# THE QUASILINEARITY OF SOME FUNCTIONALS ASSOCIATED WITH THE RIEMANN-STIELTJES INTEGRAL 

S. S. DRAGOMIR ${ }^{\boxtimes}$ and I. FEDOTOV

(Received 6 October 2010)


#### Abstract

The superadditivity and subadditivity of some functionals associated with the Riemann-Stieltjes integral are established. Applications in connection to Ostrowski's and the generalized trapezoidal inequalities and for special means are provided.


2010 Mathematics subject classification: primary 26D15; secondary 26A42.
Keywords and phrases: Riemann-Stieltjes integral, superadditivity, subadditivity, Ostrowski's inequality, special means.

## 1. Introduction

In the theory of the Riemann-Stieltjes integral for scalar functions, it is well known that if $f:[a, b] \rightarrow \mathbb{R}(\mathbb{C})$ is continuous and $u:[a, b] \rightarrow \mathbb{R}(\mathbb{C})$ is of bounded variation, then the Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ exists and the following sharp inequality holds:

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) d u(t)\right| \leq \max _{t \in[a, b]}|f(t)| \bigvee_{a}^{b}(u) \tag{1.1}
\end{equation*}
$$

where $\bigvee_{a}^{b}(u)$ denotes the total variation of $u$ on $[a, b]$. We recall that

$$
\bigvee_{a}^{b}(u)=\sup \left\{\sum_{i=0}^{n-1}\left|u\left(x_{i+1}\right)-u\left(x_{i}\right)\right|, a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b\right\} .
$$

Inequality (1.1) plays an important role in obtaining various sharp bounds for the approximation error of the Riemann-Stieltjes integral by simpler quantities such as:

$$
\begin{gathered}
f(x)[u(b)-u(a)] \quad(\text { see }[2,5,6]), \\
f(b)[u(b)-u(x)]+f(a)[u(x)-u(a)] \quad(\text { see }[2,7])
\end{gathered}
$$

[^0]and
$$
\frac{1}{b-a}[u(b)-u(a)] \int_{a}^{b} f(t) d t \quad(\operatorname{see}[8,9])
$$
where $x \in[a, b]$.
Following the recent paper [1], for a continuous function $f:[a, b] \rightarrow \mathbb{R}$ and a function of bounded variation $u:[a, b] \rightarrow \mathbb{R}$ we define the functional
\[

$$
\begin{equation*}
\Psi(f, u ;[a, b]):=\max _{t \in[a, b]}|f(t)| \cdot \bigvee_{a}^{b}(u)-\left|\int_{a}^{b} f(t) d u(t)\right| \tag{1.2}
\end{equation*}
$$

\]

Due to the properties of the Riemann-Stieltjes integral, the functional $\Psi$ is well defined and nonnegative. The following properties of this functional as a function of an interval hold [1].

THEOREM 1.1. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $u:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$. Then for any $c \in(a, b)$,

$$
\begin{equation*}
(0 \leq) \quad \Psi(f, u ;[a, c])+\Psi(f, u ;[c, b]) \leq \Psi(f, u ;[a, b]), \tag{1.3}
\end{equation*}
$$

that is, $\Psi(f, u ; \cdot)$ is superadditive as a function of an interval.
If $[c, d] \subseteq[a, b]$, then

$$
\begin{equation*}
(0 \leq) \quad \Psi(f, u ;[c, d]) \leq \Psi(f, u ;[a, b]), \tag{1.4}
\end{equation*}
$$

that is, $\Psi(f, u ; \cdot)$ is monotonic nondecreasing as a function of an interval.
In the same paper the following functional is also considered:

$$
\Phi(f, u ;[a, b]):=\left[\max _{t \in[a, b]}|f(t)| \frac{1}{b-a} \bigvee_{a}^{b}(u)-\left|\frac{1}{b-a} \int_{a}^{b} f(t) d u(t)\right|\right]^{(b-a)}
$$

which is well defined for continuous functions $f:[a, b] \rightarrow \mathbb{R}$ and functions of bounded variation $u:[a, b] \rightarrow \mathbb{R}$. The following result concerning the properties of this functional holds [1].

THEOREM 1.2. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $u:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$. Then for any $c \in(a, b)$,

$$
\begin{equation*}
\Phi(f, u ;[a, b]) \geq \Phi(f, u ;[a, c]) \cdot \Phi(f, u ;[c, b]) \tag{1.5}
\end{equation*}
$$

that is, $\Phi(f, u ; \cdot)$ is supermultiplicative as a function of an interval.
For applications of the above results for the Trapezoidal and Ostrowski error functionals as well as applications for special means, see [1].

In this paper we consider other composite functionals that can be naturally associated with the functional $\Psi(f, u ;[a, b])$ and study their quasilinearity properties. Some applications in connection with Ostrowski's and the generalized trapezoidal inequalities and for special means are provided as well $[3,4,10,11]$.

