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On the equations a2 − 2b6 = cp and a2 − 2 = cp

Imin Chen

Abstract

We study the equation a2 − 2b6 = cp and its specialization a2 − 2 = cp, where p is a prime, using
the modular method. In particular, we use a Q-curve defined over Q(

√
2,
√

3) for which the
solution (a, b, c) = (±1,±1,−1) gives rise to a CM-form. This allows us to apply the modular
method to resolve the equation a2 − 2b6 = cp for p in certain congruence classes. For the
specialization a2 − 2 = cp, we use the multi-Frey technique of Siksek to obtain further refined
results.

1. Introduction

The modular method has been successfully applied to a number of classes of ternary diophantine
equations of the form Aar +Bbs = Cct, where A, B, C are given non-zero integers, r, s, t are
positive integers, and a, b, c are integer unknowns. Of interest sometimes are equations obtained
by setting one of the variables a, b and c to 1.

The equation a2 − 2 = cp is an example, but because the solution (a, c) = (±1,−1) is present
for every p and the standard associated elliptic curves over Q from the modular method do not
have complex multiplication, the modular method cannot be applied in full using these Frey
curves [4].

By regarding this equation as a special case of a2 − 2b6 = cp, we show that it is possible to
associate a Q-curve completely defined over Q(

√
2,
√

3) to a hypothetical solution. The solution
(a, c) = (±1,−1) now luckily corresponds to an elliptic curve with complex multiplication by
the quadratic order of discriminant −24, and using Q-curves [8, 12] the modular method can
then be applied to obtain the results below.

Let p be a prime. We say that an integer solution (a, b, c) ∈ Z3 to a2 − 2b6 = cp is proper if
(a, b, c) = 1 and trivial if abc= 0. Because p > 1, we note that an integer solution (a, b, c) ∈ Z3

is proper if and only if the integers a, b and c are pairwise coprime.

Theorem 1. Let p be a prime such that p≡ 1, 7 (mod 24) and p 6= 7. Then the equation
a2 − 2b6 = cp does not have any non-trivial proper integer solutions except those with c=±1.

Although we can obtain partial results for this equation, it is in some sense a lucky coincidence
that the solution (±1,±1,−1) corresponds to a CM-form after using an appropriate Frey Q-
curve. The obstruction to obtaining complete results for the equation a2 − 2b6 = cp is due
to the inapplicability of Mazur’s method to studying rational points on certain non-split
Cartan modular curves. This obstruction appears when applying the modular method to other
equations, such as a2 + b2p = c5 (see [8]), and is the same stumbling block that prevents an
answer to Serre’s question on the surjectivity of mod p representations attached to elliptic
curves over Q; see [18, 24].

The idea of considering the equation a2 − 2b6 = cp arose from work on the related equation
a2 + b6 = cp (see [1]). As a consequence of Theorem 1, we obtain the following result on the
specialization a2 − 2 = cp.
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Corollary 2. Let p be a prime such that p≡ 1, 7 (mod 24) and p 6= 7. Then the equation
a2 − 2 = cp does not have any integer solutions other than (a, c) = (±1,−1).

For comparison, we list results on the above equation obtained with other methods. Using
GP’s built-in Thue equation solver, the following is shown in [9, Lemma 15.7.3].

Lemma 3. If 5 6 p6 37 is a prime, then the only integer solutions to a2 − 2 = cp are
(a, c) = (±1,−1).

Using lower bounds for linear forms in logarithms due to Bugeaud, Mignotte and Siksek as
well as Laurent, Mignotte and Nesterenko, it is noted in [9, p. 520] that the following holds.

Theorem 4. If p > 8200 is a prime, then the only integer solutions to a2 − 2 = cp are
(a, c) = (±1,−1).

It is also noted in [9, p. 520] that the refinement p> 1237 can be derived from the additional
information provided by [9, Lemma 15.7.2] and another careful application of linear forms in
logarithms.

Using a multi-Frey technique [3, 5], it is possible to improve Corollary 2 to obtain the
following result.

Theorem 5. Let p be a prime such that p≡ 1, 5, 7, 11 (mod 24) and p 6= 5, 7. Then the
equation a2 − 2 = cp does not have any integer solutions other than (a, c) = (±1,−1).

We thank S. Siksek for suggesting a lemma which allows us to apply the multi-Frey technique
to Q-curves.

The computations in this paper were performed with the computational algebra system
Magma [2]. The programs, data and output files are posted at www.math.sfu.ca/∼ichen/
b3i-data. Throughout the text, specific references to the programs used are enclosed in boxes.

2. Review of Q-curves

Let K be a number field and let C/K be a non-CM elliptic curve such that there is a non-
zero isogeny µC(σ) : σC→ C defined over K for each σ ∈GQ. Without loss of generality, we
assume µC(σ) = 1 for σ ∈GK . Such a curve C/K is called a Q-curve defined over K. Let
φ̂C,p :GK →GL2(Zp) be the representation of GK on the Tate module V̂p(C). One can attach
a representation

ρ̂C,β,π :GQ→Q∗p GL2(Qp)

to C such that Pρ̂C,β,π |GK
∼= Pφ̂C,p.

Let

cC(σ, τ) = µC(σ)σµC(τ)µC(στ)−1

∈ (HomK(C, C)⊗Z Q)∗ = Q∗

where µ−1
C := (1/deg µC)µ′C and µ′C is the dual of µC . Then cC(σ, τ) determines a class in

H2(GQ,Q∗) which depends only on the Q-isogeny class of C.
The class cC(σ, τ) factors through H2(GK/Q,Q∗), and this class depends only on the

K-isogeny class of C. Alternatively,

cC(σ, τ) = α(σ)σα(τ)α(στ)−1

arises from a class α ∈H1(GQ,Q
∗
/Q∗) through the map

H1(GQ,Q
∗
/Q∗)→H2(GQ,Q∗)
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resulting from the short exact sequence

1→Q∗→Q∗→Q∗/Q∗→ 1.

