SOME REMARKS ON THE CHARACTERS OF THE SYMMETRIC GROUP

MASARU OSIMA

Introduction. In [2], we derived some character relations of the symmetric group S_n . These relations were also obtained in [1] independently. In the present paper, we shall study the properties of these character relations in some detail. In the last section, using a result obtained in [3], we shall further determine the number of modular irreducible representations in a *p*-block of S_n .

1. We shall denote by $[\alpha]$ the irreducible representation of S_n corresponding to a diagram $[\alpha]$ of n nodes, and by χ_{α} its character. Similarly we define the irreducible representation $[\beta_{\mu}]$ of S_{n-u} and its character χ_{β_u} . We denote by m(n) the number of distinct irreducible representations of S_n . Then, as is well known, the number of classes of conjugate elements in S_n is equal to m(n).

Let $Q = A \cdot U$ be an element of S_n where U is a single cycle of length u, and A is any permutation on the remaining n - u symbols. By the Murnaghan-Nakayama recursion formula

1.1
$$\chi_{\alpha}(A.U) = \sum_{\beta_{u}} a_{\alpha\beta_{u}} \chi_{\beta_{u}}(A).$$

Here,

$$a_{\alpha\beta_n} = (-1)^{r_i}$$

if a diagram $[\beta_u]$ of S_{n-u} is obtainable from $[\alpha]$ by the removal of a single *u*-hook H_i with leg length r_i , and

$$a_{\alpha\beta_u} = 0$$

otherwise. We set

1.2
$$\mu_{\alpha}^{(u)} = \sum_{\beta_{u}} a_{\alpha\beta_{u}} \chi_{\beta_{u}}$$

 $\mu_{\alpha}^{(u)}$ is called the (generalized) character of S_{n-u} corresponding to χ_{α} .

Let $A_1, A_2, \ldots, A_{m(n-u)}$ be a complete system of representatives for the classes of conjugate elements in S_{n-u} . If we set

1.3
$$Z = (\chi_{\alpha}(A_i, U)),$$

then

1.4
$$Z'Z = (n(A_i,U)\delta_{ij}),$$

where Z' is the transpose of Z and $n(A_i, U)$ is the order of the normalizer $N(A_i, U)$ of A_i . U in S_n . Since we have from (1.1),

Received April 7, 1952.

$$I.5 \qquad \qquad Z = (a_{\alpha\beta_u})(\chi_{\beta_u}(A_i)) = (a_{\alpha\beta_u})Z_{\beta_u},$$

(1.4) gives

$$Z'(a_{\alpha\beta_u}) Z_{\beta_u} = (n(A_i U) \delta_{ij}).$$

Hence, if we set

1.7
$$\rho_{\beta_{\mathfrak{u}}}^{(\mathfrak{u})}(A_{\mathfrak{i}}.U) = \sum_{\alpha} a_{\alpha\beta_{\mathfrak{u}}} \chi_{\alpha}(A_{\mathfrak{i}}.U), \quad X = (\rho_{\beta_{\mathfrak{u}}}^{(\mathfrak{u})}(A_{\mathfrak{i}}.U)),$$

then (1.6) becomes

1.8

1.6

$$X'Z_{\beta_u} = (n(A_i.U) \delta_{ij})$$

that is,

1.9
$$\sum_{\beta_u} \rho_{\beta_u}^{(u)}(A_i.U) \ \chi_{\beta_u}(A_j) = n(A_i.U) \ \delta_{ij}.$$

If an element P of S_n possesses no *u*-cycle, then by [2]

