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PSEUDO-DIFFERENTIAL EQUATIONS CONNECTED WITH
p-ADIC FORMS AND LOCAL ZETA FUNCTIONS

W.A. ZUNIGA-GALINDO

We study the asymptotics of fundamental solutions of p-adic pseudo-differential equa-
tions of type

a

where /(9,/3) is a pseudo-differential operator with symbol \}\K, P > 0, / is a form of
arbitrary degree with coefficients in a p-adic field, A ̂  0, and g is a Schwartz-Bruhat
function.

1. INTRODUCTION

Let A" be a p-adic field, that is, [K : Qp] < oo. Let RK be the valuation ring
of K, PK the maximal ideal of RK, and K = RK/ PK the residue field of K. The
cardinality of K is denoted by q. For z € K, v(z) € Z U {+00} denotes the valuation of
z, \z\K = q~vW and acz = zp~v^ where p is a fixed uniformising parameter for RK. For
x — (x i , . . . ,xn) € Kn we put \\x\\K = max \xi\K.

We denote by S(Kn) the C-vector space of Schwartz-Bruhat functions over Kn.

The dual space S'(Kn) is the space of distributions over Kn. Let / = /(x) € K[x],

x = (x i , . . . ,xn), be a non-constant polynomial, and /? a positive real number. A p-adic
pseudo-differential operator f(d,@), with symbol |/|^-, is an operator of the form

f(d,(3): S(Kn) -> S(Kn)

where T is the Fourier transform. The operator f{d,/3) is continuous and has self-
adjoint extension with dense domain in L2{Kn). This operator is considered to be a
p-adic analogue of a linear partial differential operator with constant coefficients. The
p-adic pseudo-differential equation

(1.1) f(d,P)u = g, geS(Kn),
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is naturally associate to f(d,fi). The theory of p-adic pseudo-differential equations is
emerging motivated by the use of p-adic models in physics [11, 19]. The state of the
art of the theory of p-adic pseudo-differential operators is exposed in a recent book by
Kochubei [11]. The simplest possible operator has symbol \xfK, ft > 0. Vladimirov
studied extensively this class of operators showing, among other results, the existence of
fundamental solutions [18, 19]. Kochubei showed the existence of fundamental solutions
for elliptic operators, that is, for operators with symbols of the form | / ( i i , . . . jX,,)]^,
P > 0, where f{x\,..., xn) is a quadratic form satisfying f(xi,..., xn) ^ 0 when l^il^-
+ ••• + \xn\K 7̂  0, [11, 12]. In [10] Khrennikov considered spaces of functions and
distributions defined outside the singularities of a symbol, in this situation he showed
the existence of a fundamental solution for a p-adic pseudo-differential equation with
symbol a(f) ^ 0. In a recent note [21] the author observed that Atiyah's proof [1]
for the existence of a fundamental solution for a linear partial differential operator with
constant coefficients can be adapted to the p-adic case. In this proof the meromorphic
continuation of the Igusa local zeta function plays a central role. On the other hand,
Jang [9] and Sato [16] showed explicitly a connection between the local zeta function
of a quadratic form and the p-adic Green function G\ (a fundamental solution) of the
following pseudo-differential equation

(1.2) (f(d,/3)+\)u = g, \>0, geS(Kn),

when 0=1, and / is a relative invariant of some prehomogeneous vector space. In [16]
Sato showed that the asymptotics of G\, as \f\K —> oo, is controlled by the gamma factor
of the functional equation of the local zeta function associated to / . Previously, Kochubei
[13, 14], had described the asymptotics of G\, at the infinity and at the origin, when
f(d,/3) is an elliptic operator.

This paper is dedicated to the study of the asymptotics of fundamental solutions
for (1.1) and (1.2) when / is a homogeneous polynomial in an arbitrary number of
variables. We construct fundamental solutions "at infinity and at the origin" for (1.1),
that is, solutions of (1.1 ) when g is the characteristic function of a ball around the
infinity, respectively, around the origin (see Theorem 3.1, and Corollary 3.1). The proof
of Theorem 3.1 uses resolution of singularities [4], and some ideas developed by Atiyah
for solving the problem of division of a distribution by an analytic function [1]. The
techniques used in the proof of Theorem 3.1 allow us to establish a functional equation
for the distributions of type x(ac/)l/l/<- (see Theorem 2.2) on a certain subspace of
S(Kn). Functional equations for distributions of type x(ac f) 1/l/c n a v e been obtained
by Igusa [8], Sato [15], Gyoja [3], and Denef and Meuser [2].