Explicitly, α(σ) is defined by σ∗(ωC) = α(σ)ωC , where ωC is the invariant differential of C.
Tate showed that H2(GQ,Q

∗
) is trivial where the action of GQ on Q∗ is trivial. Thus, there

is a continuous map β :GQ→Q∗ such that

cC(σ, τ) = β(σ)β(τ)β(στ)−1

as cocycles, and we call β a splitting map for cC . We define

ρ̂C,β,π(σ)(1⊗ x) = β(σ)−1 ⊗ µC(σ)(σ(x)).

The representation ρ̂C,β,π depends on a choice of splitting map β. Let π be a prime above p
of the field Mβ generated by the values of β. The representation ρ̂C,β,π is constructed in such
a way that its image lies in M∗β,π GL2(Qp), and we choose to use the notation ρ̂C,β,p = ρ̂C,β,π
to indicate the choice of π in this explicit construction.

Given a splitting cC(σ, τ) = β(σ)β(τ)β(στ)−1, Ribet attaches an abelian variety Aβ defined
over Q of GL2-type having C as a simple factor over Q. Using results in [21], it is possible to
identify β :GQ→Q∗ factoring over an extension of low degree such that cC = β(σ)β(τ)β(στ)−1

as classes in H2(GQ,Q
∗
). It is then useful in practice to pick a suitable twist Cβ/Kβ of C such

that cCβ (σ, τ) is exactly the cocycle cβ(σ, τ) = β(σ)β(τ)β(στ)−1. In this situation, the abelian
variety Aβ is constructed as a quotient over Q of ResKβQ Cβ . The endomorphism algebra of Aβ
is given by Mβ = Q({β(σ)}), and the representation on the πn-torsion points of Aβ coincides
with the representation ρ̂C,β,π defined earlier.

Let ε :GQ→Q∗ be defined by

ε(σ) = β(σ)2/deg µ(σ). (1)

Then ε is a character and
det ρ̂C,β,π = ε−1 · χp, (2)

where χp :GQ→ Z∗p is the p-adic cyclotomic character.

3. Q-curves attached to a2 − 2b6 = cp

Let (a, b, c) ∈ Z3 be an integer solution to a2 − 2b6 = cp where p is a prime. Consider the
associated elliptic curve

E : Y 2 =X3 − 3
√

2 (4a+ 5
√

2b3) bX + 4
√

2 (a2 + 7
√

2ab3 + 11b6)

with j-invariant

j =−432
√

2
b3(4a+ 5

√
2b3)3

(a−
√

2b3)3(a+
√

2b3)
(3)

and discriminant ∆ =−29 · 33 · (a−
√

2b3)3 · (a+
√

2b3).

Lemma 6. Suppose a/b3 ∈ P1(Q). Then the j-invariant of E does not lie in Q except when:
• a/b3 = 0 and j = 54 000;
• a/b3 =∞ and j = 0.

Proof. Using (3), we obtain

j(a−
√

2b3)3(a+
√

2b3) + 432
√

2b3(4a+ 5
√

2b3)3 = 0.

Expanding and equating the coefficients of 1 and
√

2 to 0 yields a system of equations which
determines a/b3 and j, assuming they lie in P1(Q). 2
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Otherwise, the j-invariant of E lies in Q(
√

2). For E to have complex multiplication, its
j-invariant must be one of:
• j = 2417472± 1707264

√
2, d(O) =−24;

• j = 3147421320000± 2225561184000
√

2, d(O) =−88.

Corollary 7. E does not have complex multiplication unless:
• a/b3 = 0, j = 54000, d(O) =−12;
• a/b3 =∞, j = 0, d(O) =−3; or
• a/b3 =±1, j = 2417472± 1707264

√
2, d(O) =−24.

Lemma 8. If (a, b, c) ∈ Z3 with (a, b, c) = 1 and a2 − 2b6 = cp, then either c=±1 or c is
divisible by a prime not equal to 2 or 3. In the former case, the only possible solutions are
(a, b, c) ∈ {(±1, 0, 1), (±1,±1,−1)}.

Proof. The condition (a, b, c) = 1 together with inspection of a2 − 2b6 modulo 3 shows that
c is never divisible by 3. A similar reasoning shows that since p > 1, c is never divisible
by 2. Hence, if c were not divisible by a prime not equal to 2 or 3, it would follow that
c=±1. Computing the integral points on a2 − 2b6 =±1 using Magma [2] yields the additional
assertion. 2

From here on, let us suppose that E arises from a non-trivial proper integer solution to
a2 − 2b6 = cp, with c 6=±1, where p is a prime. Note that a must be odd. Since a2 − 2b6 =
(a−

√
2b3)(a+

√
2b3) is not equal to 0 or ±1, we see that a−

√
2b3 and a+

√
2b3 are coprime

pth powers up to units, as elements of Z[
√

2].
The elliptic curve E is defined over Q(

√
2). Its conjugate over Q(

√
2) is 3-isogenous to E over

Q(
√

3,
√

2) (Magma program isogeny-1.txt ). We make a choice of isogenies µ(σ) : σE→ E

such that µ(σ) = 1 for σ ∈GQ(
√

2) and µ(σ) is the 3-isogeny above when σ /∈GQ(
√

2).
Let d(σ) denote the degree of µ(σ). We have that d(GQ) = {1, 3} ⊆Q∗/Q∗2. The fixed field

Kd of the kernel of d(σ) is Q(
√

2). So {2} and {3} are dual bases in the terminology of [21,
Theorem 3.1]. The quaternion algebra (2, 3) is ramified at 2 and 3. Thus, by [21], a choice
of splitting character for cE(σ, τ) is given by ε= ε2ε3 where ε2 is the non-trivial character of
Z/4Z× and ε3 is the non-trivial character of Z/3Z×. The fixed field of ε is Kε = Q(

√
3).

