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The stability of neutrally and non-neutrally buoyant particles immersed in a plane
Poiseuille flow of a yield-stress fluid (Bingham fluid) is addressed numerically.
Particles being carried by the yield-stress fluid can behave in different ways: they
might (i) migrate inside the yielded regions or (ii) be transported without any relative
motion inside the unyielded region if the yield stress is large enough compared to
the buoyancy stress and the other stresses acting on the particles. Knowing the static
stability of particles inside a bath of quiescent yield-stress fluid (Chaparian & Frigaard,
J. Fluid Mech., vol. 819, 2017, pp. 311–351), we analyse the latter behaviour when
the yield-stress fluid Poiseuille flow is host to two-dimensional particles. Numerical
experiments reveal that particles lose their stability (i.e. break the unyielded plug
and sediment/migrate) with smaller buoyancy compared to the sedimentation inside
a bath of quiescent yield-stress fluid, because of the inherent shear stress in the
Poiseuille flow. The key parameter in interpreting the present results is the position
of the particle relative to the position of the yield surface in the undisturbed flow
(in the absence of any particle): the larger the portion of a particle located inside
the undisturbed sheared regions, the more likely is the particle to be unstable. Yet,
we find that the core unyielded plug can grow locally to some extent to contain the
particles. This picture holds even for neutrally buoyant particles, although they are
strictly stable when they are located wholly inside the undisturbed plug. We propose
scalings for all cases.

Key words: plastic materials, particle/fluid flows

1. Introduction
One of the interesting features of a yield-stress fluid is that it can hold particles/

bubbles of small buoyancy statically suspended. This is practically important for
many industries: from producing stable fresh concrete in the construction industry
(Roussel 2006) to preventing sedimentation of drilling/rock cuttings in the oil and gas
industry (Elgaddafi et al. 2012). Moreover, transporting suspensions of yield-stress
fluids (e.g. pumping concrete (Choi, Kim & Kwon 2013) and fracturing flows
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(Hormozi & Frigaard 2017)) is another crucial problem to be understood for these
applications because of multiple intrinsic complexities from carrying fluid rheology
to particle dynamics. Valiant efforts of Segré & Silberberg (1961, 1962a,b) and other
scholars uncovered the complex behaviour of particles suspended in a Newtonian
fluid Poiseuille flow. Nevertheless, for yield-stress fluids, the Poiseuille flow itself
is split into two main regions: the sheared yielded regions close to the walls and
the core unyielded region. The complexity of particle dynamics in the yielded
regions comes from various sources such as the nonlinearity of the fluid behaviour
and particle–particle and particle–wall interactions, whereas in the core unyielded
region particles might be trapped (which was evidenced experimentally by Merkak
et al. (2008, 2009) and Zade et al. (2020)) because of the small stresses compared
to the yield stress.

In the present study, we will shed light on the particle behaviour inside the
core unyielded region which is important for understanding the homogeneity of the
suspension flow. Indeed, we systematically address the stability of particles suspended
inside yield-stress fluid Poiseuille flows. The yield number is the most important
non-dimensional number for this type of problem. For instance, in studies of static
stability of non-neutrally buoyant particles, the yield number (Y) takes the form
τ̂Y/1ρ̂ĝ ˆ̀, where it represents the ratio of the yield stress (τ̂Y) of the fluid to the
buoyancy stress (1ρ̂ĝ ˆ̀), with 1ρ̂ designating the difference between the particle
density (ρ̂p) and the fluid density (ρ̂f ), ĝ the gravitational acceleration and ˆ̀ the
characteristic length scale of the particle. We review the existing literature concerning
the particle stability in yield-stress fluids within different settings in what follows.

