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Abstract

We generalise the classical Bernstein's inequality: \f'(t)\ < r sup_0O<u<oo | / («) | , —oo < t < +oo.
Moreover we obtain a new representation formula for entire functions of exponential type.
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1. Introduction

In this paper the variable t is in (—oo, +oo). Let BT be the class of entire functions of
exponential type < x, bounded on the real axis. For f e Br the classical Bernstein's
inequality [2, p. 211] may be stated as:

(1) I/'(OI = /
d /sinrx

(
d /sinrx\

f(x + t)—( )
ax \ x / dx < T sup | / (H) | .

—oo<u<oo

In this paper we give a generalisation of (1). In order to prove it we need the following
result:

THEOREM A. [3, Theorem 1] Let f e Br be such that f(x) = O(\x\-(), e > 0,
x —»• ±oo. For all reals y and 0 < a < 1 we have

-Anx ) e-«'(*T+y) — y
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16 C. Frappier and P. Olivier [2]

f+o° r e~izx - aixxe~izx - 2e~aizx + e
(l-a)izx

(2) = / fix) dx
J-oo X2

ny f+C° *t y i ~ a ) i v x - eizx +airxei" ,Z'Y f(x) dx.
J —oo X

Furthermore, we generalise the following representation formulas for functions in Bz:

THEOREM B. [3, Theorems 2 and 3] Let f e Br be such that fix) = Oi\x\~e),
e > 0, x —»• ±oo. For all reals y we have

+<x ... . sin2 ((lev +vW71

/•+«> eaizx + e(\-«)izx -2e<2-a)iix-(2a-3)iTxeaizx

= / f(«x) dx
J -oo X

+ o(\-a)izx . o—aizx/•+OO

+ e»r / fiax) " . , - " dx
J —OO

for 1 < a < 3/2, and

+OO

Mr ^ e-^+y,

f+oc (2a - 3
= / f(ux)

(3') /

f+oc (2a - 3)izxeaiTX + e(3-")iTX - eaiTX

= / f(ux) dx
./-oc x2

+ f(ax) 2
 +€ dx

-oo X
+o M-a)irx _ p-aixx _ :TXp-aizx

/(ax) e— im dx
—oo X

for 3/2 < a < 2.

2. Statement of results

We adopt the convention ^Av = 0 if v varies on an empty set of integers.
For each a e K let us denote by La the linear functional

i [+°° airxcos(Tx)-cosirx) + e-aiTX

(4) f\—>- f(x + t) dx.
^ J—OO %

THEOREM 1. Let f e BTbesuchthatf(x) = O(\x\~f),e > 0. Forall-l < a < 1
we have
(5) \Laf(t)\ < x sup |/(M)|.

— CX)<M<OO
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In the same way, for each a e K let us denote by /„ the linear functional

e 1
/ { t)-ccirf(x + t)) dx

(6) "" J

i f+°° . d {e~aizx - \\
= - f{x + t)e-"x— dx.

n J-oo dx V x )

Let hf{9) := lim,-^ (1/r) ln | / ( /V) | be the Phragm6n-Lindel6f indicator
function.

THEOREM 1'. Let f e Br be such that f(x) = O(\x\~f), € > 0 and hf (TZ/2) < 0.
For all — 1 < a < 1 we have

(7) | ( l+a) iT / (0- / ' (0 + /« / (0 |<r sup
—oo<u<oo

REMARK 1. Using the forthcoming Lemma 1 we see that (1) is the particular case
a = lof(5).

REMARK 2. It follows from Lemma 4 that Iaf(t) = 0 if a < 0. The particular case
a = 0 of (7) gives, with the help of Lemma 2, the inequality [8]:

sup |/(w)l> / 6 Bz, hf(n/2) < 0.
—0O<U<00

THEOREM 2. Let f e BT be such that f(x) = 0{\x\~(), e > 0. For all real
numbers y and a > Owe have

- / [a^-^+t
(K7T + yr

" 71 I X2

0<v<a-l J—oo
(•+00 2 e f a l ) / r j c — e~

2{"]izx — 2 ( 1 —
t)ea'TX —

x2+
4TT

(8)
where {a} :— a — [a] w the fractional part of a.

If in addition hf(n/2) < 0 f/je«, m //ze righthand member 0/(8), ffte summation is
over the integers v such that 0 < v < a/2, a > 2; moreover the last integral is zero
fora > 1.