Let GQ(
√

2)/Q = {σ1, σ2}. We have that

α(σ1) = 1,
α(σ2) =

√
3.

This can be checked by noting that the quotient of σ2E by the kernel of the 3-isogeny µ(σ2)
computed using Vélu’s formulae multiplies the invariant differential by 1. The resulting quotient
elliptic curve is then a twist over Q(

√
3,
√

2) of the original E. This twisting multiplies the
invariant differential by

√
3.

So now we can express cE(σ, τ) as α(σ)σα(τ)α(στ)−1. Let β(σ) =
√
ε(σ)

√
d(σ) and

cβ(σ, τ) = β(σ)β(τ)β(στ)−1 ∈H2(GQ,Q∗). We know from [21] that cβ(σ, τ) and cE(σ, τ)
represent the same class in H2(GQ,Q∗). The fixed field of β is Kβ =Kε ·Kd = Q(

√
3,
√

2)
and Mβ = Q(i,

√
3).

Our goal is to find a γ ∈Q∗ so that cβ(σ, τ) = α1(σ)σα1(τ)α1(στ)−1 where α1(σ) =
α(σ)

√
σγ/γ. Consider the twist Eβ of E given by the equation

Eβ : Y 2 =X3 − 3
√

2 (4a+ 5
√

2b3)bγ2X + 4
√

2 (a2 + 7
√

2ab3 + 11b6)γ3. (4)

The set of isogenies µE(σ) determines a set of isogenies µEβ (σ) for Eβ such that

αEβ (σ) = αE(σ)
σ√γ
√
γ

= α1(σ)ξ(σ).
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Replacing µEβ (σ) by µEβ (σ)ξ(σ) gives us a set of isogenies for Eβ such that cEβ (σ, τ) = cβ(σ, τ)
as cocycles and not just as classes in H2(GQ,Q∗).

Using a similar technique as for a2 + b2p = c5 (see [8], where Kβ is cyclic quartic), we can
make a guess of a possible choice of γ and then verify that it works. We find that γ =−3 +

√
6

works. The author has subsequently learned that a similar technique for finding γ also appeared
in [11] (where Kβ is polyquadratic).

Let GQ(
√

3,
√

2)/Q = {σ1, σ2, σ3, σ6}. We list the resulting values of α1(σ) for convenience (here
z =
√

2 +
√

3):

α1(σ1) = 1,
α1(σ2) =

√
3z,

α1(σ3) = z,

α1(σ6) =
√

3.

The elliptic curve Eβ/Kβ is a Q-curve defined over Kβ (Magma program isogenyp-1.txt ).
The discriminant of Kβ is dKβ/Q = 28 · 32 = 2304. The prime factorizations of (2) and (3) in
Kβ are given as follows:

(2) = q4
2,

(3) = q2
3.

Lemma 9. Suppose that E and E′ are elliptic curves defined by

E : Y 2 + a1XY + a3Y =X3 + a2X
2 + a4X + a6,

E′ : Y 2 + a′1XY + a′3Y =X3 + a′2X
2 + a′4X + a′6,

where the ai and a′i lie in a discrete valuation ring O with uniformizer ν and the Weierstrass
equation of E is in minimal form. If a′i ≡ ai (mod ν8), then E′ has the same reduction type as
E and is also in minimal form.

Proof. Since the Weierstrass equation for E is in minimal form, when E is processed through
Tate’s algorithm [27], the algorithm terminates at one of steps 1–10 and does not reach step 11
to loop back a second time. Since the transformations used in steps 1–10 are translations, they
preserve the congruence ai ≡ a′i (mod ν8) as E and E′ are processed through the algorithm;
and since the conditions for exiting at steps 1–10 are congruence conditions modulo ν8 on the
coefficients of the Weierstrass equations, we see that if the algorithm applied to E terminates
at one of steps 1–10, it must also terminate at the same step for E′. 2

Lemma 10. Suppose that E and E′ are elliptic curves defined by

E : Y 2 + a1XY + a3Y =X3 + a2X
2 + a4X + a6,

E′ : Y 2 + a′1XY + a′3Y =X3 + a′2X
2 + a′4X + a′6,

where the ai and a′i lie in a discrete valuation ring O with uniformizer ν and the valuation at
ν of the discriminants is equal to 12. If E has reduction type II∗ and a′i ≡ ai (mod ν6), then
E′ also has reduction type II∗. If E has reduction type I0 and a′i ≡ ai (mod ν6), then E′ also
has reduction type I0.

Proof. Since the discriminants of E and E′ have valuation 12, when E and E′ are processed
through Tate’s algorithm [27], the algorithm terminates at one of steps 1–10 or reaches step
11 to loop back a second time at most once.

If E has reduction type II∗, the algorithm applied to E terminates at step 10. Since the
transformations used in steps 1–10 are translations, they preserve the congruence ai ≡ a′i
(mod ν6) as E and E′ are processed through the algorithm; and since the conditions for
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exiting at steps 1–10 are congruence conditions modulo ν6 on the coefficients of the Weierstrass
equations, we see that if the algorithm applied to E terminates at step 10, it must also terminate
at step 10 for E′.