1.1. Stability of particles inside a quiescent bath of a yield-stress fluid
The study of particle motion in yield-stress fluids dates back to the 1950s when
Volarovich & Gutkin (1953), in the very first attempts in this context, found that
if a particle moves within a viscoplastic medium then it should do so within a
bounded region, since the stress falls below the yield stress sufficiently far from the
particle. Almost a decade later (in the early 1960s), Whitmore and colleagues started
to look at the same problem in a series of experiments and tried to measure the
limiting force (F̂D,c) that should be exceeded to move a particle in a yield-stress
fluid (i.e. overcome the yield-stress resistance). To show that F̂D,c is not simply
equal to the yield stress times the surface area of the particle (a ‘folk-tale’ at that
time), Boardman & Whitmore (1960) measured F̂D,c for different orientations of
particles and demonstrated that the values are different. Five years later, Valentik &
Whitmore (1965) experimentally observed that there is ‘an envelope of suspension
[unyielded material] attaching itself to a moving sphere’. Many interesting attempts
by other scholars partly uncovered different features of the problem (e.g. Ansley &
Smith 1967; Yoshioka, Adachi & Ishimura 1971; Adachi & Yoshioka 1973), until the
remarkable numerical study of Beris et al. (1985) fully revealed the flow pattern about
a moving sphere in a yield-stress fluid. Two caps of unyielded fluid were found to be
present at the leading and trailing parts of the sphere (close to the stagnation points
where the stress goes below the yield stress). They also calculated F̂D,c for a sphere.
Following Beris et al. (1985), many scholars have worked on single-particle motion in
yield-stress fluids, especially on finding the limiting force (F̂D,c) which was an open
question since the time of Boardman & Whitmore (1960). Many examples can be
found in the literature for different particle shapes using a resistance formulation (i.e.
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imposing velocity on the particle and calculating the drag force; see e.g. Tokpavi,
Magnin & Jay (2008) and Nirmalkar, Chhabra & Poole (2012)). Measuring the
limiting force also has been the objective of many experimental studies. Examples
can be found in the works of Magnin and co-workers (Tokpavi et al. 2009).

Putz & Frigaard (2010) formed a mathematical framework for studying the stability
of particles by considering the mobility problem (i.e. considering the buoyancy of the
particle and seeing if the particle settles or is static):{

Particle settles iff Y < Y∗c (large buoyancy compared to the yield stress),
Particle is static iff Y > Y∗c (large yield stress compared to the buoyancy), (1.1)

where Y∗c is the critical value of the yield number which decides the stability of the
particle (see § 2.3). Chaparian & Frigaard (2017b) followed the same framework and
also revealed the relevance of perfect-plasticity theories in the study of yield limit or
particle stability. Exploiting the cloaking phenomenon (Chaparian & Frigaard 2017a),
they systematically presented a model for calculating Y∗c for a single symmetric
particle by finding the unyielded envelope enclosing the particle and postulating an
admissible stress/velocity field about the particle. Chaparian (2018) also explored
the effect of particle orientation on the yielding behaviour. An assembly of particles
could exhibit different yielding characteristics depending on their proximity which
was investigated recently by Chaparian, Wachs & Frigaard (2018) and Koblitz, Lovett
& Nikiforakis (2018): a cluster of particles will be formed by connector bridges of
unyielded material.

1.2. Particle migration and stability in a Poiseuille flow
In contrast to the particle stability inside a quiescent bath of yield-stress fluids,
the problem of entrapment of particles inside an unyielded plug and particle
migration within a Poiseuille flow is less understood. This problem was investigated
experimentally by Merkak et al. (2008, 2009) in inertialess pipe flows (maximum
particle Reynolds number of O(10−1)). The suspensions used were highly stabilized
and at rest the spheres could not settle under gravity alone: Y � Y∗c . The main
findings can be highlighted as follows:

(i) Particles situated in the plug zone will move with a translational velocity which
is independent of their position in the plug zone. No rotation or migration was
reported for this case.

(ii) Particles situated completely or partly in the sheared zones (yielded zones) will
translate and also rotate (i.e. migrate) with velocities that are functions of the
yield stress and the pressure drop (i.e. the Bingham number).

These observations have been reported for neutrally buoyant particles. For the case
in which particles are denser than the fluid (i.e. non-neutrally buoyant particles),
particles sediment in the sheared zone by bypassing the plug zone and reach their
final position at the bottom of the pipe. This is intuitive as a sheared yield-stress
fluid cannot hold non-neutrally buoyant particles static (Ovarlez et al. 2012). In the
plug zone, however, different scenarios can happen:

(a) Non-neutrally buoyant particles with large Y are stable in the core unyielded zone
and just translate with a same velocity as the plug zone. This is the same as the
phenomenon observed for neutrally buoyant particles.

(b) Particle sedimentation can happen for smaller values, yet larger than Y∗c , of the
yield number.
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In the present study, we analyse this problem numerically to avoid the inevitable
constraints in experiments. Hence, the main objective of the current study is to
systematically investigate the conditions under which particles are stable in the core
unyielded plug: calculating Yc as a function of different effective parameters such
as the confinement ratio and the pressure drop. If Y > Yc then a particle is stable
inside the plug region and otherwise (i.e. Y < Yc) will break the plug and start to
sediment/migrate. Moreover, we address the relevance of Yc to Y∗c .

Contradictory to the stable particles in the core unyielded region which have been
observed experimentally by Merkak et al. (2008, 2009), very recently Siqueira &
de Souza Mendes (2019) studied the particle migration in an ‘apparent’ yield-stress
fluid and reported that eventually (given infinite time) the plug zone is evacuated
from the particles, which does not seem intuitive. It may be a consequence
of using the regularized effective viscosity of a viscoplastic material with the
Krieger–Dougherty expression for the suspension viscosity and a diffusive flux model
for the shear-induced particle migration. This contradiction markedly signals the need
for direct numerical simulations using unregularized rheology, which is the approach
in the present study.