From Theorem 2 we will deduce
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18 C. Frappier and P. Olivier [4]

THEOREM 2'. Let f e BT be such that f(x) = O(\x\~(), e > 0. For all real
numbers y and a > 0 we have

kn + y
a (•

7T

0<v<a

,

(9)
If in addition hf (n/2) < 0 then, in the righthand member of (9), the summation is
over the integers v such that 0 < v < (a + l)/2; moreover the last integral is zero.

3. Lemmas

We use the following integral representation of functions in Br.

LEMMA 1. [7, p. 143] Let f e Br be such that f(x) = O(\x\~e), e > 0. We have

(10)
x

In order to prove Theorem 1' we need the following result.

LEMMA 2. Let f e BTbe such that hf(n/2) < 0. We have

1 f+o° / s inrx \ 2

(11) xf(t) + if'(t) = - / f(2x + t)( I dx.
* J-oc \ X /

PROOF. Compare the following formulas (see [4, Theorems 2 and 3]):

f(2nv/x

feBz,

and

€ fir, A/(ff/2) < 0.

The function e '", € > 0, shows that Lemma 2 is not true without the restriction
hf (n/2) < 0.
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[5] Inequalities and representation formulas 19

In the proof of Theorem 2 an essential tool will be

LEMMA 3. Lett (9) := YTj=-n
 ci e''6 ^e a trigonometric polynomial of degree < n.

For all real numbers 0 and y we have

2(n — m) pY sin2 ((kn + y)/2(n — m)) \ (n — m)
2 /^x n-(2s+I)(n-m)

= E(-D'(f) Ej-j \ij < <2n_ ^
(12)
where m < n is an integer.

PROOF. Let us consider the integral

——L—^-di;.

We have linip^oo Jp{6) = 0. On the other hand, using the residue theorem (with

2(n-m)

= Res (f = ^'9) + J2 Res (<* = e'(9+(*ir+)')/("-'"))) + Res (£ = 0) .

Now it suffices to calculate the residues as in [4, Lemma 2].

On several occasions we shall use the following variant of Paley-Wiener theorem
(see [4, Lemma 1] for references).

LEMMA 4. If F e Br is integrable then for every real number 8 such that \S\ > r
we have

/•+OO

(13) / F(x)e'Sxdx = 0.
J — oo

If, moreover, hF(n/2) < 0 then we have

(14) / F(x)dx = 0.
J—oo

4. Proofs of the theorems

One way to prove Bernstein's inequality (1) is to use the case y = n/2 in the
interpolation formula [1, p. 143]:

= ir g
t=-oo
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20 C. Frappier and P. Olivier [6]

PROOF OF THEOREM 1. Apply (2) to the function x i->- f(x + t), multiply both
members of the resulting formula by e'Y and use e±iy = cos y ± / sin y. This leads us
to the formula

' f+°° , aiTXCOS(TX) -COS(TX) + e~aUx

s m y - / f(x + t) dx
* J-ao X2

1 f+°° , e
( 1 - a ) l " - e~aixx - i sin(T*) - axx sin(rx) _,

(16) - c o s y - / f(x + t) — dx

f
r +t)>

from which inequality (5) follows for 0 < a < 1. Applying the result to z H» / ( - Z )
shows that (5) is valid for - 1 < a < 0.

REMARK 3. Formula (15) is the case a = 1 of (16).

PROOF OF THEOREM 1'. Recalling the definition (see (6)) of Ia f (t) we write La f (t)
in the form

= -r /•/v* ' [ f , a/rxcos(Tx)cos(rA:) + l airx
Laf(t) = - f(x + t) dx + Iaf(t).

(17)
Denote the first integral in the righthand member by / . We have

r f+o° /sinrxx2

(18) J = i-I f(2x + t)(l~2airx)( 1 dx.
n J \ x /

+o° /sinrxx2

f(2 ) ( l 2 i ) ( 1
\ x /

Now let us suppose for the time being that f(x) = O(\x\~l~e), € > 0, and apply
Lemma 2 to the function z i-»- /(z)(l — a/r(z — t)) to conclude that

(19) / = (l+a)ir/(0-/'(0-

For this subclass of Bx the inequality (7) follows from (5), (17) and (19). Considering
functions of the form

( « £ * £ ) ' / ( z ) , 5 > 0 ,

the conclusion of Theorem 1' follows by letting S —>• 0.