## 2. Some general results

Consider a continuous function $f:[a, b] \rightarrow \mathbb{R}$ and a function of bounded variation $u:[a, b] \rightarrow \mathbb{R}$ for which

$$
\begin{equation*}
\Psi(f, u ;[x, y]):=\max _{t \in[x, y]}|f(t)| \cdot \bigvee_{x}^{y}(u)-\left|\int_{x}^{y} f(t) d u(t)\right| \neq 0 \tag{2.1}
\end{equation*}
$$

for any proper subinterval $[x, y]$ of the given interval $[a, b]$. Define the new functional

$$
\begin{align*}
\Upsilon(f, u ;[a, b]): & =\frac{b-a}{\max _{t \in[a, b]}|f(t)| \frac{1}{b-a} \cdot \bigvee_{a}^{b}(u)-\left|\frac{1}{b-a} \int_{a}^{b} f(t) d u(t)\right|}  \tag{2.2}\\
& =\frac{(b-a)^{2}}{\Psi(f, u ;[a, b])}
\end{align*}
$$

The following result holds.
THEOREM 2.1. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $u:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$ such that condition (2.1) is valid. Then for any $c \in(a, b)$,

$$
\begin{equation*}
\Upsilon(f, u ;[a, b]) \leq \Upsilon(f, u ;[a, c])+\Upsilon(f, u ;[c, b]) \tag{2.3}
\end{equation*}
$$

that is, $\Upsilon(f, u ; \cdot)$ is subadditive as a function of an interval.
Proof. Since, by Theorem 1.1, the functional $\Psi(f, u ; \cdot)$ is superadditive as a function of an interval, we have for any $c \in(a, b)$ that

$$
\begin{align*}
\frac{\Psi(f, u ;[a, b])}{b-a} & \geq \frac{\Psi(f, u ;[a, c])+\Psi(f, u ;[c, b])}{b-a} \\
& =\frac{(c-a) \frac{\Psi(f, u ;[a, c])}{c-a}+(b-c) \frac{\Psi(f, u ;[c, b])}{b-c}}{(c-a)+(b-c)} \tag{2.4}
\end{align*}
$$

Utilizing the elementary inequality between the weighted arithmetic mean and the weighted harmonic mean, that is,

$$
\frac{\alpha a+\beta b}{\alpha+\beta} \geq \frac{\alpha+\beta}{\frac{\alpha}{a}+\frac{\beta}{b}}, \quad \alpha, \beta, a, b>0
$$

for the choices

$$
a=\frac{\Psi(f, u ;[a, c])}{c-a}, \quad b=\frac{\Psi(f, u ;[c, b])}{b-c}, \quad \alpha=c-a, \quad \beta=b-c
$$

we have

$$
\begin{align*}
& \frac{(c-a) \frac{\Psi(f, u ;[a, c])}{c-a}+(b-c) \frac{\Psi(f, u ;[c, b])}{b-c}}{(c-a)+(b-c)} \\
& \quad \geq \frac{(c-a)+(b-c)}{\frac{c-a}{\frac{\Psi(f, u ;[a, c])}{c-a}}+\frac{b-c}{\frac{\Psi(f, u ; c, c, b])}{b-c}}=\frac{(c-a)+(b-c)}{\frac{(c-a)^{2}}{\Psi(f, u ;[a, c])}+\frac{(b-c)^{2}}{\Psi(f, u ;[c, b])}}} \quad \begin{array}{l}
b-a \\
\quad=\frac{(c-a)^{2}}{\Psi(f, u ;[a, c])}+\frac{(b-c)^{2}}{\Psi(f, u ;[c, b])}
\end{array} . \tag{2.5}
\end{align*}
$$

Combining (2.4) with (2.5), we get

$$
\frac{\Psi(f, u ;[a, b])}{b-a} \geq \frac{b-a}{\frac{(c-a)^{2}}{\Psi(f, u ;[a, c])}+\frac{(b-c)^{2}}{\Psi(f, u ;[c, b])}}
$$

which shows that the functional $\Upsilon(f, u ; \cdot)$ is subadditive as a function of an interval.
Further, for $q \in(0,1)$, we consider the following family of functionals:

$$
\begin{align*}
\Omega_{q}(f, u ;[a, b]) & :=(b-a)^{1-q}[\Psi(f, u ;[a, b])]^{q} \\
& =(b-a)^{1-q}\left[\max _{t \in[a, b]}|f(t)| \bigvee_{a}^{b}(u)-\left|\int_{a}^{b} f(t) d u(t)\right|\right]^{q} . \tag{2.6}
\end{align*}
$$

The following result concerning the quasilinearity of the functional $\Omega_{q}(f, u ; \cdot)$ may be stated.

THEOREM 2.2. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $u:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$. Then for any $q \in(0,1)$,

$$
\begin{equation*}
(0 \leq) \quad \Omega_{q}(f, u ;[a, c])+\Omega_{q}(f, u ;[c, b]) \leq \Omega_{q}(f, u ;[a, b]) \tag{2.7}
\end{equation*}
$$

for any $c \in(a, b)$, that is, the functional $\Omega_{q}(f, u ; \cdot)$ is superadditive as a function of an interval.

