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Examination of outer-layer similarity in wall
turbulence over obstructing surfaces
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Turbulent flows over canopies of rigid filaments with different densities are studied
using direct numerical simulations at moderate Reynolds numbers Reτ ≈ 550–1000. The
canopies have heights h+ ≈ 110–220, and are used as an instance of obstructing substrate
for the assessment of outer-layer similarity. We show that conventional methods used to
determine the zero-plane displacement �y can be at odds with proper outer-layer similarity
and may not be applicable for flows at moderate Reτ . Instead, we determine �y and the
length and velocity scales that recover outer-layer similarity by minimising the difference
between the smooth-wall and canopy diagnostic function everywhere above the roughness
sublayer, not just in the logarithmic layer. In addition, we explore the possibility of the
zero-plane displacement and the friction velocity being set independently, but find that
outer-layer similarity is recovered more consistently when they are coupled. We observe
that although the Kármán constant, κ may not have smooth-wall-like values, the flow
statistics are smooth-wall-like in the logarithmic layer and above if the surface effect
is limited within the near-wall region. This suggests a modified outer-layer similarity,
where κ is not 0.39, but turbulence is otherwise smooth-wall-like. When the canopy
is dense, the flow above the tips is essentially smooth-wall-like, with smooth-wall-like
κ ≈ 0.39 and origin essentially at the tip plane. For canopies with intermediate density,
the overlying flow perceives a deeper zero-plane displacement into the canopy, which is
consistent with observations reported by previous studies, but exhibits a lower Kármán
constant, κ ≈ 0.34–0.36. For sparse canopies, κ tends back to its smooth-wall value, and
the zero-plane displacement height is at the canopy bed. For all canopies studied, the
decrease in κ never exceeds 15 %, which is significantly less than that obtained in some
previous works using conventional methods to assess outer-layer similarity.
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1. Introduction and background

Turbulent boundary layers over rough and complex surfaces are ubiquitous and are of
significant environmental and industrial interest. Surface roughness can induce significant
frictional drag or pressure drop for flows in engineering settings, as summarised in the
reviews by Flack & Schultz (2010, 2014), and Chung et al. (2021). Vegetation canopies
are of great ecological importance to terrestrial and aquatic ecosystems, as reviewed by
Finnigan (2000), Belcher, Harman & Finnigan (2012), Nepf (2012a,b) and Brunet (2020).
Porous substrates are also present in a variety of settings (Wood, He & Apte 2020),
such as river beds (Vollmer et al. 2002; Breugem, Boersma & Uittenbogaard 2006),
heat exchangers (Lu, Stone & Ashby 1998; Dixon et al. 2012) and catalytic reactors
(Lucci et al. 2017). In addition, engineered surfaces exposed to turbulent flows generally
degrade and roughen due to erosion, fouling and cumulative damage (Wu & Christensen
2007). For these reasons, understanding the impact of complex surfaces on turbulence is
essential for the modelling and control of practical flows, and to improve environmental
and engineering practices.

The surface topology has a direct impact on the flow within the roughness sublayer,
which generally extends up to 2–3 roughness heights h, or spacings s, above the
roughness crests, depending on the density regime (Jiménez 2004; MacDonald et al. 2018;
Brunet 2020). Above this height, it is accepted widely that the turbulence is essentially
undisturbed and exhibits outer-layer similarity (Hama 1954; Clauser 1956; Townsend
1976). The only effect is then a constant shift �U+ in the mean-velocity profile, while both
the Kármán constant, κ ≈ 0.39, and the wake region remain unaffected. Experimental
evidence of outer-layer similarity was provided by Perry & Abell (1977) and Andreopoulos
& Bradshaw (1981), who reported smooth-wall-like mean-velocity profiles and turbulent
statistics in the outer layer for flows over rough walls. The recovery of outer-layer similarity
has also been observed in flows over a wide range of surface topologies, including
two-dimensional ribs and grooves (Krogstad et al. 2005; Leonardi, Orlandi & Antonia
2007; MacDonald et al. 2018; Zhang, Huang & Xu 2020), sand grain (Flack, Schultz &
Shapiro 2005; Connelly, Schultz & Flack 2006; Amir & Castro 2011; Flack & Schultz
2023), prismatic roughness (Castro 2007; Yang et al. 2016; Sadique et al. 2017; Placidi &
Ganapathisubramani 2018; Sharma & García-Mayoral 2020a; Xu et al. 2021) and practical
rough surfaces (Shockling, Allen & Smits 2006; Allen et al. 2007; Wu & Christensen
2007). Jiménez (2004) argued that the recovery of outer-layer similarity relies on a
large-scale separation h/δ < 1/40, where δ is the boundary layer thickness. Numerical
studies of roughness and riblets have nevertheless observed outer-layer similarity for
roughness with larger blockage ratios, h/δ = 1/8 for cubes in an open channel, and
h/δ = 1/7 for sinusoidal roughness in a pipe (Leonardi & Castro 2010; García-Mayoral &
Jiménez 2011; Chan et al. 2015; Abderrahaman-Elena, Fairhall & García-Mayoral 2019;
Sharma & García-Mayoral 2020a). As summarised in Chung et al. (2021), the smooth-wall
similarity in the wake region remains robust and holds even for intrusive roughness with
h/δ � 0.15. In this obstacle regime (Jiménez 2004), the protruding surface effect can
completely disrupt similarity in the logarithmic layer, but the similarity is still recovered
in the outer wake region (Flack & Schultz 2010, 2014).