PROOF OF THEOREM 2. The proof of Theorem 2 uses the method of approximation
of Hormander-Lewitan ([5, 6]).

Let
<p(x) := (smnx\ and # := 1 + -L- I h > 0.

\ nx / \2nh\
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[7] Inequalities and representation formulas 21

Given f e BT the trigonometric polynomials

+00 / . \ N

(20) fh(x) := T <P(hx + *>/ (x + I )= Y, cj(h)e2"ijhx

have the coefficients
•+00

(21)
/•+00

j(h) = h (p(hx)f(x)e-2"ljhxdx
J — oo

and converge towards / uniformly on every bounded set of the complex plane.

We apply (12) to the trigonometric polynomial fh(x/2nh). We take 6 = 0 (the
general case in (8) is obtained after an obvious translation), n = N and m — (p/q)N
where p and q are integers such that p/q < 1 and where h can be chosen in the form
h = T/2TT(S — 1) where J = 0 (mod q) is a positive integer; thus m is an integer
since N = 0 (mod q). We put

1 2 ( ^ - , ^ + y ) m / ( H - m ) sin* ((far + y)/2) / far + y \
2{n-m) {rt sm2((kn + y)/2(n-m))J\2nh(n-m)J

(22)
and

(23) ;=-"

Now we can write

(24)

- m) ~ ri CJ
[n-m)

- E •

()
/=0 V / 0<5<(2n-;(n-m))/(2(n-m»

We get

^ {\-p/q)
(25)
We may assume from now on that / is integrable. Using (21) in (23) we obtain

V

= h2 /
J—

+OO

-2"hNi*ir~l)(26) hUs,,(h) = h2 / <p(hx)f(x)e-2"hNi*ir~l)Ks,h(x)dx,

J

where

(27) KSih(x) := _ 1)2
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with r :=2 — (2s + /)(1 — p/q). Then the dominated convergence theorem gives

/•+OO

(28) UmhUs,(h) = f{x)e~iTXir-l)Ks{x)dx,
h^° ' J-oo

where

(2nix)2

From (24), (25) and (28) we infer

(30)

1=0 V / 0<j<a-//2

where

- l f/ , / := — I f(ax)e( + " x :; dx.

For that we need firstly to replace p/q (< 1) by (1 — p/q) ' (> 0) and secondly to
perform a limiting process on p/q to extend the formula for real values.

For the various passages to the limit we give only some indications (see [3, 4] for
more details).

In order to obtain (25) we observe that fh (x) is periodic, with period 1 / h, and write
(22) in the form

kn

n-m)J'
d

k^m) sm2((k7T + y)/2(n-m))Jh\2nh(

with sin2(0br + y)/(2A0) > ((tor + y)/(7rN))2, for -(n - m) < k < n - m - 1.
We may assume that 0 < y < n.

To obtain (28) we write (26) in the form hUsJ(h) = f*™ Fh(x) dx, with

\Fh{x)\=h2<p{hx)
n-(2s+l)(n-m)

~2niihx— m) — j)e
j=-n

The result follows since we may assume that / is integrable; we have only to consider
an auxiliary function of the form
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[9] Inequalities and representation formulas 23

The last passage to the limit is obtained similarly.
Regrouping the terms we express the righthand member of (30) as

+

dx

g-(2s+l)i>

An

,+oc 2(g - s - l)irx - g-2(«-'>'" + 2 g -< 2 ° - 2 ^ ' " " - 1
x / f(ax)e dx

J-oc ^ 2

^,-(2J+1)I> r+ao i _ -2(a-s)/rjr _ o/^,
1 • - " ' " . K —'"dx.

a-0/2)<s<a

Denote the second summation by J{ and the third by J2. We have J{ = 0 if {a} < 1/2,
J2 — 0 if {a} > 1/2. If {a} > 1/2 then s — [a] in / , which leads us to formula (8).
If {a} < 1/2 then 5 = [a] in J2, so that

h =

But by (14) this is equal to the last integral appearing in formula (8).
The last observation of Theorem 2 follows also from (14).

PROOF OF THEOREM 2'. We change a to a + 1, a > Oin formula (8). Since
1 + I / a > 1 we may also replace r by (1 + l/a)r. An obvious change of variable in
the formula so obtained gives us (9) for a > 0. The case or = 0 is a known formula.
Here again the last observation of Theorem 2' follows from (14).