1.10
$$\rho_{\beta_u}^{(u)}(P) = 0.$$

We shall call

$$\rho_{\beta_u}^{(u)} = \sum a_{\alpha\beta_u} \chi_{\alpha}$$

the (generalized) character of S_n corresponding to χ_{β_u} of S_{n-u} . If we set $T = (n(A_i, U)\delta_{ij})$, then from (1.8) we have

$$T^{-1}X'Z_{\beta_u}=I,$$

where I is the unit matrix. Since X and Z are square matrices,

$$Z_{\beta_u} T^{-1} X' = I.$$

Then, from $T^{-1} = (g(A_i, U)\delta_{ij})/n!$ we have

$$Z_{\beta_u}(g(A_i,U) \ \delta_{ij}) X' = (n! \ \delta_{ij}),$$

which may be written

1.11
$$\sum_{i} g(A_{i}.U) \rho_{\beta_{u}}^{(u)}(A_{i}.U) \chi_{\beta_{u}}^{\prime}(A_{i}) = \begin{cases} n! & \text{for } [\beta_{u}] = [\beta_{u}^{\prime}], \\ 0 & \text{for } [\beta_{u}] \neq [\beta_{u}^{\prime}], \end{cases}$$

where $g(A_{i}, U) = n!/n(A_{i}, U)$.

1

If A_i possesses t u-cycles, then we have generally:

$$g(A_i, U) = \frac{1}{t+1} \text{ (number of conjugates of } U \text{ in } S_n)$$

× (number of conjugates of A_i in S_{n-u}).

In case $[\beta'_u]$ is the 1-representation of S_{n-u} , (1.11) becomes

1.12
$$\sum_{i} g(A_{i}.U) \rho_{\beta_{u}}^{(u)}(A_{i}.U) = \sum_{H} \rho_{\beta_{u}}^{(u)}(H) = \begin{cases} n! \text{ for the 1-representation } [\beta_{u}], \\ 0 \text{ otherwise.} \end{cases}$$

MASARU OSIMA

Here, H ranges over all elements of S_n which possess at least one u-cycle.

THEOREM 1. If Q is an element of S_n with t u-cycles, then

$$\rho_{\beta_u}^{(u)}(Q) = tu \ \chi_{\beta_u}(Q^{(u)})$$

where $Q^{(u)}$ is a permutation on the n - u symbols obtained from Q by the removal of a single u-cycle.

Proof. Let $Q^{(u)}$ be conjugate with A_i . Then

$$\rho_{\beta_u}^{(u)}(Q) = \rho_{\beta_u}^{(u)}(A_i.U).$$

If we denote by $n_u(A_i)$ the order of the normalizer $N_u(A_i)$ of A_i in S_{n-u} , then

1.13
$$\sum_{\beta_u} \chi_{\beta_u}(A_i) \chi_{\beta_u}(A_j) = n_u(A_i) \delta_{ij}$$

Since $n(A_i, U)/n_u(A_i) = tu$, we obtain

$$\sum_{\beta_u} tu \chi_{\beta_u}(A_i) \chi_{\beta_u}(A_j) = n(A_i.U) \delta_{ij}.$$

This, combined with (1.9), gives

$$\rho_{\beta_u}^{(u)}(A_i,U) = tu \chi_{\beta_u}(A_i),$$

whence

$$o_{\beta_u}^{(u)}(Q) = tu \ \chi_{\beta_u}(Q^{(u)}).$$

If we set

1.14 $(b_{\beta_{u}\beta'_{u}}) = (a_{\alpha\beta_{u}})'(a_{\alpha\beta_{u}}),$

then

$$b_{\beta_u\beta'_u} = \sum a_{\alpha\beta_u} a_{\alpha\beta'_u}$$

and

1.15
$$\rho_{\beta_u}^{(u)}(A_i,U) = \sum_{\beta_u} b_{\beta_u \beta'_u} \chi_{\beta'_u}(A_i).$$

THEOREM 2. If A_i . U possesses t_i u-cycles, then

$$|b_{\beta_u\beta'_u}| = u^{m(n-u)} \prod_i t_i.$$

Proof. From (1.6) and (1.13), we have

$$Z'_{\beta_u}(a_{\alpha\beta_u})'(a_{\alpha\beta_u})Z_{\beta_u} = Z'_{\beta_u}(b_{\beta_u\beta'_u})Z_{\beta_u} = (n(A_i,U) \delta_{ij})$$

and

$$Z'_{\beta_u} Z_{\beta_u} = (n_u(A_i) \delta_{ij}).$$

Hence

$$|b_{\beta_u\beta'_u}| = \prod_i n(A_i,U) / \prod_i n_u(A_i) = \prod_i (t_iu) = u^{m(n-u)} \prod_i t_i.$$