Studies of wall-bounded turbulence have provided the tools for analysing and modelling
rough-wall flows, with engineering models that treat roughness as a small perturbation to
the smooth-wall flow (Flack et al. 2005; Flack, Schultz & Connelly 2007). However, if
the roughness-induced perturbation propagates into the outer layer, then the scaling based
on smooth-wall similarity could result in inaccurate predictions for turbulent statistics and
integral quantities. Understanding the extent of roughness effects and whether smooth-wall
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similarity holds true is therefore of great importance to various applications. Townsend
(1976) proposed the outer-layer similarity hypothesis, articulating that at a sufficiently
high Reynolds number, essentially the turbulent eddies in the outer layer would be
unaffected by the surface topology. The surface affects the flow only through providing the
relevant scales, the wall shear stress τw, or the friction velocity uτ = (τw/ρ)1/2, and the
characteristic length scale provided by the wall-normal distance to the wall, y. Townsend’s
hypothesis is essentially a dimensional argument stating that given δ+ � 1 and h/δ � 1,
surface effects are confined within the roughness sublayer, thus the only relevant scales for
the flow above are uτ and y, independent of the surface topology. Note that uτ and y are
well defined for smooth-wall flows but may not be estimated easily for flows over rough
and complex surfaces where the ‘wall’ is not obvious (Schultz & Flack 2007; Squire et al.
2016).

The canonical logarithmic form of the mean-velocity profile is

U+ = 1
κ

log( y+ + �y+) + A − �U+, (1.1)

where κ is the Kármán constant, with κ ≈ 0.39 if outer-layer similarity recovers, A is
the log-law intercept for a smooth-wall flow, �U+ is the velocity deficit caused by
the drag induced by surface roughness, y+ is the wall-normal distance, and �y+ is the
zero-plane displacement that recovers outer-layer similarity for the mean-velocity profile
U+. Typically, the displacement �y+ is measured from the roughness tip or trough, and
the zero-plane displacement height y+ = −�y+ corresponds to the height of the origin
perceived by the outer-layer flow (Breugem et al. 2006; Manes, Poggi & Ridolfi 2011).

Despite substantial evidence that supports Townsend’s outer-layer similarity hypothesis
in the presence of diverse surface topologies, some experimental studies cast doubt
on its universal validity, reporting that the roughness effects can extend well into the
outer layer (Krogstad, Antonia & Browne 1992; Krogstadt & Antonia 1999; Tachie,
Bergstrom & Balachandar 2003; Bhaganagar, Kim & Coleman 2004). In these works, it
was observed that the presence of roughness alters significantly the intensities of turbulent
fluctuations, especially the wall-normal velocity fluctuations and Reynolds shear stress,
and the mean-velocity profile even in the wake region. Additionally, recent experimental
and numerical studies for turbulent flows over rough and complex surfaces, as summarised
in table 1, have reported the existence of a logarithmic layer but with values for κ ,
logarithmic slope, very different from the smooth-wall value κs ≈ 0.39. Moreover, for
studies with δ+ ≈ 1000–10 000 and h/δ � 1, a decrease in κ is still observed with an
increase in Reynolds number for the same roughness, suggesting an in-depth modification
of the flow by the substrates (Suga et al. 2010; Manes et al. 2011; Fang et al. 2018; Okazaki
et al. 2021, 2022). Some studies have observed that permeable roughness could lead to
an approximately 50 % drop in κ , which is more substantial than that induced by the
impermeable roughness with the same geometry, implying that permeability may enhance
the extent and intensity of roughness effects (Okazaki et al. 2021, 2022; Esteban et al.
2022; Karra et al. 2022). Nevertheless, the prediction of uτ , which is of great importance
for the assessment of outer-layer similarity, remains a challenge in experiments (Chung
et al. 2021). Generally, uτ is evaluated at the zero-plane displacement height, which is
typically between the tip and trough of the obstacles, and uτ is therefore not necessarily
given by the total drag τw exerted on the surface. Depending on flow conditions and
apparatus, uncertainties in uτ and turbulent statistics are typically ∼ ±1–5 % (Schultz &
Flack 2007, 2013; Squire et al. 2016).
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Studies Wall Roughness δ+ √
K+ k+