If E has reduction type I0, the algorithm applied to E reaches step 11 to loop back a second
time and terminate at step 1 (because the valuation of the discriminant of the model for E is
equal to 12). Again, since a′i ≡ ai (mod ν6), it follows that the algorithm applied to E′ also
reaches step 11 to loop back a second time and then terminate at step 1 (again because the
valuation of the discriminant of the model for E′ is equal to 12). 2

Theorem 11. The conductor of Eβ is

m = q16
2 · qε3

′∏
q|c

q,

where the product does not include primes dividing 2 · 3 and ε= 0 or 4.

Proof. See tate2m-1.txt, tate3m-1.txt for the computations. Recall that Eβ is given by (4)
with

∆Eβ =−29 · 33 · (a−
√

2b3)3 · (a+
√

2b3) · γ6. (5)

Then

c4 = 24 · 32
√

2 · b(4a+ 5
√

2b3) · γ2, (6)
c6 = −27 · 33

√
2 · (a2 + 7

√
2ab3 + 11b6) · γ3 (7)

= −27 · 33
√

2 · (a+ 1
4 (−7z3 − 3z2 + 63z + 15)b3)(a+ 1

4 (−7z3 + 3z2 + 63z − 15)b3) · γ3.

Let q be a prime not dividing 2 · 3 but dividing ∆Eβ . The elliptic curve Eβ has multiplicative
bad reduction at q if one of c4, c6 6≡ 0 (mod q). Since γ is not divisible by q and (a, b) = 1, we
note that c4 ≡ c6 ≡ 0 (mod q) happens if and only if

b3 ≡ 0 (mod q) or 4a+ 5
√

2b3 ≡ 0 (mod q)

and

a+ 1
4 (−7z3 − 3z2 + 63z + 15)b3 ≡ 0 (mod q)

or

a+ 1
4 (−7z3 + 3z2 + 63z − 15)b3 ≡ 0 (mod q).

The determinants of the resulting linear system in the variables a and b3 in all four cases are
only divisible by primes above 2 and 3. Hence Eβ has multiplicative bad reduction at q.

Over the prime 2, the test cases in each congruence class modulo ν8
2 are in minimal form and

the reduction type is II∗, I∗4 or I∗12, so we use Lemma 9. We note that once the reduction type
is known and the conductor is known, the valuation of the discriminant is determined (this
will be used later to obtain information about the images of inertia at q2). Over the prime 3,
the valuation of the discriminant of Eβ is 12 and the reduction type is II∗ or I0, so we use
Lemma 10 by testing cases modulo ν6

3 . 2

Theorem 12. The conductor of ResKβQ Eβ is

dKβ/Q
2 ·NKβ/Q(m) = 232 · 34+2ε ·

′∏
q|c

q4,

where the product does not include primes dividing 2 · 3 and ε= 0 or 4.
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Proof. This follows from [19, Lemma, p. 178] and the fact discussed there that the
`-adic representation of a restriction of scalars is the induced representation of the `-adic
representation of the given abelian variety. 2

Let A= ResKβQ Eβ . By [21, Theorem 5.4], A is an abelian variety of GL2-type with
Mβ = Q(i,

√
3). The conductor of the system of Mβ,π[GQ]-modules {V̂π(A)} is given by

N = 28 · 31+ε/2 ·
′∏
q|c

q, (8)

using the conductor results explained in [8].
This means, by the usual arguments (whose main components we briefly outline below), that

ρE,β,π ∼= ρg,π, where g is a newform in S2(Γ0(M), ε−1) and M = 768 or M = 6912.
For the next two theorems, it is useful to recall that a−

√
2b3 and a+

√
2b3 are coprime pth

powers up to units in Z[
√

2].

Theorem 13. The representation φE,p|Ip
is finite flat for p 6= 2, 3.

Proof. This follows from the fact that E has good or multiplicative bad reduction at primes
above p when p 6= 2, 3, and that in the case of multiplicative bad reduction, the exponent of a
prime above p in the minimal discriminant of E is divisible by p. Also, p is unramified in Kβ

so that Ip ⊆GKβ . 2

Theorem 14. The representation φE,p|I`
is trivial for ` 6= 2, 3, p.

Proof. This follows from the fact that E has good or multiplicative bad reduction at primes
above ` when ` 6= 2, 3, and that in the case of multiplicative bad reduction, the exponent of a
prime above ` in the minimal discriminant of E is divisible by p. Also, ` is unramified in Kβ

so that I` ⊆GKβ . 2

Theorem 15. Suppose p 6= 2, 3. The conductor of ρ= ρE,β,π is either 768 or 6912.

Proof. Suppose ` 6= 2, 3, p. Since ` 6= 2, 3, we see that Kβ is unramified at ` and hence GKβ
contains I`. Now, in our case, ρ|GKβ

is isomorphic to φE,p. Since φE,p|I`
is trivial, we have that

ρ|I` is trivial and so ρ is unramified outside {2, 3, p}.
Suppose `= 2, 3. The representation φ̂E,p|I` factors through a finite group of order divisible

only by the primes 2 and 3. Now, in our case, ρ̂|GKβ
is isomorphic to φ̂E,p. Hence, the

representation ρ̂|I` also factors through a finite group of order divisible only by the primes
2 and 3. It follows that the exponent of ` in the conductor of ρ is the same as in the conductor
of ρ̂ as p 6= 2, 3. 2

Proposition 16. Suppose p 6= 2, 3. Then the weight of ρ= ρE,β,π is 2.