Let A = B.V be an element of S_{n-u} , where V is a single cycle of length v $(v \neq u)$ and B is any permutation on the remaining n - (u + v) symbols. We shall denote by $[\beta_{u+v}]$ an irreducible representation of $S_{n-(u+v)}$. Then, for the character $\mu_{\beta_v}^{(v)}$ of $S_{n-(u+v)}$ corresponding to χ_{β_u} , we have

1.16
$$\chi_{\beta_{u}}(B,V) = \mu_{\beta_{u}}^{(\mathfrak{p})}(B) = \sum_{\beta_{u+\mathfrak{p}}} a_{\beta_{u}\beta_{u+\mathfrak{p}}} \chi_{\beta_{u+\mathfrak{p}}}(B).$$

THEOREM 3. Let $\rho_{\beta_{u+v}}^{(u)}$ be the character of S_{n-v} corresponding to $\chi_{\beta_{u+v}}$. Then

$$\rho_{\beta_u}^{(u)}(Q) = \sum_{\beta_{u+v}} a_{\beta_u\beta_{u+v}} \rho_{\beta_{u+v}}(Q^{(v)}),$$

where Q is an element of S_n with at least one v-cycle and $Q^{(v)}$ is a permutation on the n - v symbols obtained from Q by the removal of a single v-cycle.

Proof. For Q without *u*-cycle, we have by (1.10)

$$\rho_{\beta_u}^{(u)}(Q) = 0, \qquad \rho_{\beta_{u+v}}^{(u)}(Q^{(v)}) = 0.$$

For Q with t *u*-cycles, we have by Theorem 1

$$\rho_{\beta_{u}}^{(u)}(Q) = tu \ \chi_{\beta_{u}}(Q^{(u)}), \quad \rho_{\beta_{u+\star}}^{(u)}(Q^{(v)}) = tu \ \chi_{\beta_{u+\star}}(Q^{(u, v)})$$

where $Q = Q^{(u)}.U = Q^{(v)}.V = Q^{(u,v)}.U.V.$ It follows from (1.16) that

$$\sum_{\beta_{u+\bullet}} a_{\beta_{u}\beta_{u+\bullet}} \rho_{\beta_{u+\bullet}}^{(u)}(Q^{(v)}) = tu \sum_{\beta_{u+\bullet}} a_{\beta_{u}\beta_{u+\bullet}} \chi_{\beta_{u+\bullet}}(Q^{(u,v)})$$
$$= tu \ \mu_{\beta_{u}}^{(v)}(Q^{(u,v)}) = tu \ \chi_{\beta_{u}}(Q^{(u)}) = \rho_{\beta_{u}}^{(u)}(Q).$$

2. We shall consider the character of a representation $[\alpha]$ for an element Q = B.V.U, where U, V are cycles of lengths u,v ($u \neq v$), and B is a permutation on the remaining n - (u + v) symbols. Applying the Murnaghan-Nakayama recursion formula twice, we obtain

$$\chi_{\alpha}(Q) = \sum_{\beta_{u}} a_{\alpha\beta_{u}} \chi_{\beta_{u}}(B,V) = \sum_{\beta_{u}} a_{\alpha\beta_{u}} \sum_{\beta_{u+\bullet}} a_{\beta_{u+\bullet}} \chi_{\beta_{u+\bullet}}(B)$$

and

$$\chi_{\alpha}(Q) = \sum_{\beta_{\bullet}} a_{\alpha\beta_{\bullet}} \chi_{\beta_{\bullet}}(B.U) = \sum_{\beta_{\bullet}} a_{\alpha\beta_{\bullet}} \sum_{\beta_{u+\bullet}} a_{\beta_{\bullet}\beta_{u+\bullet}} \chi_{\beta_{u+\bullet}}(B).$$