If $[c, d] \subseteq[a, b]$, then

$$
\begin{equation*}
(0 \leq) \quad \Omega_{q}(f, u ;[c, d]) \leq \Omega_{q}(f, u ;[a, b]), \tag{2.8}
\end{equation*}
$$

that is, $\Omega_{q}(f, u ; \cdot)$ is monotonic nondecreasing as a function of an interval.
Proof. We know from the proof of Theorem 2.2 that

$$
\begin{equation*}
\frac{\Psi(f, u ;[a, b])}{b-a} \geq \frac{(c-a) \frac{\Psi(f, u ;[a, c])}{c-a}+(b-c) \frac{\Psi(f, u ;[c, b])}{b-c}}{(c-a)+(b-c)} \tag{2.9}
\end{equation*}
$$

for any $c \in(a, b)$. Taking the power $q \in(0,1)$ in (2.9), we get

$$
\begin{equation*}
\left[\frac{\Psi(f, u ;[a, b])}{b-a}\right]^{q} \geq\left[\frac{(c-a) \frac{\Psi(f, u ;[a, c])}{c-a}+(b-c) \frac{\Psi(f, u ;[c, b])}{b-c}}{(c-a)+(b-c)}\right]^{q} \tag{2.10}
\end{equation*}
$$

for any $c \in(a, b)$.

By the concavity of the function $g(t)=t^{q}, q \in(0,1)$ we also have

$$
\begin{align*}
& {\left[\frac{\left.(c-a) \frac{\Psi(f, u ;[a, c])}{c-a}+(b-c) \frac{\Psi(f, u ;[c, b])}{b-c}\right]^{q}}{(c-a)+(b-c)}\right.} \\
& \quad \geq \frac{(c-a)\left[\frac{\Psi(f, u ;[a, c])}{c-a}\right]^{q}+(b-c)\left[\frac{\Psi(f, u ;[c, b])}{b-c}\right]^{q}}{(c-a)+(b-c)}  \tag{2.11}\\
& \quad=\frac{(c-a)^{1-q}[\Psi(f, u ;[a, c])]^{q}+(b-c)^{1-q}[\Psi(f, u ;[c, b])]^{q}}{(c-a)+(b-c)} \\
& \quad=\frac{(c-a)^{1-q}[\Psi(f, u ;[a, c])]^{q}+(b-c)^{1-q}[\Psi(f, u ;[c, b])]^{q}}{b-a}
\end{align*}
$$

for any $c \in(a, b)$.
Combining (2.10) with (2.11), we deduce that

$$
\frac{[\Psi(f, u ;[a, b])]^{q}}{(b-a)^{q}} \geq \frac{(c-a)^{1-q}[\Psi(f, u ;[a, c])]^{q}+(b-c)^{1-q}[\Psi(f, u ;[c, b])]^{q}}{b-a}
$$

for any $c \in(a, b)$, which shows that the functional $\Omega_{q}(f, u ; \cdot)$ is superadditive as a function of an interval.

Now let $a<c<d<b$. Then by the superadditivity of $\Omega_{q}(f, u ; \cdot)$,

$$
\Omega_{q}(f, u ;[a, b])-\Omega_{q}(f, u ;[c, d]) \geq \Omega_{q}(f, u ;[a, c])+\Omega_{q}(f, u ;[d, b]) \geq 0
$$

which proves the monotonicity property.
If $p \geq q \geq 0, p \geq 1$ we can also consider the mapping depending on two parameters:

$$
\begin{align*}
\Lambda_{p, q} & (f, u ;[a, b]) \\
:= & (b-a)^{(p-q) / p} \Psi^{q}(f, u ;[a, b])=(b-a)^{(p-q+p q) / p}  \tag{2.12}\\
& \times\left[\max _{t \in[a, b]}|f(t)| \cdot \frac{1}{b-a} \bigvee_{a}^{b}(u)-\left|\frac{1}{b-a} \int_{a}^{b} f(t) d u(t)\right|\right]^{q}
\end{align*}
$$

We have also the following general result.
Theorem 2.3. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $u:[a, b] \rightarrow \mathbb{R}$ is of bounded variation on $[a, b]$. Then for any $p \geq q \geq 0, p \geq 1$, we have that the functional $\Lambda_{p, q}(f, u ; \cdot)$ defined by (2.13) is superadditive and monotonic nondecreasing as a function of an interval.

Proof. First of all, we observe that the following elementary inequality holds:

$$
\begin{equation*}
(\alpha+\beta)^{p} \geq(\leq) \alpha^{p}+\beta^{p} \tag{2.13}
\end{equation*}
$$

for any $\alpha, \beta \geq 0$ and $p \geq 1(0<p<1)$.

Indeed, if we consider the function $f_{p}:[0, \infty) \rightarrow \mathbb{R}, f_{p}(t)=(t+1)^{p}-t^{p}$, we have $f_{p}^{\prime}(t)=p\left[(t+1)^{p-1}-t^{p-1}\right]$. Observe that for $p>1$ and $t>0$ we have that $f_{p}^{\prime}(t)>0$, showing that $f_{p}$ is strictly increasing on the interval $[0, \infty)$. Now for $t=$ $\alpha / \beta(\beta>0, \alpha \geq 0)$ we have $f_{p}(t)>f_{p}(0)$, giving that $(\alpha / \beta+1)^{p}-(\alpha / \beta)^{p}>1$, that is, the desired inequality (2.1).