We also give the asymptotic expansion of the Green function G\(x) as \\x\\K -¥ oo
(see Theorem 4.1). The proof of this result uses the technique of integration on the fibers
and some properties of the Igusa local zeta function. Kochubei studied the asymptotics
of the Green functions associated with elliptic operators [11, Section 2.8], [13, 14], at
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infinity and at the origin. The asymptotics obtained by Kochubei at infinity can be
recovered from Theorem 4.1.

2. PRELIMINARIES

Let * : K -> C x be the additive character defined by

tf : K ->• Q p -> Q p /Z p ->• C x

x ->• TrK/®p(x) y ->• exp(2iriy),

where TrK/qp is the trace mapping. Let |da;| denote the Haar measure on Kn normalised
such that vol(B%) = 1. We shall identify the n-dimensional X-vector space Kn with its
dual vector space via the standard inner product

n

[*. y] = YlXiVi' x > y e K"-
«=i

The Haar measure \dx\ is autodual with respect the pairing ^([a;,?/]). For $ € S(Kn),
the Fourier transform T<& of $ is defined by

The Fourier transform induces a linear isomorphism of S(Kn) onto itself, and the inverse
transform is given by

The Fourier transform can be extended to an isometry of L2(Kn) onto L2(Kn).
We denote by S'(Kn) the dual space of S(Kn), that is, the space of complex valued

distributions on Kn. If T € S'(Kn), we denote by TT its Fourier transform, that is the
distribution (TT ,$) = (T, ?$).

2.1. THE RIESZ KERNEL. We shall collect some well-known results about the Riesz
kernel that will be used in the next sections [17, 19].

The p-adic Gamma function Tn(a) is defined as follows

rn(«) = 1 ~ 9 _ a , a e-c, a ? o.

The Gamma function is meromorphic with simple zeros at n + (2ni)/(log q)Z and unique
simple pole at a — 0. In addition, it satisfies

Tn(a)rn(n - a) = 1, a £ {0} U in + ^ z ; z e z ) .
I log? J
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The Riesz kernel Ra is the distribution determined by the function

Ka{x) = M ^ , x € K\ Re(a) > 0, a i n + -^-Z.
in (a) log q

The Riesz kernel possesses, as a distribution, a meromorphic continuation to C

given by

(2.1) <*„,*> = « ( 0 ) ( i f ^ ) + ( i f i £ ) I («(«) - $(0)) 11*11— \dx\

with poles at n+(2iri)/(logq)Z. We note that ( f t a ,$) |Q=o= (<$,$), that is l / ( r n(0)) \\x\\^n

is equal to the Dirac delta function.

PROPOSITION 2 . 1 . ([17, Theorem 4.5]) As elements ofS'{Kn),

2.2. IGUSA'S LOCAL ZETA FUNCTION. Let g(x) € #[*] , a; = (xi,...,xn), be a non-
constant polynomial, the p-adic complex power \g\"K associated to g (also called the Igusa
local zeta function of g) is the distribution

(2.2) < \g\'K , * ) = f * ( i ) |ff(x) |aK |dx|, s G C, Re(s) > 0.

For a fixed $ we put Z$(s,g) = (|ff|̂ -, $ ) , Re(s) > 0. In the case in which $ is the
characteristic function of R^ we denote the local zeta function of g by Z(s,g). The local
zeta functions were introduced by Weil [20] and their basic properties for general g were
first studied by Igusa [5, 6].

