}(z=m(n-(u+v+\ldots+w)))$ be a complete system of representatives for the classes of conjugate elements in $S_{n-(u+v+\ldots+w)}$. Corresponding to (1.10), we can prove by the method used in [2], the following

Theorem 4. If an element P of S_{n} is not conjugate to G_{i}. W . . V.U $(i=1$, $2, \ldots, z)$, then
3. Let p be a rational prime and let
$3.1 \quad n=r+w p, \quad 0 \leqslant r<p$.
A p-singular element of S_{n} has at least one cycle of length p or a multiple of p while a p-regular element is simply a permutation, the lengths of whose cycles are all prime to p. If a p-singular element P of S_{n} has only a λp-cycle as cycle of length a multiple of p, then P will be called an element of type (λ). Generally we may define by a similar way an element of type ($\lambda_{1}, \lambda_{2} ., \ldots, \lambda_{t}$) where $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{t}$ and $\sum \lambda_{i} \leqslant w$. We denote by $b\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)$ the number of classes of conjugate elements in S_{n} which contain the elements of type $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)$. If

$$
\frac{1}{2} q(q+1) \leqslant w<\frac{1}{2}(q+1)(q+2)
$$

then the maximal value of t which satisfies $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{i}, \sum \lambda_{i} \leqslant w$, is q. We set
3.2

$$
\sum_{\lambda_{1}<\lambda_{2}<\ldots \ll} b\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)=h_{i}
$$

and
3.3

$$
\sum_{i=t}^{4} h_{i}=k_{t} \quad(t=1,2, \ldots, q)
$$

Denote by $m^{\prime}(n)$ the number of p-singular classes in S_{n}. Then we see easily that
3.4

$$
m^{\prime}(n)=k_{1}
$$

Let $m(n)$ be the number of classes of conjugate elements in S_{n} as in \$1. We set

$$
3.5 \quad \sum_{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{1}} m\left(n-\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{t}\right) p\right)=s \quad(t=1,2, \ldots, q) .
$$

Then (3.2) and (3.5) yield
3.6

$$
s_{t}=h_{t}+\binom{t+1}{t} h_{t+1}+\ldots+\binom{q}{t} h_{o} \quad(t=1,2, \ldots, q)
$$

We obtain readily from (3.6)
3.7

$$
h_{t}=s_{t}-\binom{t+1}{t} s_{t+1}+\ldots+(-1)^{q-t}\binom{q}{t} s_{q} \quad(t=1,2, \ldots, q) .
$$

Theorem 5. Let $m^{\prime}(n)$ be the number of p-singular classes in S_{n}. Then

$$
m^{\prime}(n)=s_{1}-s_{2}+s_{3}-\ldots+(-1)^{q-1} s_{2} .
$$

Proof. From (3.6) we have

$$
\begin{aligned}
s_{1}-s_{2}+s_{3}-\ldots+(-1)^{q-1} s_{q} & =\sum_{t=1}^{q}\left(\binom{t}{1}-\binom{t}{2}+\ldots+(-1)^{t-1}\binom{t}{t}\right) h \\
& =\sum_{t} h_{t}=k_{1}=m^{\prime}(n)
\end{aligned}
$$

Corollary.

$$
s_{2}-s_{3}+s_{4}-\ldots+(-1)^{q} s_{q}=\sum_{t=2}^{q} k_{l} .
$$

Proof.

$$
\begin{aligned}
s_{2}-s_{3}+s_{4} & -\ldots+(-1)^{q} s_{q}=s_{1}-\sum_{t} h_{i} \\
& =h_{2}+2 h_{3}+3 h_{4}+\ldots+(q-1) h_{q}=\sum_{t=2}^{\psi} k_{1} .
\end{aligned}
$$

4. Let $\lambda_{i}(i=1,2, \ldots, t)$ be positive integers such that $\lambda_{\mathrm{I}}<\lambda_{i}<\ldots<\lambda_{\text {, }}$ and $u=\sum \lambda_{i} \leqslant w$. In the following we shall denote by

$$
\chi_{i}^{(u)} \quad(i=1,2, \ldots m(n-u p))
$$

the characters of distinct irreducible representations of $S_{n-u p}$, and by

$$
\rho_{i}^{\lambda_{1} \lambda_{2} \ldots \lambda_{t}}
$$

the characters of type $\left(\lambda_{1} p, \lambda_{2} p, \ldots, \lambda_{t} p\right)$ of S_{n} corresponding to $\chi_{i}^{(u)}$ of $S_{n-u p}$. If P is not conjugate to

$$
V . P_{\lambda_{1}} \cdot P_{\lambda_{2}} \ldots P_{\lambda_{t}}
$$

where $P_{\lambda_{i}}$ is a cycle of length $\lambda_{i} p$, and V is any permutation on the remaining $n-u p$ symbols, then we have, by Theorem 4,

$$
\rho_{i}^{\lambda_{1} \lambda_{1} \ldots \lambda_{t}}(P)=0
$$

Further, if V is a p-regular element of $S_{n-u p}$, then

$$
\rho_{i}^{\lambda_{1} \lambda_{1} \cdot \lambda_{t}}\left(V \cdot P_{\lambda_{1}} \cdot P_{\lambda_{2}} \ldots P_{\lambda_{t}}\right)=\lambda_{1} \lambda_{2} \ldots \lambda_{t} p^{t} \chi_{i}^{(u)}(V)
$$