For $p \in(0,1)$ we have that $f_{p}$ is strictly decreasing on $[0, \infty)$ which proves the second case in (2.13).

Now let $c \in(a, b)$. Since $\Psi(f, u ; \cdot)$ is superadditive as a function of an interval, we have by (2.13), for any $p \geq 1$, that

$$
\begin{align*}
\Psi^{p}(f, u ;[a, b]) & \geq[\Psi(f, u ;[a, c])+\Psi(f, u ;[c, b])]^{p}  \tag{2.14}\\
& \geq \Psi^{p}(f, u ;[a, c])+\Psi^{p}(f, u ;[c, b]),
\end{align*}
$$

which provides that

$$
\begin{align*}
& \frac{\Psi(f, u ;[a, b])}{b-a} \\
& \quad \geq \frac{\left[\Psi^{p}(f, u ;[a, c])+\Psi^{p}(f, u ;[c, b])\right]^{1 / p}}{(c-a)+(b-c)}  \tag{2.15}\\
& \quad=\left(\frac{(c-a)\left[\frac{\Psi(f, u ;[a, c])}{(c-a)^{1 / p}}\right]^{p}+(b-c)\left[\frac{\Psi(f, u ;[c, b])}{(b-c)^{1 / p}}\right]^{p}}{(c-a)+(b-c)}\right)^{1 / p}(b-a)^{1 / p-1}
\end{align*}
$$

for any $c \in(a, b)$.
Utilizing the monotonicity property of power means, that is,

$$
\left(\frac{\alpha x^{p}+\beta y^{p}}{\alpha+\beta}\right)^{1 / p} \geq\left(\frac{\alpha x^{q}+\beta y^{q}}{\alpha+\beta}\right)^{1 / q}
$$

where $p \geq q \geq 0$, and $\alpha, \beta, x, y \geq 0$ with $\alpha+\beta>0$, we have

$$
\begin{align*}
& \left(\frac{(c-a)\left[\frac{\Psi(f, u ;[a, c])}{(c-a)^{1 / p}}\right]^{p}+(b-c)\left[\frac{\Psi(f, u ;[c, b])}{(b-c)^{1 / p}}\right]^{p}}{(c-a)+(b-c)}\right)^{1 / p} \\
& \quad \geq\left(\frac{(c-a)\left[\frac{\Psi(f, u ;[a, c])}{\left.(c-a)^{1 / p}\right]^{q}+(b-c)\left[\frac{\Psi(f, u ;[c, b])}{(b-c)^{1 / p}}\right]^{q}}\right.}{(c-a)+(b-c)}\right)^{1 / q}  \tag{2.16}\\
& \quad=\left(\frac{(c-a)^{1-q / p} \Psi^{q}(f, u ;[a, c])+(b-c)^{1-q / p} \Psi^{q}(f, u ;[c, b])}{b-a}\right)^{1 / q}
\end{align*}
$$

By making use of inequalities (2.15) and (2.16), we get

$$
\begin{aligned}
& \frac{\Psi(f, u ;[a, b])}{b-a} \\
& \quad \geq\left(\frac{(c-a)^{1-q / p} \Psi^{q}(f, u ;[a, c])+(b-c)^{1-q / p} \Psi^{q}(f, u ;[c, b])}{b-a}\right)^{1 / q} \\
& \quad \times(b-a)^{1 / p-1}
\end{aligned}
$$

which is equivalent, by taking the power $q$, to

$$
\begin{align*}
& \frac{\Psi^{q}(f, u ;[a, b])}{(b-a)^{q}} \\
& \geq\left(\frac{(c-a)^{1-q / p} \Psi^{q}(f, u ;[a, c])+(b-c)^{1-q / p} \Psi^{q}(f, u ;[c, b])}{b-a}\right) \\
& \times(b-a)^{q / p-q}  \tag{2.17}\\
&= {\left[(c-a)^{1-q / p} \Psi^{q}(f, u ;[a, c])+(b-c)^{1-q / p} \Psi^{q}(f, u ;[c, b])\right] } \\
& \quad \times(b-a)^{q / p-q-1} .
\end{align*}
$$

Moreover, if we multiply (2.17) by $(b-a)^{1+q-(q / p)}$, then we get

$$
\begin{align*}
\Psi^{q}(f, u ;[a, b])(b-a)^{1-q / p} \geq(c & -a)^{1-q / p} \Psi^{q}(f, u ;[a, c]) \\
& +(b-c)^{1-q / p} \Psi^{q}(f, u ;[c, b]) \tag{2.18}
\end{align*}
$$

for any $c \in(a, b)$, which shows that $\Lambda_{p, q}(f, u ; \cdot)$ is superadditive as a function of an interval.

The monotonicity follows as above and the proof is complete.