A basic tool in the study of the local zeta functions is Hironaka's resolution Theorem
[4]. This theorem guarantees the existence of an rc-dimensional AT-analytic manifold Y,
a finite set E = {E} of closed submanifolds of Y of codimension 1 with a pair of positive
integers (NE, nE) assigned to each E, and a proper /^-analytic map h :Y -* Kn satisfying
the following properties:

(i) (SoA)-i(o)= l l £ ;

(II) the restriction of h to Y Vi" 1 ^" 1 ^) ) is an isomorphism onto its image;
and

(III) at every point b of Y if E\,..., Ep are all the E in £ containing b with

respective local equations yi,...,yp around b and (Ni,ni) — (NE,riE) for
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then there exist local coordinates of Y around 6 of the form (y\,..., yp, yp+\, • • • ,yn) such

that

goh =

on some neighbourhood of b, with e a unit of the local ring of Y at b. The pair (h,Y) is
called a resolution of singularities for ^"'(O), and |J {{NE,UE)} is the set of numerical

Eee
data of h. A central result in the theory of local zeta functions is the following.

THEOREM 2 . 1 . (Igusa, [5, Theorem 8.2.1]) Let g(x) € K\x) be a non-constant
polynomial. The distribution \g\3

K admits a meromorphic continuation to the complex
plane such that (\g\s

K,^) is a rational function of q~" for each $ e S(Kn). Further-
more, if h : Y —>• Kn is a resolution of singularities of g " 1 ^ ) , with numerical data
U {(NE,nE)}, then

E£E<=£

is a holomorphic distribution. In particular the real parts of the poles of\g\"K are negative
rational numbers.

We shall denote by \g\"K the meromorphic continuation of distribution (2.2), and by
Z(s, g), the integral JRn \g(x)\'K \dx\, Re(s) > 0, and its meromorphic continuation to the
complex plane. Theorem 2.1 is valid for distributions of the form x ( a c <?) Iffljfi where \

is a multiplicative character of i?£ (see [5, Theorem 8.2.1]).

We set Q,i, I e Z, for the characteristic function of the ball (P'K)n. We denote by
AQ(Kn) the C-vector space generated by Oi, I € N, by Aoo(Kn) the C-vector space gen-
erated by n_,, I e N, and by A(Kn) the C-vector space A0(K

n) © Aoo(i('"). The Fourier
transform establishes a C-isomorphism between A0(K

n) and A0O(i<'"), and therefore a
C-isomorphism from A(Kn) onto itself.

LEMMA 2 . 1 . Let f(x) e K[x) be a form of degree d. Then the distribution \f\3
K

satisfies

for seC, and$€A(Kn).

PROOF: Every $ € A(A'n) is a finite linear combination of the form

where c* 6 C, U G Z, and fijf is the characteristic function of the ball (P£)n.The action
of \f\"K on T$ can be explicitly described as follows:
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and since

(2.4) < ifWcq-^n-u) = q-nli Jjf(x)\s
Kn^(x ) \dx\ = Z(s,f)q^,

for Re(s) > 0, it follows from (2.3) that

(2.5) ( \f\'K , f$) = Z{s, f) Y, CiV**', for Re(«) > 0.

i

On the other hand,

/I n^a \ / 1 — n~ n~ d*

(2-6)

for every k € Z, and Re(s) > 0. Then (2.5) and (2.6) imply that

(2.7)

for Re(s) > 0. By Theorem 2.1 and (2.1), \f\"K, Z(s,f), and TZdl>+n have a meromorphic
continuation to the complex plane, therefore (2.7) extends to C. Finally, since the Fourier
transform establishes a C-isomorphism from A(^") onto itself, it is possible to remove
the Fourier transform symbol in (2.7). D

THEOREM 2 . 2 . Let f(x) e K[x] be a. non-constant form of degree d. Then the
distribution \f\"K satisfies

™ < I/I* • *> = Z{J-in/d)J){ l/ir("/d) • ̂ ' S 6 Cm' $ S

PROOF: Suppose that ds £ —n + (2ni/\ogq)Z, by rewriting (2.7) as

(2.9)

and applying Proposition 2.1 we obtain that

(2.io) < \f\°K,

for s € C \ {-n + (27ri/logg)Z}. By making s -> ~(s + (n/d)) in (2.10), it takes the
following form:

,—ds—n

for s € C \ {(27ri)/(loggZ)}. By comparing (2.11) and (2.9), we obtain (2.8) for
s G C \ {(27ri)/(logg)Z}. In order to complete the proof, we have to show that (2.8) is
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valid for s e {(27ri)/(logg)Z}. We recall that Ro = 6, that is, l / r n ( 0 ) ||a:||~n is equal to

the Dirac delta function. In the case in which ds + n — 0 mod (27ri/logg)Z, (2.7) takes

the form

(\f\-K
{n/d) ,W) = Z(-(n/d),f)(no, ro)=Z(-(n/d),/)& 7*)

(2.12) =Z(-(n/d),f)(F-l6, *> =Z( - (n /d ) , / ) ( l , *>•

On the other hand, since \f\3
K is holomorphic at zero, the Lebesgue Lemma implies

that

(2.13) < \f\°K , *> = lim ( \f\'K , * ) = I *(*) \dx\ = (1, *>.

In particular

(2.14) Z(0,f) = l.

Then from (2.12)-(2.14) follow that

(2-15) <|/|°x , $> = (1, $> = z

Therefore (2.8) is valid for every for s e {(27ri/logg)Z}. D

We note that Lemma 2.1 and Theorem 2.2 are valid for distributions of the form

<x(ac

Functional equations for distributions of type x ( a c / ) \f\'K have been obtain by Igusa [8],
Sato [15], Gyoja [3], and Denef and Meuser [2].

3. FUNDAMENTAL SOLUTIONS O F P -ADIC PSEUDO-DIFFERENTIAL EQUATIONS

Given a polynomial function f(x\,..., xn) with coefficients in K we define a pseudo-
differential operator f(d,/3), P > 0, that acts on functions in S(Kn) by

Since |/|^- 7"$ |/c»\/-i(o)G S(Kn), and the Fourier transform is a linear isomorphism from
S{Kn) onto itself, it holds that / (9 , / ? )$ 6 S ^ " ) . Thus / ( 9 , ^ ) is a linear operator from
S(Kn) into S(A'n). The operator f(d,fi) is continuous and has a self-adjoint extension
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with dense domain in L2(Kn). We associate to f(d,/3) the following p-adic pseudo-
differential equation:

(3.1) f(d,0)u = g, g€VCS(Kn).

A fundamental solution for (3.1) on V is a distribution Ep such that u = Ep * g is a
solution. In a recent note [21] the author observed that Atiyah's proof of the existence
of a fundamental solution for a differential operator with constant coefficients can be
adapted to prove the existence of a fundamental solution for (3.1) on S(Kn).

The following Theorem describes explicitly a fundamental solution of (3.1) as a
distribution on A(Kn) when f(x) is a form of degree d in n variables.

THEOREM 3 . 1 . Let f(x) e K[xx,..., xn] \ K be a form of degree d, and f(d, 0)

the p-adic pseudo-differential operator with symbol \ffK, P > 0. If

where \J {(NE,nE)} are the numerical data of a resolution of singularities (Y,h) for
E&e

f~l{0), then the distribution

is a fundamental solution of the p-adic pseudo-differential equation f(d,P)u = g, with
g e A{Kn).

PROOF: We set E0 = T~lT, where T e S'(Kn) satisfying \ffKT = 1. Then E0 is a
fundamental solution of (3.1). In order to prove the existence of T we proceed as follows.
By Theorem 2.1 the distribution \f\s

K has a meromorphic continuation to C. Let

(3.2) i/r* =
mgZ

be the Laurent expansion at — /? with Tm e S'(Kn) for all m. Since the real parts of
the poles of \f\'K are negative rational numbers by Theorem 2.1, \f\'^p = \ffK \f\a

K is
holomorphic at s = — 0. Therefore \ffK Tm = 0 for all m < 0 and

(3-3) UC" = T0\ffK + f^Tm\ffK(s + (5)™.