Here, $[\beta_u]$, $[\beta_v]$, $[\beta_{u+v}]$ are representations of S_{n-u} , S_{n-v} , $S_{n-(u+v)}$ respectively. Then it follows that

2.1
$$\sum_{\beta_u} a_{\beta_u\beta_{u+\bullet}} a_{\alpha\beta_u} = \sum_{\beta_{\bullet}} a_{\beta_{\bullet}\beta_{u+\bullet}} a_{\alpha\beta_{\bullet}},$$

that is, in matrix form

2.2
$$(a_{\alpha\beta_u})(a_{\beta_u\beta_{u+v}}) = (a_{\alpha\beta_v})(a_{\beta_v\beta_{u+v}}).$$

We set

2.3
$$(a^*_{\alpha\beta_u+\bullet}) = (a_{\alpha\beta_u})(a_{\beta_u\beta_u+\bullet})$$

Then we can define the character

$$\mu_{\alpha}^{(u,v)} = \mu_{\alpha}^{(v,u)}$$

of $S_{n-(u+v)}$ corresponding to χ_{α} and the character

$$\rho_{\beta_{u+v}}^{(u,v)} = \rho_{\beta_{u+v}}^{(v,u)}$$

of S_n corresponding to $\chi_{\beta_{n+1}}$ as follows:

2.4
$$\mu_{\alpha}^{(u,v)} = \sum_{\beta_{u+v}} a_{\alpha\beta_{u+v}}^* \chi_{\beta_{u+v}},$$

2.5
$$\rho_{\beta_{u+v}}^{(u,v)} = \sum_{\alpha} a_{\alpha\beta_{u+v}}^{\star} \chi_{\alpha}.$$

The character $\rho_{\beta_{u+v}}^{(u,v)}$ is called the character of type (u, v). Equation (2.1) shows that

2.6
$$\rho_{\beta_{u+\tau}}^{(u,v)} = \sum_{\beta_u} a_{\beta_u\beta_{u+\tau}} \rho_{\beta_u}^{(u)} = \sum_{\beta_\tau} a_{\beta_\tau\beta_{u+\tau}} \rho_{\beta_\tau}^{(v)}.$$

Generally we can define by the same way, the character

$$\rho_{\beta_{u+v}+\ldots+w}^{(u,v,\ldots,w)}$$

of type (u, v, \ldots, w) of S_n corresponding to

$$\chi_{\beta_u+v+\ldots+w}$$

of $S_{n-(u+v+\ldots+w)}$. Let G_1, G_2, \ldots, G_z $(z = m(n - (u + v + \ldots + w)))$ be a complete system of representatives for the classes of conjugate elements in $S_{n-(u+v+\ldots+w)}$. Corresponding to (1.10), we can prove by the method used in [2], the following

THEOREM 4. If an element P of S_n is not conjugate to $G_i.W...V.U$ (i = 1, 2, ..., z), then

$$\rho_{\beta_{u+v+\dots+v}}^{(u,v,\dots,w)}(P) = 0.$$

3. Let p be a rational prime and let

$$n = r + wp, \qquad 0 \leqslant r < p.$$

A *p*-singular element of S_n has at least one cycle of length p or a multiple of p while a *p*-regular element is simply a permutation, the lengths of whose cycles are all prime to p. If a *p*-singular element P of S_n has only a λp -cycle as cycle of length a multiple of p, then P will be called an element of type (λ). Generally we may define by a similar way an element of type ($\lambda_1, \lambda_2, \ldots, \lambda_t$) where $\lambda_1 < \lambda_2 < \ldots < \lambda_t$ and $\sum \lambda_i \leq w$. We denote by $b(\lambda_1, \lambda_2, \ldots, \lambda_t)$ the number of classes of conjugate elements in S_n which contain the elements of type ($\lambda_1, \lambda_2, \ldots, \lambda_t$). If

$$\frac{1}{2}q(q+1) \le w < \frac{1}{2}(q+1)(q+2),$$

https://doi.org/10.4153/CJM-1953-039-1 Published online by Cambridge University Press

then the maximal value of t which satisfies $\lambda_1 < \lambda_2 < \ldots < \lambda_i$, $\sum \lambda_i \leq w_i$ is q. We set