## 3. Applications for Ostrowski's inequality

In [6], the author has proved the following inequality of Ostrowski type for the Riemann-Stieltjes integral:

$$
\begin{align*}
& \left|f(x)[u(b)-u(a)]-\int_{a}^{b} f(t) d u(t)\right| \\
& \quad \leq H\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{r} \bigvee_{a}^{b}(u), \tag{3.1}
\end{align*}
$$

for all $x \in[a, b]$, where $f:[a, b] \rightarrow \mathbb{R}$ is of $r$ - $H$-Hölder type, that is,

$$
|f(x)-f(y)| \leq H|x-y|^{r}
$$

for any $x, y \in[a, b]$, where $r \in(0,1]$ and $H>0$ are given and $u$ is of bounded variation on $[a, b]$.

We can now define the functional

$$
\begin{align*}
\theta(f, u, x)(a, b):=H & \max _{t \in[a, b]}|t-x|^{r} \bigvee_{a}^{b}(u)  \tag{3.2}\\
& \quad-\left|f(x)[u(b)-u(a)]-\int_{a}^{b} f(t) d u(t)\right|
\end{align*}
$$

where $f, u, x, a, b, r$ and $H$ are as above. We observe that, when $x$ is in the interior of $[a, b]$ then

$$
\max _{t \in[a, b]}|t-x|^{r}=\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{r}
$$

which provides a natural connection between inequality (3.1) and the functional (3.2).
Lemma 3.1. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is of $r$-H-Hölder type and $u$ is of bounded variation on $[a, b]$. If $c \in(a, b)$, then

$$
\begin{equation*}
\theta(f, u, x)(a, b) \geq \theta(f, u, x)(a, c)+\theta(f, u, x)(c, b) \tag{3.3}
\end{equation*}
$$

for any $x \in[a, b]$, that is, $\theta(f, u, x)$ is superadditive as a function of an interval.
Proof. Observe that, for any $c \in(a, b)$, we have successively

$$
\begin{align*}
& \theta(f, u, x)(a, b) \\
&= H\left(\max _{t \in[a, b]}|t-x|^{r}\right) \bigvee_{a}^{b}(u)-\left|\int_{a}^{b}[f(x)-f(t)] d u(t)\right| \\
&= H \max \left\{\max _{t \in[a, c]}|t-x|^{r}, \max _{t \in[c, b]}|t-x|^{r}\right\}\left(\bigvee_{a}^{c}(u)+\bigvee_{c}^{b}(u)\right)  \tag{3.4}\\
&-\left|\int_{a}^{c}[f(x)-f(t)] d u(t)+\int_{c}^{b}[f(x)-f(t)] d u(t)\right| .
\end{align*}
$$

Now, since

$$
\begin{align*}
& H \max \left\{\max _{t \in[a, c]}|t-x|^{r}, \max _{t \in[c, b]}|t-x|^{r}\right\}\left(\bigvee_{a}^{c}(u)+\bigvee_{c}^{b}(u)\right)  \tag{3.5}\\
& \quad \geq H\left[\max _{t \in[a, c]}|t-x|^{r} \bigvee_{a}^{c}(u)+\max _{t \in[c, b]}|t-x|^{r} \bigvee_{c}^{b}(u)\right]
\end{align*}
$$

and

$$
\begin{align*}
& \left|\int_{a}^{c}[f(x)-f(t)] d u(t)+\int_{c}^{b}[f(x)-f(t)] d u(t)\right|  \tag{3.6}\\
& \quad \leq\left|\int_{a}^{c}[f(x)-f(t)] d u(t)\right|+\left|\int_{c}^{b}[f(x)-f(t)] d u(t)\right|
\end{align*}
$$

then, by (3.4),

$$
\begin{aligned}
& \theta(f, u, x)(a, b) \geq H \max _{t \in[a, c]}|t-x|^{r} \bigvee_{a}^{c}(u)+H \max _{t \in[c, b]}|t-x|^{r} \bigvee_{c}^{b}(u) \\
& \quad-\left|\int_{a}^{c}[f(x)-f(t)] d u(t)\right|-\left|\int_{c}^{b}[f(x)-f(t)] d u(t)\right| \\
&=\theta(f, u, x)(a, c)+\theta(f, u, x)(c, b)
\end{aligned}
$$

and the statement is proved.

Corollary 3.2. Assume that $f$ and $u$ are as above. If $x \in[c, d] \subset[a, b]$, then

$$
\theta(f, u, x)(a, b) \geq \theta(f, u, x)(c, d)
$$

or, equivalently,

$$
\begin{align*}
& H\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{r} \bigvee_{a}^{b}(u)-\left|f(x)[u(b)-u(a)]-\int_{a}^{b} f(t) d u(t)\right| \\
& \geq H\left[\frac{1}{2}(d-c)+\left|x-\frac{c+d}{2}\right|\right]^{r} \bigvee_{c}^{d}(u)  \tag{3.7}\\
& \quad-\left|f(x)[u(d)-u(c)]-\int_{c}^{d} f(t) d u(t)\right|
\end{align*}
$$