An outline of the paper is as follows. In § 2, we set out the studied problem and
briefly review the simple analytical solutions of the basic flow and some features of
the implemented numerical method. Then, § 3 presents the main results. It includes
firstly a demonstration of the negligible effect of confined geometry on its own. Then
follows a study of non-neutrally buoyant particles hosted by a viscoplastic Poiseuille
flow, addressing the yield limit, and also possible scalings in this limit. The behaviour
of neutrally buoyant particles is considered next and some mathematical hints for
finding the furthest stable particles are provided. The final section (§ 4) concludes the
present study with a brief summary and some comments on the applicability of the
results.

2. Problem statement
An inertialess viscoplastic Poiseuille flow is considered between two infinite

parallel plates. We consider a rigid non-neutrally buoyant particle (two-dimensional
circle) of diameter D̂ (and radius R̂) inside an infinitely long channel of width Ĥ
(see figure 1). The centre of the particle is positioned at ŷp where the x axis is
aligned and put at the axial centreline of the channel.

2.1. Scalings and remarks
Three important non-dimensional parameters for the considered problem are the
Bingham number, the yield number and the confinement ratio, which take the forms

B=
τ̂YD̂

µ̂Û
, Y =

τ̂Y

(ρ̂p − ρ̂f )ĝD̂
and ξ =

Ĥ

D̂
, (2.1a−c)

respectively. The confinement ratio represents the ratio of the channel width (Ĥ) to the
particle diameter. The Bingham number and yield number show the ratio of the yield
stress to the characteristic viscous stress (µ̂Û/D̂) and buoyancy stress, respectively.
Note that here the particle diameter is used as the length scale to facilitate any direct
comparison with the stability of particles in a quiescent background fluid where no
other characteristic length exists (e.g. Ĥ in the current study).

On scaling the velocity vector (û = (û, v̂)) with the mean velocity at the inlet
(Û), pressure (p̂) and deviatoric stress tensor (τ̂ ) with the characteristic viscous stress
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Ĥ

ŷ
ŷx̂

û
*

D̂

FIGURE 1. Schematic of the problem.

(µ̂Û/D̂), we find the dimensionless Stokes equation and Bingham constitutive equation
as

−∇p+∇ · τ +Gex −
B
Y

ρ

1− ρ
ey = 0 (2.2)

and

τ =

(
1+

B
‖γ̇ ‖

)
γ̇ iff ‖τ‖> B,

γ̇ = 0 iff ‖τ‖6 B,

 (2.3)

respectively, where G is the magnitude of the pressure gradient in the axial direction
which is required to provide the flow rate of ÛĤ. It can be also absorbed in
the pressure and form p′. The gravitational acceleration is aligned with −ey. The
density ratio is represented by ρ = ρ̂f /ρ̂p and the rate of strain tensor by γ̇ . Note
that B/Y = (ρ̂p − ρ̂f )ĝD̂2/µ̂Û is termed the buoyancy number in Newtonian fluid
mechanics, and represents the ratio of the particle Stokes settling velocity to the
mean channel velocity.

2.2. Undisturbed (particle-free) background flow
Here we review the solutions to the velocity and stress fields of the undisturbed
background flow (i.e. in the absence of any particle) which are useful for the rest of
the present study. In this short subsection, we use Ĥ as the only length scale in the
absence of any particle and designate the new variables with a tilde (·̃). Hence, two
new non-dimensional quantities will be the slot Bingham number, B̃= τ̂YĤ/µ̂Û, and
G̃ which is the absolute value of the pressure gradient scaled with µ̂Û/Ĥ2. Then,
the new variables can be easily converted to the ones defined earlier based on the
particle diameter as ỹ= y/ξ , τ̃ = τξ , B̃= Bξ and G̃=Gξ 2.

The mean velocity at the inlet is Û= (
∫ Ĥ/2
−Ĥ/2 û dŷ)/Ĥ. Hence, the continuity equation

in non-dimensional form is written as

1= 2
∫ 1/2

0
ũ dỹ, (2.4)

and G̃ will satisfy

1=
G̃
12
− B̃

(
1
4
−

B̃2

3G̃2

)
, (2.5)
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and τ̃xy= G̃ỹ. Note that, as a consequence of scaling the velocity vector with the mean
velocity at the inlet, we always have a non-zero background flow even in the limit
B̃→∞ (or B→∞ for a fixed ξ ). Indeed, in the limit B̃→∞, almost the whole gap
width of the channel moves as a plug with approximately unity velocity except for
the two highly sheared boundary layers close to the walls. Nevertheless, in this limit,
there is an intrinsic high shear stress (i.e. G̃→∞) in the flow which makes it totally
different from the quiescent fluid which is unyielded.