Proof. The weight of ρ is determined by ρ|Ip . Since p 6= 2, 3, we see that Kβ is unramified
at p and hence GKβ contains Ip. Now, in our case, ρ|GKβ

is isomorphic to φE,p. Since φE,p|Ip
is finite flat and its determinant is the pth cyclotomic character, we have that the weight of ρ
is 2 (see [25, Proposition 4]). 2

Proposition 17. The character of ρE,β,π is ε−1 = ε.

Proof. This follows from (2). 2

https://doi.org/10.1112/S146115701200006X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701200006X


ON THE EQUATIONS a2 − 2b6 = cp AND a2 − 2 = cp 165

Theorem 18. Suppose that the representation ρE,β,π is reducible for p 6= 2, 3, 5, 7, 13. Then
E has potentially good reduction at all primes above ` > 3.

Proof. See [12, Proposition 3.2]. We note that the results still apply even though the isogeny
between E and its conjugate is only defined over Q(

√
3,
√

2); see [8]. 2

Corollary 19. The representation ρE,β,π is irreducible for p 6= 2, 3, 5, 7, 13.

Proof. This follows from Theorem 18, the formula (3) for the j-invariant of E, and
Lemma 8. 2

Assuming that ρE,β,π is irreducible (which holds for p 6= 2, 3, 5, 7, 13 by Corollary 19),
ρE,β,π is modular because of the validity of Serre’s conjecture [14–16, 25]. By Serre’s refined
conjecture (cf. [23]), as applied to ρE,β,π, it follows that ρE,β,π ∼= ρg,π for some newform in
S2(Γ0(M), ε−1), where M = 768 or 6912.

Additionally, we have that ρ̂E,β,π ∼= ρ̂f,π for some newform f ∈ S2(Γ0(N), ε−1), where ρ̂f,π
is the π-adic Galois representation attached to f (cf. [25, § 4.7]). From formula (1) for β, we
deduce that

aq(f) ∈


Z if ε(q) = 1, µ(q) = 1,
Z · i if ε(q) =−1, µ(q) = 1,
Z ·
√

3 if ε(q) = 1, µ(q) =−1,
Z ·
√

3i if ε(q) =−1, µ(q) =−1,

(9)

where µ= ( 8
· ) is the quadratic character associated to Q(

√
2).

Let Dq and Iq denote the decomposition and inertia groups of GQ over the prime q.

Theorem 20. Let f =
∑∞
n=1 anq

n ∈ S2(Γ0(N), ψ) be a newform.
(i) The conductor of {ρ̂f,π} is equal to N .
(ii) Suppose q 6= p and q ||N .

If q does not divide the conductor of ψ, then ρ̂f,π |Dq is of the form(
χχp ∗

0 χ

)
.

If q divides the conductor of ψ, then ρ̂f,π |Dq is of the form(
χ−1χpψ 0

0 χ

)
.

Here χ is the unramified character of Dq which sends Frobq to aq, χp :GQ→ Z∗p is the p-adic
cyclotomic character, and we regard ψ as a Galois character.

Proof. See [6, Théorème 2.1], [7, Théorème (A)], [10, Theorem 3.1] and [13, (0.1)]. 2

Suppose that Kg is not contained in Q(i,
√

3). Let q 6= 2, 3 be a prime such that aq(g) 6∈
Q(i,

√
3). Assume that p 6= q. Then we have that

p |NL/Q
(
aq(g)2 − ε−1(q)(q + 1)2

)
if q | c,

p |NL/Q
(
aq(g)− aq(f)

)
if q - c,

where L is the compositum of Kg and Q(i,
√

3). This follows from the isomorphism ρE,β,π ∼=
ρf,π ∼= ρg,π and comparing traces of ρg,π and ρf,π on a Frobenius element Frobq. For instance, in
the former case, we have that tr ρg,π(Frobq) = aq(g), and tr ρf,π = aq(f)(q + 1) by Theorem 20.
From [20, Theorem 4.6.17], we have that aq(f)2 = ε−1(q), so the result follows by taking norms
of the difference of squares of the traces.
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In the latter case, we also note that aq(f) is restricted by the properties of inner twist above
(9) and also by the fact that |aq(f)|< 2

√
q. Hence, for each such prime q, we obtain that p is

restricted to lie in a finite subset of primes because aq(g) 6= aq(f). Taking the intersection of
these subsets for different q further restricts the possibilities for the prime p.

There are ten Galois conjugacy classes of newforms F1, . . . , F10 in S2(Γ0(768), ε−1); see
inner-768.txt . By cm-768.txt we find that F8 has CM by −3; F3, F6 and F7 have CM by −8;

and F9 and F10 have CM by −24. The field of coefficients of the remaining forms F1, F2, F4

and F5 is equal to Q(
√

2), which is not contained in Q(i,
√

3). In fact, only F8 and F9 have
field of coefficients contained in Q(i,

√
3). For those forms with Kg not contained in Q(i,

√
3),

we obtain a bound of p ∈ {2, 3, 5, 17, 23} from bound-768.txt .
There are 21 Galois conjugacy classes of newforms G1, . . . , G21 in S2(Γ0(6912), ε−1); see

inner-6912.txt . From cm-6912.txt we find that G1 and G2 have CM by −3, while G17 and
G18 have CM by −24. Moreover:

G3 arises from the solution a= 12, b=−2;
G5 arises from the solution a= 12, b= 2;
G4 arises from the solution a= 2, b= 1;
G6 arises from the solution a= 2, b=−1.

The above statements can be verified by noting that these near solutions give rise to a form at
level 6912 and by counting the number of points modulo primes which split completely in Kβ .
It turns out that we only need to consider such primes (which is convenient for computation)
to identify which of the Gi correspond to the above solutions; see countE-1.txt .