In particular, we obtain
Theorem 6. If H is a p-regular element of S_{n}, then for any type $\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{t}\right)$

$$
\rho_{i}^{\lambda_{i} \lambda_{2} \ldots \lambda_{t}}(H)=0 .
$$

Let $P_{1}, P_{2}, \ldots, P_{m^{*}(n)}$ be a complete system of representatives for the p-singular classes in S_{n}. If we set

$$
R_{1}=\left(\rho_{i}^{\lambda}\left(P_{j}\right)\right)
$$

(j, row index; λ, i, column indices; where $\lambda=1,2, \ldots, w ; i=1,2, \ldots$, $m(n-\lambda p) ; j=1,2, \ldots, m^{\prime}(n)$, then R_{1} is a matrix of type ($m^{\prime}(n), s_{1}$) and we have proved in [2]

$$
r\left(R_{1}\right)=m^{\prime}(n)=k_{1},
$$

where $r\left(R_{1}\right)$ denotes the rank of R_{1}. Generally we set

$$
R_{t}=\left(\rho_{i}^{\lambda_{1} \lambda_{2} \ldots \lambda}\left(P_{j}\right)\right)
$$

(j, row index: $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right), i$, column indices). Then R_{t} is a matrix of type ($m^{\prime}(n), s_{t}$) and we can prove, as in [2], the following
Theorem 7. Let $r\left(R_{t}\right)$ be the rank of R_{t}. Then $r\left(R_{t}\right)=k_{t}$ where k_{t} is the number defined in (3.3).
5. Let $\left[\alpha_{0}\right.$] be a p-core of $S_{n-u p}$. Then [α_{0}] determines uniquely a p-block $B\left[\alpha_{0}\right]$ of S_{n}. We call u the weight of $B\left[\alpha_{0}\right]$. As in [2], we define $l^{*}(u)$ by

5.1

$$
l^{*}(u)=\sum_{\nu, \nu_{2}, \ldots, \ldots} m(\nu) m\left(\nu_{z}\right) \ldots m\left(\nu_{p-1}\right)
$$

where the ν_{i} are the positive integers or zero, and the summation extends over all sets $\left(\nu_{1}, \nu_{2}, \ldots, \nu_{p-1}\right)$ which satisfy $\sum \nu_{i}=u$. Let $c(n)$ be the number of p-cores of n nodes. We set $c(0)=1$. Then we have by [2]

$$
m^{*}(n)=\sum_{u=0}^{w} c(n-u p) l^{*}(u)
$$

where $m^{*}(n)$ is the number of p-regular classes in S_{n}, i.e., the number of modular irreducible representations of S_{n}.

THEOREM 8. The number of modular irreducible representations in a p-block of weight v is $l^{*}(v)$.

Proof. By [3], the number of modular irreducible representations in any p-block of weight v is independent of the p-core. Hence we denote this number by $f(v)$. We have

$$
m^{*}(n)=\sum_{u=0}^{w} c(n-u p) f(u)
$$

Since $l^{*}(0)=f(0)=1$ and $l^{*}(1)=f(1)=p-1$, we assume that $l^{*}(u)=f(u)$ for $u<v$. We set $n=v p$ in (5.2) and (5.3). Then

$$
m^{*}(n)=\sum_{u=0}^{v} c(v p-u p) l^{*}(u)=l^{*}(v)+\sum_{u=0}^{v-1} c(v p-u p) l^{*}(u)
$$

and

$$
m^{*}(n)=\sum_{u=0}^{0} c(v p-u p) f(u)=f(v)+\sum_{u=0}^{v-1} c(v p-u p) f(u) .
$$

By our assumption, $l^{*}(u)=f(u)(u=1,2, \ldots, v-1)$. Hence we obtain $l^{*}(v)=f(v)$.

References

1. J. H. Chung, Modular representations of the symmetric group, Can. J. Math., 3 (1951), 309-327.
2. M. Osima, On some character relations of symmetric groups, Okayama Math. J., 1 (1952), 63-68.
3. G. de B. Robinson, On the modular representations of the symmetric group, Proc. Nat. Acad. Sci., 37 (1951), 694-696.

Okayama University