The velocity profile (ũ= (ũ, 0)) of the undisturbed flow can be derived as

ũ(ỹ)=


B̃
(
|ỹ| −

1
2

)
+

G̃
2

(
1
4
− ỹ2

)
iff ỹ∗ < |ỹ|6

1
2
,

1
2

B̃2

G̃
+

G̃
8
−

B̃
2

iff 0 6 |ỹ|6 ỹ∗.

(2.6)

The position of the undisturbed yield surface is denoted as ±ỹ∗ which is equal to
±B̃/G̃.

2.3. Stability of particles in the sedimentation problem
In the context of the stability of particles inside a quiescent bath of a yield-stress
fluid, the limit Y → Y∗c is often studied through a steady Stokes flow and has the
meaning of a yield number limit above which the steady velocity solution is zero (no
motion). This is sometimes referred to as static stability. The mathematical definition
of Y∗c could be extracted from the energy equation (Putz & Frigaard 2010; Chaparian
& Frigaard 2017b) as

Y∗c = sup
v∈V,v 6=0

L(v)
j(v)
= sup

v∈V,v 6=0

−

∫
Ω\X̄

v · ey dA∫
Ω\X̄
‖γ̇ ‖ dA

, (2.7)

where v is a velocity test function from the set of admissible velocity fields V , L(v)
is the work done by the body force (in this case by gravity) and j(v) is the plastic
dissipation over B. For a single particle inside a quiescent bath of a yield-stress
fluid, Y > Y∗c also corresponds to a dynamic stability limit above which (even
inertial) particle motion decays to zero in finite time as shown both theoretically and
computationally by Wachs & Frigaard (2016).

For a single two-dimensional disc, Y∗c ≈ 0.0658 has been reported in the literature
(Tokpavi et al. 2008; Putz & Frigaard 2010; Chaparian & Frigaard 2017b). Note that
in the present study we have chosen the diameter of the particle as the length scale.
If the radius is chosen (the same as the mentioned references) then the value of Y∗c
will be doubled.

2.4. Numerical details
We use a finite element/augmented Lagrangian approach (Roquet & Saramito 2003)
to attack equations (2.2) and (2.3). The background Poiseuille flow is solved using
the same strategy as that of Roustaei & Frigaard (2015). Indeed, the desired
pressure gradient which makes the steady base flow (Poiseuille flow) is found in
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a semi-iterative way. The coupling of the particle with the base flow is ensured using
the same method as utilized by Putz & Frigaard (2010) and Chaparian & Frigaard
(2017b). We avoid repeating the details here. For validation studies and details of
the mesh adaptation, the reader is refereed to the appendix of Chaparian & Frigaard
(2017b) and Chaparian et al. (2019). Regarding the size of the computational domain
in the x direction, we add that it has been chosen large enough to avoid altering the
flow field about and in the vicinity of the particle (e.g. in some cases as large as 60
times the particle diameter). However, in the following figures only a small box close
to the particle is shown in post-processing. The implementation has been conducted
in an open-source C++ finite element environment, FreeFEM++ (Hecht 2012).

3. Results
In this section, we present the new findings on particle stability in two-dimensional

channel flow. It consists of computing Yc in the present problem: if Y > Yc then the
particle is stable inside the plug region and otherwise (i.e. Y < Yc) it will break the
plug and start to sediment/migrate. Different effects are analysed individually. First,
we outline the influence of confinement (walls) alone (i.e. in the absence of any
background flow) on the stability of the non-neutrally buoyant particles in § 3.1. Then
we move further to consider the particles hosted in a Poiseuille flow (§ 3.2). Finally,
we decouple the buoyancy effects from the problem in § 3.3. In all the cases, we
focus on the situation where the particle losses its stability and study the limiting
yield number as well as different behaviours that occur in this limit.

3.1. Confinement
In this subsection, the effect of geometry confinement on the static stability of a
particle is investigated. In other words, we try to determine if the confinement,
independently of the flow field, has any effect on the particle static stability in a
quiescent yield-stress fluid. We use the same scalings as in the rest of the paper,
but here there is no background pressure-driven Poiseuille flow. Indeed, G = 0 and
the Bingham number does not have any special interpretation in the absence of
characteristic viscous stress associated with the background flow. Therefore, in this
case, it is only the yield number that decides the particle stability.