Let Ei be the corresponding Q-curve (namely, the Eβ) which is attached to the solution
in each of the cases i= 3, 5, 4, 6. Each ρGi,π |GKβ

∼= φEi,` for i= 3, 5, 4, 6. There is no twisting
as β is trivial on GKβ . Let Iq2 denote the inertia group at q2 of Kβ . One can compute that
φEi,`(Iq2) is divisible by 3 using [17, Théorème 3] for i= 3, 5, 4, 6, because the valuation of the
minimal discriminant at q2 of Ei is not divisible by 3 (see output from tate2m-1.txt ).

On the other hand, we note that we cannot have a≡ 0 (mod 2) and b≡ 1 (mod 2) in the
equation a2 − 2b6 = cp as p > 1. Using [17, Théorème 3], we compute that φE,`(Iq2) is not
divisible by 3 when a≡ 1 (mod 2) and b≡ 0, 1 (mod 2) because the valuation of the minimal
discriminant at q2 of Eβ in these cases is divisible by 3 (see output from tate2m-1.txt ). Hence,
g cannot be any one of the Gi for i= 3, 5, 4, 6. The field of coefficients of the remaining forms
G7, . . . , G21 is not contained in Q(i,

√
3). For those forms with Kg not contained in Q(i,

√
3),

we obtain a bound of p ∈ {2, 3, 5, 7, 11, 13, 17}; see bound-6912.txt .

Theorem 21. Suppose that the representation ρE,β,π has image lying in the normalizer of a
split Cartan subgroup for p 6= 2, 3, 5, 7, 13. Then E has potentially good reduction at all primes
above ` > 3.

Proof. See [12, Proposition 3.4]. We note that the results still apply even though the isogeny
between E and its conjugate is only defined over Q(

√
3,
√

2); see [8]. 2

Corollary 22. The representation ρE,β,π does not have image lying in the normalizer of
a split Cartan subgroup for p 6= 2, 3, 5, 7, 13.

Proof. This follows from Theorem 21, formula (3) for the j-invariant of E, and Lemma 8. 2

For p to be split in the quadratic order of discriminant −24, we must have that p≡ 1, 5, 7, 11
(mod 24). Similarly, p splits in the quadratic order of discriminant −3 if and only if p≡ 1
(mod 6).
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Proof of Theorem 1. If p /∈ {2, 3, 5, 7, 13} ∪ {2, 3, 5, 7, 11, 13, 17, 23}, then we must have
that ρE,β,π ∼= ρg,π where g = F9 has complex multiplication by Q(

√
−24), or g = F8, G1, G2,

which have complex multiplication by Q(
√
−3). If p≡ 1, 7 (mod 24), then p splits in both

Q(
√
−24) and Q(

√
−3), forcing ρE,β,π ∼= ρg,π to have image lying in the normalizer of a split

Cartan subgroup, a contradiction to Ellenberg’s results.
Concerning the latter fact about the image, we give some details. We are given that g has

complex multiplication by F = Q(
√
−24) or Q(

√
−3) in the sense that aq(g)φ(q) = aq(g) for

all but finitely many primes q, where φ is the quadratic Dirichlet character associated to F .
By [26], Ag is isogenous over Q to the power of an elliptic curve C with complex multiplication
by F , which we shall take to be E as defined previously. Hence, Ag is an abelian variety of
GL2-type defined over Q attached to C. We have shown that Ag is isogenous over Q to Aβ for
some splitting map β for cC(σ, τ). However, we know that det ρ̂g,π = ε−1χp, so the splitting
character εβ equals ε. It follows that β is the β defined previously, up to multiplication by a
quadratic Galois character unramified outside {2, 3}. Thus, Kβ is unramified outside {2, 3}.
We may now take the field of definition of the isogeny between Ag and C2 to be Kβ by the
construction of Aβ . Let L=Kβ · F . There is an injection of M = F ·Kg into the endomorphism
algebra of Ag defined over L, and V̂p(Ag)∼=M ⊗Qp as GL-modules. Since p≡ 1, 7 (mod 24),
p is split in F and so ρg,π |GL

has image lying in a split Cartan subgroup of GL2(Fp). This
implies that, in fact, Pρg,π |GF has image lying in a split Cartan subgroup of GL2(Fp). This
is because we know that ρg,π |GF is abelian [22, Proposition 4.4], so if Pρg,π |GF does not lie
in a split Cartan subgroup of GL2(Fp), then it must lie in a non-split Cartan subgroup of
GL2(Fp). Therefore Pρg,π |GL lies in the center of GL2(Fp), implying further that det ρg,π |GL
lies in the subgroup of squares of F×p . However, det ρg,π |GL = ε−1χp is surjective to F×p since
L does not contain a primitive pth root of unity for p > 3. Finally, as [GQ :GF ] = 2, it follows
that Pρg,π itself has image lying in the normalizer of a split Cartan subgroup of GL2(Fp) by
the classification of subgroups of GL2(Fp). 2

We note the near solutions

332 − 2 · 26 = 312,

712 − 2 · 26 = 173.

However, from the point of view of the method, these near solutions do not cause trouble
because they do not give rise to modular forms at the minimal level (which can sometimes
happen).

4. Eliminating the newforms F8, G1 and G2 for the equation a2 − 2 = cp

The equation a2 − 2b6 = cp has two obstructive solutions: (±1, 0, 1), which gives rise to G1,
and (±1,±1,−1), which gives rise to F9. If we are only interested in the equation a2 − 2 = cp,
then the solution (±1, 0, 1) does not pose an obvious obstruction.

Let b= 1. Recall that E = Ea,b = Ea is given by

E : Y 2 =X3 − 3
√

2 (4a+ 5
√

2b3)bX + 4
√

2 (a2 + 7
√

2ab3 + 11b6).