As in the general case presented above, we consider the following composite functionals that can be attached to $\theta(f, u, x)$ :

$$
\begin{aligned}
& \Phi(f, u, x)(a, b):=\left[\frac{\theta(f, u, x)(a, b)}{b-a}\right]^{(b-a)} \\
& \Upsilon(f, u, x)(a, b):=\frac{(b-a)^{2}}{\theta(f, u, x)(a, b)}
\end{aligned}
$$

provided the denominator is not zero, and the families of functionals

$$
\Omega_{q}(f, u, x)(a, b):=(b-a)^{1-q}[\theta(f, u, x)(a, b)]^{q}, \quad q \in(0,1)
$$

and

$$
\Lambda_{p, q}(f, u, x)(a, b):=(b-a)^{(p-q) / p}[\theta(f, u, x)(a, b)]^{q}, \quad p \geq q \geq 0, p \geq 1
$$

Proposition 3.3. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is of $r$-H-Hölder type and $u$ is of bounded variation on $[a, b]$. For $x \in(a, b)$, the functional $\Phi(f, u, x)$ is supermultiplicative, $\Upsilon(f, u, x)$ is subadditive and $\Omega_{q}(f, u, x)$ and $\Lambda_{p, q}(f, u, x)$ are superadditive as functions of an interval.

The proof follows from Lemma 3.1 and the results from the preceding sections. The details are omitted.

## 4. Applications for the generalized trapezoidal formula

In [7], in order to approximate the Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ with the generalized trapezoidal rule $[u(b)-u(x)] f(b)+[u(x)-u(a)] f(a)$, where $f$ is a function of bounded variation and $u$ is continuous on $[a, b]$, the authors considered the generalized trapezoidal error functional

$$
T(f, u ; x,[a, b]):=[u(b)-u(x)] f(b)+[u(x)-u(a)] f(a)-\int_{a}^{b} f(t) d u(t)
$$

and showed that

$$
\begin{equation*}
|T(f, u ; x,[a, b])| \leq \max _{t \in[a, b]}|u(t)-u(x)| \bigvee_{a}^{b}(f) \tag{4.1}
\end{equation*}
$$

Now, if $f:[a, b] \rightarrow \mathbb{R}$ is of $r$ - $H$-Hölder type, where $r \in(0,1]$ and $H>0$ are given and $u$ is of bounded variation on $[a, b]$, then by (4.1) we have the generalized trapezoid inequality

$$
\begin{equation*}
|T(f, u ; x,[a, b])| \leq H\left[\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{r} \bigvee_{a}^{b}(u) \tag{4.2}
\end{equation*}
$$

for any $x \in[a, b]$.
We may define the functional

$$
\begin{equation*}
\eta(f, u, x)(a, b):=H \max _{t \in[a, b]}|t-x|^{r} \bigvee_{a}^{b}(u)-|T(f, u ; x,[a, b])| \tag{4.3}
\end{equation*}
$$

where $f, u, x, a, b, r$ and $H$ are as above.
Lemma 4.1. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is of $r$-H-Hölder type and $u$ is of bounded variation on $[a, b]$. If $c \in(a, b)$, then

$$
\begin{equation*}
\eta(f, u, x)(a, b) \geq \eta(f, u, x)(a, c)+\eta(f, u, x)(c, b) \tag{4.4}
\end{equation*}
$$

for any $x \in[a, b]$, that is, $\eta(f, u, x)$ is superadditive as a function of an interval.
The proof is similar to that of Lemma 3.1 by observing that

$$
T(f, u ; x,[a, b])=T(f, u ; x,[a, c])+T(f, u ; x,[c, b])
$$

for $x, c \in[a, b]$, and we omit the details.
Corollary 4.2. Assume that $f$ and $u$ are as above. If $x \in[c, d] \subset[a, b]$, then

$$
\eta(f, u, x)(a, b) \geq \eta(f, u, x)(c, d)
$$

or, equivalently,

$$
\begin{align*}
H[ & \left.\frac{1}{2}(b-a)+\left|x-\frac{a+b}{2}\right|\right]^{r} \bigvee_{a}^{b}(u) \\
& -\left|[u(b)-u(x)] f(b)+[u(x)-u(a)] f(a)-\int_{a}^{b} f(t) d u(t)\right|  \tag{4.5}\\
& \geq H\left[\frac{1}{2}(d-c)+\left|x-\frac{c+d}{2}\right|\right]^{r} \bigvee_{c}^{d}(u) \\
& \quad-\left|[u(d)-u(x)] f(d)+[u(x)-u(c)] f(c)-\int_{c}^{d} f(t) d u(t)\right|
\end{align*}
$$

As in the general case presented above, we consider the following composite functionals that can be attached to $\eta(f, u, x)$ :

$$
\begin{aligned}
\digamma(f, u, x)(a, b) & :=\left[\frac{\eta(f, u, x)(a, b)}{b-a}\right]^{(b-a)} \\
\Delta(f, u, x)(a, b) & :=\frac{(b-a)^{2}}{\eta(f, u, x)(a, b)},
\end{aligned}
$$

provided the denominator is not zero, and the families of functionals

$$
\Xi_{q}(f, u, x)(a, b):=(b-a)^{1-q}[\eta(f, u, x)(a, b)]^{q}, \quad q \in(0,1)
$$

and

$$
\Pi_{p, q}(f, u, x)(a, b):=(b-a)^{(p-q) / p}[\eta(f, u, x)(a, b)]^{q}, \quad p \geq q \geq 0, p \geq 1
$$

Proposition 4.3. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is of $r$-H-Hölder type and $u$ is of bounded variation on $[a, b]$. For $x \in(a, b)$, the functional $\digamma(f, u, x)$ is supermultiplicative, $\Delta(f, u, x)$ is subadditive and $\Xi_{q}(f, u, x)$ and $\Pi_{p, q}(f, u, x)$ are superadditive as functions of an interval.