Figure 2(a–c) shows the flow fields near the yield limit (Y ≈ Yc) for different
confinement ratios. Figure 2(d), however, shows the sliplines of the perfectly plastic
problem (see Chaparian & Frigaard (2017b) for details of the slipline solution)
which is relevant to the yield limit in a viscoplastic problem; i.e. when the viscous
dissipation is at least one order of magnitude smaller than the plastic dissipation
(Putz & Frigaard 2010). As can be observed, no significant change is distinguishable
in the flow fields, although for the case ξ = 2, the unyielded kidney close to the
particle is smaller which manifests small deviation from the velocity field associated
with infinite domain (figure 2c).

Causing negligible differences in the velocity fields, confinement by itself does not
change Yc of the particle in the range of confinement ratios larger than or equal to
2: for 2 6 ξ , Yc = Y∗c = 0.0658. However, on decreasing ξ to smaller values, the
channel walls interact considerably with the flow field about the particle (see figure 3).
Figure 3(e) clearly demonstrates that Yc decreases on decreasing ξ . This could be
explained by considering that by decreasing ξ , the walls prevent particle sedimentation
by resisting against the flow generated by the settling particles. Hence, particles should
have larger buoyancy to overcome this hindering effect of the nearby walls.

In what follows, we only consider the case 26 ξ , in which the effect of the confined
geometry by itself is negligible on the particle stability.
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FIGURE 2. Velocity magnitude contours at Y= 0.0655: (a) ξ = 2, (b) ξ = 5 and (c) infinite
domain (ξ→∞). Note that one quarter of the domain is presented in each panel. (d) The
sliplines associated with the perfectly plastic problem when ξ →∞. In (a–c), the white
lines represent the yield surfaces.
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FIGURE 3. Velocity magnitude contours near the yield limit: (a) ξ = 1.05 and Y = 0.04,
(b) ξ = 1.2 and Y = 0.055 and (c) ξ = 1.5 and Y = 0.065. Note that one quarter of the
domain is presented in each panel. (d) The same as figure 2(d). In (a–c), the white lines
represent the yield surfaces. (e) Critical yield number Yc versus ξ (the circular symbols).
The brown solid line marks Y∗c for reference.

3.2. Non-neutrally buoyant particles in Poiseuille flow
We will consider the stability of particles inside a Poiseuille flow in this subsection.
For the Stokes flow, the problem is symmetric in the vertical direction (despite
buoyancy); therefore, only particles in the top half of the channel will be considered
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1.0

0.5

0

1.0

0.5

0

Y = 0.75 Y = 0.3

(a) (b)

FIGURE 4. Velocity magnitude contours for ξ = 5, B= 2: (a) Y = 0.75> Yc and (b) Y =
0.3<Yc. The solid white lines show the yield surfaces, while the dashed white lines show
the position of the yield surfaces in the absence of any particle (i.e. y∗ in single-phase
flow).

(yp > 0). In what follows, for a particle at a given height, B̄ designates the value
of the Bingham number at which the undisturbed plug thickness is just sufficient
to contain the whole particle inside the plug. In other words, when B = B̄, then
y∗ = yp + R= yp +

1
2 . Hence, B̄ is a value corresponding to the particle position, not

a flow characteristic.

3.2.1. The case yp = 0
We consider the particles that are positioned at the centreline of the channel in this

section. For instance, two sample simulations are illustrated in figure 4, for the case
ξ = 5 and B = 2 and two yield numbers, one larger than Yc and the other one less
than that.

From figure 4, it is clear that for this case Yc� Y∗c . Indeed, the shear stress which
is generated by the background flow helps the buoyancy stress to overcome the
yield stress resistance and breaks the plug. Figure 5 presents Yc versus the Bingham
number for a wide range of confinement ratios. It clearly shows that by increasing
the Bingham number, given that ξ is constant, Yc decreases. This behaviour is not
observed for ξ = 2 where almost the same Yc value is computed for the range of
Bingham numbers that is considered (B> B̄).

In what follows in this subsection, we aim to describe the stabilizing effect of
increasing Bingham number (figure 5) and also to find a simple model for the limiting
value of Yc(B→∞)=Y∞c based on the lucid solutions to the undisturbed flow (§ 2.2).