Let E′ = E′a,b = E′a be the elliptic curve

E′ : Y 2 =X3 + 2aX2 + 2bpX,

which is a Frey elliptic curve over Q for the equation a2 − 2bp = cp.
We will show how to eliminate the cases of g = F8, G1, G2 by using a combination of

congruences from the two Frey curves E and E′. This is an example of the multi-Frey
technique [3, 5] as applied to the situation where one of the Frey curves is a Q-curve. We
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thank S. Siksek for suggesting Lemma 24, which allows one to apply the multi-Frey technique
to our situation.

Applying the modular method with E′ as the Frey curve shows that ρE′,π
∼= ρg′,π for some

newform g′ ∈ S2(Γ0(128)) (see [9, § 15.7.1]), under the assumption that b= 1. The possible
forms g′ were computed using b32-modformagain.txt . The reason the multi-Frey method
works is that the near solution (±1, 0, 1) corresponds to a singular E′ and so this solution does
not pose an obstruction from the point of view of the Frey curve E′. By linking the two Frey
curves E and E′, it is possible to pass this information from the Frey curve E′ to the Frey
curve E using the multi-Frey technique.

The following lemma results from the condition ρE′,π
∼= ρg′,π and standard modular method

arguments.

Lemma 23. Let q > 5 be prime and assume q 6= p, where p> 5 is a prime. Let

Cα(q, g′) =

{
aq(E′α)− aq(g′) if x2 − 2 6≡ 0 (mod q),
(q + 1)2 − aq(g′)2 if x2 − 2≡ 0 (mod q).

If a≡ α (mod q), then p | Cα(q, g′).

Proof. See [9, § 15.7.1] for details on showing ρE′,π
∼= ρg′,π. 2

For our choice of splitting map β, we attached a Galois representation ρE,β,π to E such that
ρE,β,π ∼= ρg,π for some newform g ∈ S2(Γ0(M), ε) where M = 768 or 6912. We wish to eliminate
the cases of g = F8, G1, G2. The following is the analog of Lemma 23 for E = Ea,b.

Lemma 24. Let q > 5 be prime and assume q 6= p, where p 6= 2, 3, 5, 7, 13 is a prime. Let

Bα(q, g) =


N(aq(Eα)2 − ε(q)aq(g)2) if x2 − 2 6≡ 0 (mod q) and

(
2
q

)
= 1,

N(aq(g)2 − aq2(Eα)− 2qε(q)) if x2 − 2 6≡ 0 (mod q) and
(

2
q

)
=−1,

N(ε−1(q)(q + 1)2 − aq(g)2) if x2 − 2≡ 0 (mod q),

where aqi(Eα) is the trace of Frobiq acting on the Tate module Tp(Eα) and N(·) is the norm
from the coefficient field of g down to Q.

If a≡ α (mod q), then p |Bα(q, g).

Proof. Recall the set-up in Sections 2 and 3. Let π be a prime of Mβ above p. The mod π
representation ρAβ ,π of GQ attached to Aβ is related to Eβ by

PρAβ ,π |GK
∼= PφEβ ,p,

where φEβ ,p is the representation of GK on the p-adic Tate module Tp(Eβ) of Eβ , and the
P means that we consider isomorphism up to scalars. The algebraic formula which describes
ρEβ ,β,π = ρAβ ,π

∼= ρf,π is

ρAβ ,π(σ)(1⊗ x) = β(σ)−1 ⊗ µ′β(σ)(φEβ ,p(σ)(x))

where 1⊗ x ∈Mβ,π ⊗ Tp(Eβ). Here, µ′β(σ) is the chosen isogeny from σEβ → Eβ for each σ
which is constant on GK (see the paragraph after equation (4)). Let µ′β(σ) = µEβ (σ)ξ(σ).

If x2 − 2≡ 0 (mod q), then q | c. Recall that the conductor of Aβ is given by

24 · 31+ε/2 ·
′∏
q|c

q,
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so that q exactly divides the conductor of Aβ . It follows from [6, Théorème 2.1], [7,
Théorème (A)], [10, Theorem 3.1], [13, (0.1)] and the fact that ρf,π ∼= ρg,π that

p |N(aq(g)2 − ε−1(q)(q + 1)2).

For further details, see Theorem 20 and the paragraph after it. The condition p 6= 2, 3, 5, 7, 13
is needed to ensure the irreducibility of ρE,β,π ∼= ρf,π.

If x2 − 2 6≡ 0 (mod q), then let q be a prime of Kβ over q. Since a≡ α (mod q) and q is a
prime of good reduction, aq(E) = aq(Eα).

We now wish to relate the representation ρEβ ,β,π = ρAβ ,π
∼= ρf,π to the representation φE,p

for the original E. We know that

cEβ (σ, τ) = β(σ)β(τ)β(στ)−1,

cEβ (σ, τ) = cE(σ, τ)κ(σ)κ(τ)κ(στ)−1,

where κ(σ) = σ√γ/√γ and γ =−3 +
√

6. It follows that

cE(σ, τ) = β′(σ)β′(τ)β′(στ)−1,

where β′(σ) = β(σ)κ(σ) so that β′ is a splitting map for the original cocycle cE(σ, τ). Also,
recall that ε(Frobq) = ( 12

q ).
Now we have that

ρAβ′ ,π(σ)(1⊗ x) = β′(σ)−1 ⊗ µE(σ)(φE,p(σ)(x)),

where 1⊗ x ∈Mβ,π ⊗ Tp(E). For this choice of β′(σ), we have that ρAβ′ ,π
∼= κ(σ)ξ(σ)⊗ ρAβ ,π ∼=

κ(σ)ξ(σ)⊗ ρf,π. This can be seen by fixing the isomorphism ι : E ∼= Eβ using standard
Weierstrass models and then using the following commutative diagram (µEβ is defined by
this diagram).