## 5. Applications for means

If $g:[a, b] \rightarrow \mathbb{R}$ is a continuous function on $[a, b]$ then $u(t)=\int_{a}^{t} g(s) d s$ is differentiable on $(a, b)$ and the functionals $\Psi, \Upsilon, \Omega_{q}$ and $\Lambda_{p, q}$ become

$$
\begin{equation*}
\tilde{\Psi}(f, g ;[a, b]):=\max _{t \in[a, b]}|f(t)| \cdot \int_{a}^{b}|g(t)| d t-\left|\int_{a}^{b} f(t) g(t) d t\right|, \tag{5.1}
\end{equation*}
$$

$$
\begin{align*}
& \tilde{\Upsilon}(f, g ;[a, b]) \\
& \quad:=\frac{b-a}{\max _{t \in[a, b]}|f(t)| \frac{1}{b-a} \cdot \int_{a}^{b}|g(t)| d t-\left|\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t\right|}  \tag{5.2}\\
& =\frac{(b-a)^{2}}{\tilde{\Psi}(f, g ;[a, b])}, \\
& \tilde{\Omega}_{q}(f, g ;[a, b]):=(b-a)^{1-q}[\tilde{\Psi}(f, g ;[a, b])]^{q} \\
& \quad=(b-a)\left[\max _{t \in[a, b]}|f(t)| \frac{1}{b-a} \cdot \int_{a}^{b}|g(t)| d t\right.  \tag{5.3}\\
& \left.\quad-\left|\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t\right|\right]^{q}
\end{align*}
$$

and

$$
\begin{align*}
& \tilde{\Lambda}_{p, q}(f, g ;[a, b]):=(b-a)^{(p-q) / p} \tilde{\Psi}^{q}(f, g ;[a, b]) \\
&=(b-a)^{(p-q+p q) / p}\left[\max _{t \in[a, b]}|f(t)| \cdot \frac{1}{b-a} \int_{a}^{b}|g(t)| d t\right.  \tag{5.4}\\
&\left.\quad-\left|\frac{1}{b-a} \int_{a}^{b} f(t) g(t) d t\right|\right]^{q}
\end{align*}
$$

Obviously $\tilde{\Psi}$ remains superadditive and monotonic nondecreasing as a function of an interval while $\tilde{\Upsilon}$ inherits the subadditivity property of $\Upsilon$. Also, any member of the families of functionals $\tilde{\Omega}_{q}, q \in(0,1)$, and $\tilde{\Lambda}_{p, q}, p \geq q \geq 0, p \geq 1$, is superadditive and monotonic nondecreasing as a function of an interval.

Let us recall the following means:

$$
\begin{array}{ll}
\text { arithmetic mean: } & A(a, b)=\frac{a+b}{2}, \\
\text { geometric mean: } & G(a, b)=\sqrt{a b}, \\
\text { harmonic mean: } & H(a, b)=\frac{2}{\frac{1}{a}+\frac{1}{b}}, \\
\text { logarithmic mean: } & L(a, b)=\frac{b-a}{\ln b-\ln a}, \quad b \neq a ; \\
\text { identric mean: } & I(a, b)=\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}, \quad b \neq a ; \\
p \text {-logarithmic mean: } & L_{p}(a, b)=\left[\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right]^{1 / p}, \\
& p \in \mathbb{R} \backslash\{-1,0\}, b \neq a ;
\end{array}
$$

with $a, b>0$. It is well known that $L_{p}$ is monotonic nondecreasing over $p \in \mathbb{R}$ with $L_{-1}:=L$ and $L_{0}:=I$. In particular, we have the following inequalities:

$$
\begin{equation*}
H(a, b) \leq G(a, b) \leq L(a, b) \leq I(a, b) \leq A(a, b) \tag{5.5}
\end{equation*}
$$

If we consider $u(t)=t^{p}, \quad p \in \mathbb{R} \backslash\{-1,0\}, u:[a, b] \rightarrow \mathbb{R}, 0<a<b$, then obviously

$$
\frac{1}{b-a} \int_{a}^{b} u(t) d t=L_{p}^{p}(a, b)
$$

If $u(t)=1 / t, t \in[a, b], 0<a<b$, then

$$
\frac{1}{b-a} \int_{a}^{b} u(t) d t=\frac{1}{L(a, b)}
$$

while for $u(t)=\ln t, t \in[a, b], 0<a<b$,

$$
\frac{1}{b-a} \int_{a}^{b} u(t) d t=\ln [I(a, b)]
$$

If we choose above $g(t)=1 / t, f(t)=t^{p}$ with $p \in \mathbb{R} \backslash\{0,1\}$ and observing that $0<a<b$, we have

$$
\max _{t \in[a, b]}|f(t)|=\max \left\{a^{p}, b^{p}\right\}, \quad \int_{a}^{b} g(t) d t=\frac{b-a}{L(a, b)}
$$