There are two contradictory effects regarding the particle stability when the
Bingham number increases: (i) the plug thickness grows and (ii) the background
shear stress will be larger. It is intuitive that the larger the plug thickness compared
to the particle diameter, the more stable is the particle – resulting in a smaller Yc.
However, by increasing the Bingham number, the shear stress of the background flow
will increase as well (see figure 6a) which has an opposite effect: the background
shear stress helps the particle buoyancy stress to overcome the yield stress resistance
(resulting in increasing Yc). Figure 5 clearly demonstrates that the first effect is
dominant except for the case ξ = 2. This can be roughly understood by considering
different stresses which contribute at the yield limit: one can approximately assume
that

Shear stress contribution ‘+’ buoyancy stress ∼ yield stress (3.1)
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Y∞
c

B
15

FIGURE 5. Critical yield number versus Bingham number for various confinement ratios.
Dashed vertical lines show the values of B̄ for different confinement ratios with the same
colour interpretation. The brown solid line shows the value of Y∗c . The values of Yc at
large Bingham numbers are marked with Y∞c .

at the yield limit. We point out that here the plus sign is not a ‘mathematical’
operator since the stress cannot be linearly superimposed. Hence, at the yield limit
(remembering that Ĝ is the pressure gradient and the shear stress is proportional to
that), ĜD̂ ‘+’ 1ρ̂ĝD̂∼ τ̂Y , or in non-dimensional form

G ‘+’
B
Yc
∼ B. (3.2)

We emphasize that as a ‘naive’ model, in the above equation we use the pressure
gradient of the undisturbed flow, expression (2.5). The above equation shows that if
the right-hand side increases and the increase in G as a function of Bingham number
is not large enough to balance the right-hand side, then Yc decreases. Figure 6(a)
illustrates G as a function of the Bingham number. It reveals that the increase in G is
almost linear with B and only for the case ξ = 2 is the slope (i.e. a) larger than unity.
Hence, for this case no decrease in Yc is observable with increasing Bingham number
since the background shear stress exceedingly contributes in breaking the yield stress
resistance.

Exploiting the approximate linearity of G over this range of the Bingham number,
G∼ aB (see figure 6a), and knowing that as B→∞ then Yc reaches its limiting value
(i.e. Yc→ Y∞c ), from equation (3.2) we can extract that Y∞c is a function of a. From
figure 6(b), we can clearly deduce that Y∞c ≈ 1.1a, and therefore

G∼ aB≈
Y∞c
1.1

B. (3.3)

Using the fact that y∗ = B/G, we rewrite the above expression as

Y∞c ≈
1.1
y∗,∞

(3.4)
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FIGURE 6. (a) Pressure gradient, G, of the undisturbed flow as a function of the Bingham
number for different confinement ratios; equation (2.5). (b) Critical yield number Y∞c
versus a. (c) Critical yield number Y∞c versus ξ ; the blue solid line is the fitted curve
on the numerical data (the symbols) and green dashed line shows the expression (3.4).

as a ‘naive’ model for calculating Y∞c , where y∗,∞ shows the position of the yield
surface at the limit B→∞ (i.e. approximately half of the thickness of the plug in
the limit B→∞). Figure 6(c) compares this model with the numerical data where
ξ/2 is used for y∗,∞: indeed when B→∞, then y∗→ ξ/2.

3.2.2. The case yp 6= 0
Knowing the stability of the particles which are positioned at the centreline of the

channel, we now move to investigate the particles with yp > 0. Again as an example,
the simulations for the case of ξ = 5, B = 2 and yp = 0.5 are shown in figure 7
for different yield numbers. Due to the asymmetry that the particles with yp 6= 0
introduce to the flow, the breakage of the plug may be different from that of the
cases investigated in the previous section (see figure 7b).

The maps corresponding to the stability of the particles are sketched in figure 8(a–c).
One can clearly conclude that the most important parameter here is B̄. Indeed, when
the particle is wholly inside the undisturbed plug (i.e. B> B̄), then the critical yield
number for the offset particles is the same as the computed Yc for the case yp= 0 (see
figure 8a). However, the critical yield number for the particles that are partially in the
undisturbed plug (i.e. the plug in the absence of any particle) increases (see figure 8b).
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(c)

FIGURE 7. Velocity magnitude contours for ξ = 5, B= 2 and yp = 0.5: (a) Y = 0.75> Yc,
(b) Y = 0.4< Yc and (c) Y = 0.1< Yc. The interpretation of the white lines is the same
as in figure 4.

This makes sense since even a small buoyancy stress can break the plug. However, for
ultra-small buoyancy (large yield number), we observe that the plug grows locally to
enclose the particle and stabilize it (see figure 8d). Increase in Yc for the particles
which are positioned partially in the undisturbed plug is increasingly dramatic when
B� B̄ (i.e. when the particle is closer to the wall). For instance, the particle at yp=1.7
considered in figure 8(c) is unstable even for B= 10 and Y = 100 (not shown in the
figure).

It is worth mentioning that although we just presented the results for the case ξ = 5
for the sake of brevity, qualitatively quite similar behaviour was also observed for the
other confinement ratios studied (2 6 ξ 6 20).