Eβ
σ // σEβ

µEβ (σ)
// Eβ

E
σ //

ι

OO

σE
µE(σ) //

σι

OO

E

ι

OO

Recall that β(σ) =
√
ε(σ)

√
d(σ) so that β′(σ) =

√
ε(σ)

√
d(σ)κ(σ). We note that d(σ) = 1 if

σ ∈GQ(
√

2) and d(σ) = 3 if σ 6∈GQ(
√

2).
Now ( 2

q ) = 1 means that σ = Frobq ∈GQ(
√

2). If σ ∈GQ(
√

2), then µE(σ) = id and

d(σ) = 1, so ρAβ′ ,π(σ)(1⊗ x) = β′(σ)−1 ⊗ µE(σ)(φE,p(σ)(x)) =
√
ε(σ)

−1
κ(σ)−1 ⊗ φE,p(σ)(x)

and hence tr ρAβ′ ,π(σ) =
√
ε(σ)

−1
κ(σ)−1 · tr φE,p(σ) and ε(q)aq(f)2 = aq(E)2. Since aq(f)≡

aq(g) (mod π), we have that p |Bα(q, g) in the case where ( 2
q ) = 1.

If ( 2
q ) =−1, then σ = Frobq 6∈GQ(

√
2). But then σ2 ∈GQ(

√
2) and, in fact, σ2 ∈GQ(

√
2,
√

3),

so by the above argument we get that tr ρAβ′ ,π(σ2) =
√
ε(σ)

−1
κ(σ)−1 · tr φE,p(σ2) =

tr φE,p(σ2) = aq2(E). Also, tr ρAβ′ ,π(σ) = κ(σ)ξ(σ)aq(f) and so tr ρAβ′ ,π(σ)2 = aq(f)2. We
have that

1
det(1− ρAβ′ ,π(σ)q−s)

= exp
∞∑
r=1

tr ρAβ′ ,π(σr)
q−sr

r

=
1

1− tr ρAβ′ ,π(σ)q−s + qε(q)q−2s
.

The determinant and traces are of vector spaces over Mβ,π. Computing the coefficient
of q−2s and equating, we get that tr ρAβ′ ,π(σ2) = tr ρAβ′ ,π(σ)2 − 2qε(q); so, in the end,
aq(f)2 − 2qε(q) = aq2(E). Since aq(f)≡ aq(g) (mod π), we have that p |Bα(q, g) in the case
where ( 2

q ) =−1 as well. 2
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Let
Aq(g, g′) :=

∏
α∈Fq

gcd(Bα(q, g), Cα(q, g′)).

Then we must have that p |Aq(g, g′). For a pair g, g′, we can pick a prime q and compute
Aq(g, g′). Whenever this Aq(g, g′) 6= 0, we obtain a bound on p so that the pair g, g′ cannot
arise for p larger than this bound.

For g = F8, G1, G2 and g′ running through the newforms in S2(Γ0(128)), the above process
eliminates all possible pairs g = F8, G1, G2 and g′. In particular, using q = 5 for each pair shows
that p ∈ {2, 3}. Hence, if p 6∈ {2, 3, 5}, then g = F8, G1, G2 is not possible. In fact, applying the
multi-Frey method to all forms except g = F9 gives a bound of p ∈ {2, 3, 5} using the primes
q = 5, 7 (see multi-frey-1.txt ). Hence, under the restriction b= 1 and p 6= 2, 3, 5, 7, 13, the only
form that remains to be eliminated is g = F9, which can be done if p≡ 1, 5, 7, 11 (mod 24) (see
the proof of Theorem 1). This establishes Theorem 5.

5. Congruence restrictions obtained from the multi-Frey method

Although it is not possible to eliminate the form g = F9 for p inert in Q(
√
−24), it is still

possible to obtain good congruence restrictions on the possible solutions (a, c). Indeed, for
q > 5, we can run through all possible α ∈ Fq. If gcd(Bα(q, g), Cα(q, g′)) 6= 0 for all g′, then
this restricts p to a finite number of possibilities. Otherwise, a≡ α (mod q) is possible.

It turns out that for some primes q > 5, this method shows that either a≡±1 (mod q) or p
is among a finite list of possibilities. For example, taking q = 5 shows that a≡±1 (mod 5) or
p ∈ {2, 3}.

We have computed with b32-cong.txt all primes 5 6 q 6 1000 such that:
• the prime factors of q − 1 are less than or equal to 37;
• the above method shows that either a≡±1 (mod q) or p6 37.
The list of such primes q is given by

S = {5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 61, 67, 73, 89, 113, 127, 137, 149, 181, 191,
193, 197, 223, 233, 251, 257, 349, 373, 379, 421, 457, 461, 521, 547, 599, 617,
661, 677, 701, 761, 769, 811, 829, 881, 883, 953}. (10)

As a result of this computation, we obtain the following corollary.

Corollary 25. If a2 − 2 = cp where a, c ∈ Z, p> 5 is prime and c 6=−1, then c > 10102.

Proof. The equation a2 − 2 = cp has been solved for 5 6 p6 37, so let us assume p > 37. For
q ∈ S, we can thus conclude that a≡±1 (mod q). Hence cp ≡−1 (mod q). But p - q − 1, as the
only prime divisors of q − 1 are less than or equal to 37, so that c≡−1 (mod q) for every q ∈ S.
Let Q=

∏
q∈S q. Then c≡−1 (mod Q). If c 6=−1, then c > 0 and so c>−1 +Q> 10102. 2
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