5. Corollaries and remarks

5.1. The case of equality in Theorem 1 We observe that, for —1 < a < 1,
the equality in (5) is not possible for a function belonging to the class considered.
However it is possible to find a sequence of functions gs e BT, gs(x) = O(\x\~2),
such that for any given e > 0 , — 1 < a < 1 and — oo < t0 < oo the inequality

\Lags(t0)\ > (T - O sup \gs(u)\
—co<«<oo

holds for S < <5(e).
To prove this we examine the summation in the right-hand member of (16). We

restrict ourselves toy = n/2 (of course a more general discussion may be made here).
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Taking the absolute value on both sides we see that equality is possible, in (5), if and
only if

for k = 0, ±1 , ±2,... and \M\ = sup_00<u<00 | / (M) | . But then the function

is an element of Bn and g{k) = 0, k = 0, ±1 , ±2, Hence by a theorem
of Valiron (see [2, p. 156] or [9]), g(z) = A sin(7rz) where A is a constant, that is,
/(z) = K eaiTZ—A cos r(z-fo) which does not satisfy the condition f(x) = <9(|j:|"e),
€ > 0 .

On the other hand for the functions

gs € BT, gs(z) := eai" ( ̂ 1 ) , 0 < S < (1 - | a | ) J ,

we have ^(x) = O(|A;|"2), X -*• ±oo, so that in view of (16),

with |Lag4(r0)| < T sup_oo<u<oo |g«(«)|. Finally, since

) V,. 4 T ^ / sin5((2A:+l)(^/2T) + fo) V
hm — > I ±—. —,- I = r,
^ ° 2 ̂  ( 2 * + 1)«(<2* + D ( / 2 ) + ) /

it is clear that, for all sufficiently small S,

\Lags(to)\ > (T - e) sup
—OO<H<OO

5.2. Consequences of Theorem 2 When a = m is a positive integer Theorem 2
is reduced to

COROLLARY 1. Let f e Br. For all real numbers y and integers m > 1 we have

\^ ivt(m-nsm2((^jr

(31) *=-<»
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[11] Inequalities and representation formulas 25

To see this perform the summation on the righthand side of (8) and note that, in
view of the second part of Lemma 4, the last integral (appearing in that formula)
vanishes.

When a = 1 /2 the integral involved in (8) can be explicitly evaluated using Lemma
1 twice and one integration by parts. For all / 6 BT we have

5.3. Consequences of Theorem 2' Theorem 2' is simplified when {a} < 1/2 if
we observe that the last integral vanishes by Lemma 4.

COROLLARY 2. Let f e Bx. For all real numbers y and a > 0 such that {a} < 1/2
we have

(33) *=-°°

( kn + y \

0<v<a ^ •/-(» •*

Note also that Theorem 2' generalises Theorem B: apply Lemma 4 several times.

5.4. Another proof of Theorem 2' The approximation method which was used
to prove Theorem 2 could also be applied to prove Theorem 2'. Instead of Lemma 3
we would need the following interpolation formula which is more general than [3,
Lemma 4] but can be proved in the same way.

AN INTERPOLATION FORMULA FOR TRIGONOMETRIC POLYNOMIALS. Let t(0) :=

J2"j=-n cj e'i8 be a trigonometric polynomial of degree < n. Let us write Cj :— 0
if j < — n. We have

k,m (R, y)t (e + ^±
\ n-2(n-m) fa " V n-m

(34) =
—m/(n—nt)<s<\ 7=0

n-m—1
{RJ — A\ r iO(2(n-m)s+m-j)+(2s-i)iY
yi\ lj C2 (n— m)s+m—jc »

where m < n is an integer and

n—m

Ak,m (R, y) := Rn~m - 1 + 2 ? ( R " — - v - l)cos
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5.5. A representation of the conjugate function For the conjugate function /
defined and normalised as in [1, p. 138] the following representation analogous to
(10) holds.

Let f € Bx be such that fix) = O (\x\~e), e > 0. We have

(35) fit) = - I (fix + 0 - f(x)) 1 ~ C ° S T X dx.
* J-oo x

To obtain (35) compare formulas (15) with y = 0 and (16) with a = 1 and y = 0,
perform an integration by parts and then integrate from 0 to t.
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