By using the Lebesgue Lemma and (3.3)

m=l

(3.4) =To\f\l>
K

K"
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Therefore we can take T = To. Now since (\f\"K, $ ) is a rational function of q~" for
every $ in S(Kn), and —0 is not a pole of | / | ^ it holds that

(T O j $>= lim (\f\'K,*),
S—> — p

for every $ in S(Kn), that is,

(3.5) To = lim \f\'K . .
S—¥—p

In order to find Eg, we compute explicitly To by using (3.5), and then Eg as T~lT0.
By Lemma 2.1

(3-6)

as a distribution on A(Kn). By using (3.5) we obtain from (3.6) that

(3-7) J-o — I 1—)Z\—p, J) \\x\\j(

as a distribution on A(Kn). If 0 ^ n/d, using Proposition (2.1) and the fact that the
Fourier transform is an isomorphism on A(Kn), we obtain that T~1TQ is equal to

JO

as a distribution on A(Kn). Finally, the condition Z(-0,f) ^ 0 implies Eg ^ 0. D

3.1. REMARKS. Let E be in S'(Kn), and g a complex valued function defined on
X CKn having

i=0
as an asymptotic expansion as x tends to x0, here x0 is a limit point of X. If

for any $ € S(Kn) whose support is contained in a sufficiently small ball around xQ, then
we shall say that E has an asymptotic expansion as x tends to xo, and write

k

t=0

COROLLARY 3 . 1 . With the hypothesis of Theorem 3.1, it holds that (I) Eg(x)dtn
= O(\\x\\dtn) as \\x\\K -> 0; (II) Efi(x) = O(||x||-d^) as \\x\\K -* 00. Moreover, the
fundamental solution Eg(x) is non-singular at the origin if 0 > n/d.

PROOF: The first part follows directly from Theorem 3.1, and Remark 3.1 (3). The
second part follows from the fact that

(Ep(x),n.t) =
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3.2. E L L I P T I C PSEUDO-DIFFERENTIAL OPERATORS. A quadratic form

h(xu...,xn) G Q p [ i i , . . . , x n ] ! p / 2 ,

is called elliptic (or anisotropic) if it satisfies

(3.8) h(xi,...,Xn)?0tt M Q p + . . . + | z n | Q p ^ 0 .

Other quadratic forms are called isotropic. A pseudo-differential operator h(d, 0) with
symbol \hfK satisfying (3.8) is called an elliptic operator. It is well-known that there no
exist anisotropic quadratic forms if n ^ 5. The following table shows all the anisotropic
quadratic forms up to linear isomorphism.

n

2

3

4

h(xu

h{xx,

x2) =

h(Xl

X2,X3,

X\-TX\,T

,X2,X3) =1

£2x\ + £i

Xi) =x\-

Quadratic

eQP\QPC

x§ ^ 0 if |
SX2 ~ Px\ ~

Forms

\p,T =

- spxl,

e,r

, £i,

-\x2

s €

= P,T =

£2, £3 e
^ 7 * 0

Z, with

= £?,£SZp
x

z P
x ,

(s/p) = - 1

(3-9)

Our next goal is to determine a fundamental solution for an elliptic operator on
A(Kn). The first step is to calculate Z(s, h). This calculation can be easily accomplished
by using the p-adic stationary phase formula. This method introduced by Igusa [7]
permits the calculation of the local zeta function for a wide class of polynomials [7, and
the references therein], [22, 23, 24].

If h(x) € RK[X\, • • -,xn]\ pRK [xi,... ,xn], we denote by h(x) its reduction modulo

PRK-

P R O P O S I T I O N 3 . 1 . ([5, Proposition 10.2.1]) If

h(x) e RK[xi,...,xn}\pRK[x1,...,xn]

is a homogeneous polynomial of degree d such that h(a) — ——(a) = 0 for 1 ^ i ^ n
_ axi

implies a = 0, then

(i - q-"N) + or-1 + 9-"(jv -1) - g - y_

where N denotes the number of zeros of f(x) in F£.

We shall identify an elliptic quadratic form with one of the polynomials listed in

table (3.9). Then as a consequence of the previous Proposition we obtain the following

result.

COROLLARY 3 . 2 . If h(x) € Zp[x] is an elliptic quadratic form in n variables,
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The following result describes explicitly a fundamental solution of h(d, /3)u = g,

g € A(A"n); this result follows from Theorem 3.1 and Corollary 3.2.