3.2
$$\sum_{\lambda_1 < \lambda_2 < \ldots < \lambda_t} b(\lambda_1, \lambda_2, \ldots, \lambda_t) = h_t$$

and

3.3
$$\sum_{i=t}^{q} h_i = k_t \qquad (t = 1, 2, \dots, q).$$

Denote by m'(n) the number of *p*-singular classes in S_n . Then we see easily that

$$3.4 m'(n) = k_1.$$

Let m(n) be the number of classes of conjugate elements in S_n as in §1. We set

3.5
$$\sum_{\lambda_1 < \lambda_2 < \ldots < \lambda_t} m(n - (\lambda_1 + \lambda_2 + \ldots + \lambda_t)p) = s \qquad (t = 1, 2, \ldots, q).$$

Then (3.2) and (3.5) yield

3.6
$$s_t = h_t + {t+1 \choose t} h_{t+1} + \ldots + {q \choose t} h_q$$
 $(t = 1, 2, \ldots, q).$

We obtain readily from (3.6)

3.7
$$h_t = s_t - {t+1 \choose t} s_{t+1} + \ldots + (-1)^{q-t} {q \choose t} s_q \qquad (t = 1, 2, \ldots, q).$$

THEOREM 5. Let m'(n) be the number of p-singular classes in S_n . Then

$$m'(n) = s_1 - s_2 + s_3 - \ldots + (-1)^{q-1} s_q.$$

Proof. From (3.6) we have

$$s_{1} - s_{2} + s_{3} - \ldots + (-1)^{q-1} s_{q} = \sum_{t=1}^{q} (\binom{t}{1} - \binom{t}{2} + \ldots + (-1)^{t-1} \binom{t}{t}) h$$
$$= \sum_{t} h_{t} = k_{1} = m'(n).$$

COROLLARY.

$$s_2 - s_3 + s_4 - \ldots + (-1)^q s_q = \sum_{t=2}^q k_t.$$

Proof.

$$s_2 - s_3 + s_4 - \ldots + (-1)^q s_q = s_1 - \sum_t h_t$$
$$= h_2 + 2h_3 + 3h_4 + \ldots + (q-1)h_q = \sum_{t=2}^{q} k_t$$

4. Let λ_i (i = 1, 2, ..., t) be positive integers such that $\lambda_1 < \lambda_2 < ... < \lambda_t$ and $u = \sum \lambda_i \leq w$. In the following we shall denote by

$$\chi_i^{(u)} \qquad (i = 1, 2, \ldots, m(n - up))$$

the characters of distinct irreducible representations of S_{n-up} , and by

$$\rho_i^{\lambda_1\lambda_2...\lambda_i}$$

the characters of type $(\lambda_1 p, \lambda_2 p, \ldots, \lambda_t p)$ of S_n corresponding to $\chi_i^{(u)}$ of S_{n-up} . If P is not conjugate to

$$V.P_{\lambda_1}.P_{\lambda_2}\ldots P_{\lambda_d}$$

where P_{λ_i} is a cycle of length $\lambda_i p$, and V is any permutation on the remaining n - up symbols, then we have, by Theorem 4,

4.1
$$\rho_i^{\lambda_1 \lambda_1 \dots \lambda_t}(P) = 0.$$

Further, if V is a p-regular element of S_{n-up} , then

4.2
$$\rho_i^{\lambda_1\lambda_1...\lambda_t}(V.P_{\lambda_1}.P_{\lambda_2}...P_{\lambda_t}) = \lambda_1\lambda_2...\lambda_t\rho^t\chi_i^{(u)}(V).$$