3.3. Neutrally buoyant particles inside Poiseuille flow
In the previous section, we have shown that Yc much increases for particles for which
B̄�B. In other words, we should expect that non-neutrally buoyant particles will lose
their stability and break the plug if a portion of their surface is located outside the
unperturbed yield surface, unless that portion is small. This being so, the question that
naturally arises is how far from the position of the undisturbed plug can we expect
any stable particle (i.e. how far the plug can grow locally to enclose the particles
inside it). To answer this question we consider neutrally buoyant particles to address
the most extreme limit: the stability map is shown in figure 9 for the cases ξ = 5 and
ξ = 8.

The boundary between the filled and open circles (yc shown by green asterisks and
lines) is the maximum distance from the centreline that we should expect neutrally
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FIGURE 8. (a–c) Different scenarios that can happen based on different yield numbers,
Bingham numbers and positions of the particles (yp) for the case ξ = 5: filled blue circles
mark stable cases; squares represent cases similar to figure 7(b); and open blue circles
represent the totally detached particles from the plug (e.g. the case in figure 7c). The red
circles and lines are borrowed from figure 5 (showing Yc for ξ = 5 and yp = 0) and the
dashed red lines mark B̄ associated with yp in each panel. (d) The velocity magnitude
contours within the top half of the channel for the case ξ = 5, Y = 1, B= 2 and yp = 1.
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FIGURE 9. Stability map for neutrally buoyant particles: (a,b) ξ = 5 and (c,d) ξ = 8.
Circles show the position of the centre of the particles (yp): filled blue circles mark stable
cases, while open blue circles mark the particles totally detached from the plug. The solid
red lines show y∗ and the dashed red lines are y∗ shifted down by the radius of the
particle (R = 1

2 ): below the dashed red lines particles are totally inside the undisturbed
plug. The dashed blue line is a reference line in (a) which is y∗ shifted by −0.22. The
green symbols and lines represent the values of Bc. In (b,d), Bc as a function of B̄ is
plotted and the solid black lines are the fitted lines to the data: (b) Bc ∼ 0.274B̄ and
(d) Bc ∼ 0.371B̄.
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buoyant particles to be stable inside the plug as a function of the Bingham number.
Equivalently, the value of the Bingham number at which a particle with a considered
position is just stable is designated by Bc. The interesting conclusions are as follows:

(i) Neutrally buoyant particles that feel B> B̄ are definitely stable.
(ii) The plug cannot contain neutrally buoyant particles whose centre is out of the

undisturbed plug. Not only those, but also some other particles that are closer
to the centreline are unstable. For instance, considering figure 9(a), if ξ = 5 and
B= 6.25, then y∗ is approximately 1.71 but only particles that are below y≈ 1.5
are stable.

(iii) As the Bingham number increases (y∗ increases as well), we should expect
particles with larger yp (far from the centreline) to be stabilized as well.
On the other hand, the growth in yc (the critical position below which all
the particles are stable) will be smaller and smaller as the Bingham number
increases since the portion of the particles which are outside the undisturbed
plug will experience larger forces as the Bingham number increases due to the
highly sheared unyielded regions close to the walls. To explain by an example,
considering the figure 9(a) again, increasing the Bingham number from 6.25 to
13.75 (by approximately 7.5) will increase yc from 1.5 to 1.7, while a further
increase in B by approximately 20.62 (B ≈ 34.37) will increase yc by just 0.1
(yc≈ 1.8). This is also clearly distinguishable by looking at the dashed blue line
(y∗ − 0.22) in figure 9(a) which is closely approximate to yc up to B ≈ 15 but
will lose its validity beyond that.

(iv) The critical Bingham number, Bc, increases linearly with B̄ as shown in
figure 9(b,d).

The last conclusion can be explained using the same argument as expression
(3.2) at the yield limit, except that here there is no buoyancy stress. Hence at the
yield limit, roughly speaking, the shear stress contribution acting on one side of the
particle surface is the same as the yield stress acting on the other side. Hence, in
non-dimensional form

bτxy ∼ bGyp ∼ Bc, (3.5)

where b is the possible factor of proportionality. Considering that

when B= B̄ : y∗ = yp + R=
B̄
G
, (3.6)

it yields

Bc ∼ bB̄. (3.7)

The value of b is 0.274 and 0.371 for the cases ξ = 5 and ξ = 8, respectively, as
shown in figure 9(b,d).