THEOREM 3 . 2 . Let h(x) € Zp[zi , . . .,xn] be an elliptic quadratic form, and
h(d,P) the p-adic pseudo-differential operator with symbol \hfK, (3 > 0. If /? / n/2,
then t ie distribution

is a fundamental solution of the p-adic pseudo-differential equation h(d,f3)u = g, with

9 € A(Kn).

Theorem 3.2 is valid for any finite extension K of Qp. In [12], [11, Chapter 2]
Kochubei calculated explicitly the fundamental solutions for the elliptic operators. The
restriction of these distributions to the space A(Kn) coincide with the distributions given
in Theorem 3.2 when (3 ̂  n/2.

4. P-ADIC G R E E N FUNCTIONS

A fundamental solution G\ of the pseudo-differential

(f(d,/3) + \)u = 9> ^,AeKJ,A>0, 9CS(Kn)

is called a p-adic Green function. Since | / (x) | K +A ^ 0, for every x in Kn, the distribution

is a Green function. We shall say that G\ is the Green function associated to the operator

f(d,P).
4.1. INTEGRATION ON THE FIBERS. Let g(x) be a non-constant polynomial with coeffi-
cients in K. Let Cg and Sg = g{Cg) denote the set of critical points and the set of critical
values of the mapping g : Kn —> K. In the case in which g a homogeneous polynomial
Sg = {0} (see for example [5, Theoren 2.5.1]). For any z € Kn \ {0} we define \dx/dg\
to be the residue of the measure \dx\ along the fiber g~l(z), and

dx(4.1) F*(z)= J *{x
dg

where $ € S(Kn) is a fixed function. If $ is the characteristic function of R7^ we use
F(z) instead of F$(z). The function F^(z) is locally constant onA"\ {0}, and satisfies

(4.2) J*(z)\dz\= I F*{z)\dz\
K« K\{0]

for every $ in S(Kn) (see [5, Lemma 8.3.2]). The following Lemma, that follows from
(4.2), will be used later on.
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LEMMA 4 . 1 . (See [5, Theorem 8.4.1].) Let g(x) € K[xu ...,xn]\K be a non-

constant polynomial such that Cg is contained in ̂ "'(O). Then

(4.3) Z*(a,g)= f F*(z)\z\'K \dz\, Re(s) > 0.

K\{0)

4 . 2 . ASYMPTOTICS OF Gx(x) AS \\x\\K -> 00.

THEOREM 4 . 1 . Let f(x) 6 RK[xi,..., xn] \ K be a form of degree d, and f(d, /?)
the p-adic pseudo-differential operator with symbol \ffK, /? > 0. The Green function G\
corresponding to f(d, fi) admits the asymptotic expansion

m=l

a s \\X\\K ~* ° ° - In par t icuiar G^(x) satisfies

PROOF: The asymptotic behaviour of G\ at infinity can be studied by considering
the action of G\ on functions of type Q_j, the characteristic function of the ball (P^')"'
as / —• oo (see Remark 3.1). By definition

and by using integration on the fibers, (4.4) can be rewritten as

By applying the asymptotic expansion

C-l)"1"1!/", as y -4 0,
* m=l

in (4.5) we obtain the following asymptotic expansion for (G\,Q-t):

(4.6) (GA,n-i> = f ; ( - l ) m - 1 ^ ^ / |t|*BF(i)|«ft|,/->oo
RK\{0}
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By using Lemma 4.1 and (2.6) in (4.6), we obtain that

m = l

m=l

as J —> oo, tha t is,

(4.7) (ft.IL,) . f

" " * ' 9 / '

m=l

From (4.7) by using Proposition 2.1 we obtain that

(4.8) Gx{x) -- m = l *• '

The second part follows directly from (4.8). D

4.3. REMARKS.

1. The previous Theorem is valid for a twisted operator f(d,fi,x), in this
case it is necessary to change Z(/3m, f) by Z(()m, x, f) in the statement of
Theorem 4.1.

.-£ 2. Kochubei has studied the asymptotics of the Green functions associated
with elliptic operators (see for example, [11, Section 2.8]) at infinity and the
origin. The asymptotics obtained by Kochubei at infinity can be recovered
from Theorem 4.1.

3. Sato's asymptotic expansion for G\, [16], is only valid for forms that are
invariants of prehomogeneous vector spaces.
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