In particular, we obtain

THEOREM 6. If H is a p-regular element of S_n , then for any type $(\lambda_1, \lambda_2, \ldots, \lambda_d)$

$$\rho_i^{\lambda_1\lambda_2\ldots\lambda_t}(H) = 0.$$

Let $P_1, P_2, \ldots, P_{m'(n)}$ be a complete system of representatives for the *p*-singular classes in S_n . If we set

4.3
$$R_1 = (\rho_i^{\lambda}(P_j))$$

(*j*, row index; λ , *i*, column indices; where $\lambda = 1, 2, \ldots, w$; $i = 1, 2, \ldots, m(n - \lambda p)$; $j = 1, 2, \ldots, m'(n)$, then R_1 is a matrix of type $(m'(n), s_1)$ and we have proved in [2]

4.4
$$r(R_1) = m'(n) = k_1$$

where $r(R_1)$ denotes the rank of R_1 . Generally we set

4.5
$$R_{i} = \left(\rho_{i}^{\lambda_{1}\lambda_{2}...\lambda}\left(P_{j}\right)\right)$$

(*j*, row index: $(\lambda_1, \lambda_2, \ldots, \lambda_t)$, *i*, column indices). Then R_t is a matrix of type $(m'(n), s_t)$ and we can prove, as in [**2**], the following

THEOREM 7. Let $r(R_i)$ be the rank of R_i . Then $r(R_i) = k_i$ where k_i is the number defined in (3.3).

5. Let $[\alpha_0]$ be a *p*-core of S_{n-up} . Then $[\alpha_0]$ determines uniquely a *p*-block $B[\alpha_0]$ of S_n . We call *u* the weight of $B[\alpha_0]$. As in [2], we define $l^*(u)$ by

5.1
$$l^*(u) = \sum_{\nu_1, \nu_2, \ldots, \nu_{n-1}} m(\nu_1) m(\nu_2) \ldots m(\nu_{p-1}),$$

where the ν_i are the positive integers or zero, and the summation extends over all sets $(\nu_1, \nu_2, \ldots, \nu_{p-1})$ which satisfy $\sum \nu_i = u$. Let c(n) be the number of *p*-cores of *n* nodes. We set c(0) = 1. Then we have by [2]

5.2
$$m^*(n) = \sum_{u=0}^{w} c(n - up)l^*(u)$$

where $m^*(n)$ is the number of p-regular classes in S_n , i.e., the number of modular irreducible representations of S_n .

THEOREM 8. The number of modular irreducible representations in a p-block of weight v is $l^*(v)$.

Proof. By [3], the number of modular irreducible representations in any p-block of weight v is independent of the p-core. Hence we denote this number by f(v). We have

5.3
$$m^*(n) = \sum_{u=0}^{w} c(n - up)f(u).$$

Since $l^*(0) = f(0) = 1$ and $l^*(1) = f(1) = p - 1$, we assume that $l^*(u) = f(u)$ for u < v. We set n = vp in (5.2) and (5.3). Then

$$m^{*}(n) = \sum_{u=0}^{v} c(vp - up)l^{*}(u) = l^{*}(v) + \sum_{u=0}^{v-1} c(vp - up)l^{*}(u)$$

and

$$m^*(n) = \sum_{u=0}^{v} c(vp - up)f(u) = f(v) + \sum_{u=0}^{v-1} c(vp - up)f(u).$$

By our assumption, $l^*(u) = f(u)$ (u = 1, 2, ..., v - 1). Hence we obtain $l^*(v) = f(v)$.

References

- 1. J. H. Chung, Modular representations of the symmetric group, Can. J. Math., 3 (1951), 309-327.
- 2. M. Osima, On some character relations of symmetric groups, Okayama Math. J., 1 (1952), 63-68.
- 3. G. de B. Robinson, On the modular representations of the symmetric group, Proc. Nat. Acad. Sci., 37 (1951), 694-696.

Okayama University