4. Summary and discussion
The stability of neutrally and non-neutrally buoyant particles immersed in yield-

stress Poiseuille flows is investigated numerically in the present study: particles can
be transported in the core unyielded region without any relative motion compared
to the carrying adjacent fluid if the yield stress is large enough compared to the
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buoyancy stress and the other stresses exerted on the particles. This exceptional feature
of yield-stress fluids was previously addressed in the case of particle sedimentation
in a quiescent bath of yield-stress fluids (see Putz & Frigaard 2010; Chaparian &
Frigaard 2017a,b), which resulted in reporting Y∗c – the critical ratio of the yield stress
to the buoyancy stress beyond which the particle does not move.

Numerical experiments in the present study revealed that particles in channel
flows may lose their stability with substantially smaller buoyancy compared to the
sedimentation case inside a bath of quiescent yield-stress fluid because of the inherent
shear stress in the Poiseuille flow (i.e. Yc > Y∗c ). The increase in Yc is more marked
as the confinement ratio becomes smaller (see figure 5). However, we demonstrated
that confinement by itself (in the absence of any pressure gradient/background flow)
has an almost negligible effect for confinement ratios beyond 2, which is the main
focus of the present study.

We demonstrated that for the particles positioned at the centreline, given that the
confinement ratio is fixed, Yc decreases with increasing Bingham number. Indeed, the
Bingham number has a stabilizing effect. The decrease in Yc on increasing B is more
apparent for large confinement ratios, while for the case ξ = 2, almost no change in Yc
was observed since the shear stress (which has a destabilizing effect) grows markedly
with increasing Bingham number (i.e. a(ξ = 2) > 1). It has been also clarified that
when B→∞, then Yc asymptotes to its limiting value, Y∞c , which is a function of
the confinement ratio. An analytical model was extracted from the numerical data for
calculating Y∞c .

For particles that are not at the centreline of the channel, it was shown that the
position of the particle relative to the position of the undisturbed yield surface (i.e.
comparison between yp and y∗ or between B̄ and B) is a key parameter for the stability
of the particle. As far as the whole particle is located inside the undisturbed core
plug region (yp 6 y∗ − 1/2), the above statements are valid. However, if a particle
portion is situated in the undisturbed yielded regions (i.e. yp > y∗ − 1/2), then Yc can
dramatically increase. The more volume a particle shares with the undisturbed sheared
regions, the larger Yc will be. Yet, if the yield stress is high enough (i.e. large Y), the
core unyielded plug can grow locally to some extent to contain the adjacent particles.
This picture holds for neutrally buoyant particles as well. Indeed, in the absence of
any density difference between the yield-stress fluid and the particle, particles that are
totally in the undisturbed core plug region are strictly stable. The core unyielded plug
can also form bulges to contain the neighbouring particles and prevent them from
being released into the sheared regions.

We comment on the current findings, in terms of applicability, as follows:

(i) As figures 5 and 6(c) clearly illustrate, when ξ → ∞ then Y∞c → Y∗c . Simul-
taneously, Yc reaches the limiting value (i.e. Y∞c ) at smaller Bingham numbers.
Hence, we can conclude that for suspension transport problems for which ξ
is large (say ξ & 25), at adequate Bingham numbers (e.g. B > O(1)), one can
use Y∗c as Yc. However, if one is dealing with a problem of ξ ≈ O(1), then
calculating correct Yc (e.g. using figure 5) is of great importance. This is shown
schematically in figure 10.

(ii) Unstable particles may migrate in the yielded sheared regions as previously
evidenced experimentally by Merkak et al. (2009). We did not cover this
behaviour in the present study, as it requires a detailed investigation of its
own. We briefly mention that those non-neutrally particles that are positioned
in the bottom half of the channel and are unstable move towards the bottom
wall as always Yc is larger close to the yield surfaces compared to Yc at the
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Yc £ Y*
c Yc ≫ Y*

c

(a) (b)

FIGURE 10. Schematic of the suspension transport problem with yield-stress carrying fluid.
Panel (a) represents ξ→∞ and B > O(1) while (b) corresponds to ξ ≈O(1).

centreline. However, those particles starting at the top half of the channel and
are unstable may be trapped again in the core unyielded region (e.g. centreline)
if Y is large enough (e.g. compared to Yc at the centreline).

(iii) We remind the reader that the present study is a two-dimensional one. This
restriction was chosen for two main reasons. First of all, less information about
the static stability of three-dimensional particles can be found in the literature
within the context of sedimentation problems in a bath of a quiescent yield-stress
fluid which is the baseline reference point. Moreover, direct numerical simulation
of any three-dimensional multiphase flow problem would be extremely expensive
using the augmented Lagrangian approach which is vital for capturing the yield
limit accurately. As has been experienced by Siqueira & de Souza Mendes
(2019), the regularized approaches cannot fully address the stability of particles.

The present study provides a baseline/fundamental result from which to look at
more complex cases representative of applications in future studies.
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