and

$$
\int_{a}^{b} f(t) g(t) d t=L_{p-1}^{p-1}(a, b)(b-a)
$$

Then we deduce that

$$
\begin{equation*}
v_{p}(a, b):=\left[\frac{\max \left\{a^{p}, b^{p}\right\}}{L(a, b)}-L_{p-1}^{p-1}(a, b)\right](b-a), \quad p \in \mathbb{R} \backslash\{0,1\} \tag{5.6}
\end{equation*}
$$

is superadditive and monotonic nondecreasing as a function of an interval, while

$$
\begin{equation*}
z_{p}(a, b):=\frac{b-a}{\frac{\max \left\{a p, b^{p}\right\}}{L(a, b)}-L_{p-1}^{p-1}(a, b)}, \quad p \in \mathbb{R} \backslash\{0,1\}, \tag{5.7}
\end{equation*}
$$

is subadditive as a function of an interval.
Finally, if we consider the families of functionals

$$
\begin{equation*}
y_{p, q}(a, b):=(b-a)\left[\frac{\max \left\{a^{p}, b^{p}\right\}}{L(a, b)}-L_{p-1}^{p-1}(a, b)\right]^{q}, \tag{5.8}
\end{equation*}
$$

where $p \in \mathbb{R} \backslash\{0,1\}, q \in(0,1)$ and

$$
\begin{equation*}
u_{p, r, q}(a, b)=(b-a)^{(r-q+r q) / r}\left[\frac{\max \left\{a^{p}, b^{p}\right\}}{L(a, b)}-L_{p-1}^{p-1}(a, b)\right]^{q} \tag{5.9}
\end{equation*}
$$

where $p \in \mathbb{R} \backslash\{0,1\}, r \geq q \geq 0$ and $r \geq 1$, then we can conclude that each functional $y_{p, q}$ is superadditive and monotonic nondecreasing as a function of an interval for any $p \in \mathbb{R} \backslash\{0,1\}, q \in(0,1)$. Also, each functional $u_{p, r, q}$ is superadditive and monotonic nondecreasing as a function of an interval for any $p \in \mathbb{R} \backslash\{0,1\}$ and $r \geq q \geq 0$ and $r \geq 1$.

Similar results may be stated for other choices of $f$ and $g$. However, the details are omitted.

## References

[1] P. Cerone, S. S. Dragomir and A. McAndrew, 'Superadditivity and supermultiplicity of two functionals associated with the Stieltjes integral', RGMIA Res. Rep. Coll. 12(2) (2009), Article 8, Preprint, http://www.staff.vu.edu.au/RGMIA/v12n2.asp.
[2] W. S. Cheung and S. S. Dragomir, 'Two Ostrowski type inequalities for the Stieltjes integral of monotonic functions', Bull. Aust. Math. Soc. 75(2) (2007), 299-311.
[3] Y. J. Cho, S. S. Dragomir, S. S. Kim and C. E. M. Pearce, ‘Cauchy-Schwarz functionals’, Bull. Aust. Math. Soc. 62(3) (2000), 479-491.
[4] D. Comanescu, S. S. Dragomir and C. E. M. Pearce, 'Geometric means, index mappings and entropy', in: Inequality Theory and Applications, Vol. 3 (Nova Science Publications, Hauppauge, NY, 2003), pp. 85-96.
[5] S. S. Dragomir, 'On the Ostrowski's inequality for Riemann-Stieltjes integral', Korean J. Appl. Math. 7 (2000), 477-485.
[6] S. S. Dragomir, 'On the Ostrowski's inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where $f$ is of Hölder type and $u$ is of bounded variation and applications', J. KSIAM 5(1) (2001), 35-45.
[7] S. S. Dragomir, C. Buşe, M. V. Boldea and L. Braescu, 'A generalisation of the trapezoidal rule for the Riemann-Stieltjes integral and applications', Nonlinear Anal. Forum (Korea) 6(2) (2001), 337-351.
[8] S. S. Dragomir and I. Fedotov, 'An inequality of Grüss type for the Riemann-Stieltjes integral and applications for special means', Tamkang J. Math. 29(4) (1998), 287-292.
[9] S. S. Dragomir and I. Fedotov, 'A Grüss type inequality for mappings of bounded variation and applications for numerical analysis', Nonlinear Funct. Anal. Appl. 6(3) (2001), 425-433.
[10] S. S. Dragomir and C. E. M. Pearce, 'Quasilinearity \& Hadamard's inequality. Inequalities, 2001 (Timişoara)', Math. Inequal. Appl. 5(3) (2002), 463-471.
[11] L. Losonczi, 'Sub- and superadditive integral means', J. Math. Anal. Appl. 307(2) (2005), 444-454.

S. S. DRAGOMIR, Mathematics, School of Engineering and Science, Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia and<br>School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa<br>e-mail: sever.dragomir@vu.edu.au

I. FEDOTOV, Department of Mathematics and Statistics, Tshwane University of Technology, Private Bag X680, Pretoria 001, South Africa e-mail: FedotovI@tut.ac.za


[^0]:    (C) 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