s κ

B06 IPW Packed bed 353–678 0.31–9.35 0.11–49.6 0.23–0.40
S10 IPW Foamed ceramics 150–1086∗ 0.81–11.05 0.3–63.0 0.23–0.39
M11 IPW Polymer foam 1856–5840 1.9–17.2 — 0.31–0.33
R17 IW Elastic wall 180.8–307.0 — — 0.20–0.36
K17 APW/IPW Pore arrays 120–399 0–11.6 0–19 0.21–0.41
S20 APW/IPW Spheres 395 2.62 — 0.32–0.33
K21 APW Spanwise rods 150–1137 3.5–25.9 0.4–60.9 0.21–0.40
K23 APW/IW Spheres 270–943 2.56–8.94 6.57–34.35 0.29–0.33
E22 IW Riblets 850–3840 — — 0.30–0.37
F18 IPW Spheres 862–10 174 0.7–109 108–295∗ 0.32–0.34∗

IW Hemisphere 986.8 — 10.6 0.41
O21 IW Solid ribs/grooves 160–2100 — 642–1831 0.38–0.41

IW Porous ribs/grooves 380–1730 1.7–16.0 185–1049 0.19–0.29
O22 IW Solid ribs 220–2050 — 17–1850 0.38–0.41

IW Porous ribs 240–1780 1.0–17.0 38–1340 0.22–0.33

Table 1. Studies that observe the modification of the logarithmic layer by the surface topology. The wall types
are IPW (isotropic permeable wall), APW (anisotropic permeable wall) and IW (impermeable wall). Here,
δ+,

√
K+, k+

s and κ are the reported friction Reynolds number (δ+ = δuτ /ν, where δ is the boundary layer
thickness or channel half-height, uτ is the characteristic friction velocity and ν is the kinematic viscosity),
permeability Reynolds number (

√
K+ = √

Kuτ /ν, where K is the permeability), roughness height (k+
s =

ksuτ /ν, where ks is the equivalent sand grain roughness height) and Kármán constant (κ). The abbreviations
for the studies are B06 (Breugem et al. 2006), S10 (Suga et al. 2010), M11 (Manes et al. 2011), R17 (Rosti &
Brandt 2017), K17 (Kuwata & Suga 2017), S20 (Shen, Yuan & Phanikumar 2020), K21 (Kazemifar et al. 2021),
K23 (Karra et al. 2022), E22 (Endrikat et al. 2022), F18 (Fang et al. 2018), O21 (Okazaki et al. 2021) and O22
(Okazaki et al. 2022). Note that δ+ denoted by ∗ is estimated from k+

s and ks/δ from S10. The values for k+
s

and κ from F18, denoted by ∗, were provided for only some of their cases.

Recent studies carried out by Tuerke & Jiménez (2013) and Lozano-Durán & Bae (2019)
suggest that the scaling for wall turbulence is essentially local, and is set by the local
mean shear and production rate of turbulent kinetic energy, with no explicit reference
to the wall-normal distance y. This implies that the traditional scaling based on y and
uτ happens to hold because of the one-to-one correspondence between the latter and the
local production and shear, but this correspondence does not need to hold necessarily
for flows over non-smooth walls. As part of this work, we investigate, for flows that
exhibit an apparent loss of outer-layer similarity, whether the local scale can still have
correspondence to a friction velocity u�

τ and a length scale y∗, where y∗ is the wall-normal
distance to the zero-plane displacement height, y∗ = 0, but u�

τ is not necessarily evaluated
at y∗ = 0. In this work, superscript � denotes wall units defined by ν and u�

τ decoupled
from y∗ = 0, and superscript + denotes wall units defined by ν and u∗

τ evaluated at y∗ = 0.
Subscript ∗ denotes outer units that are normalised by the bulk velocity Ub and outer length
scale y∗.

The diagnostic function of the mean-velocity profile in (1.1) is

β = y+
∗

∂U+

∂y+∗
, (1.2)

where y∗ = ( y + �y)/(δ + �y) is the wall-normal distance from the zero-plane
displacement height at y∗ = 0, which would exhibit a plateau β ≈ 1/κ in the logarithmic
layer if outer-layer similarity recovers (Mizuno & Jiménez 2011; Luchini 2018).
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Examination of outer-layer similarity over obstructing surfaces

This diagnostic function is useful because deviations from the log-law profile are typically
more apparent in β in (1.2) than in U+ in (1.1). Many previous studies therefore rely on the
existence of this plateau in β to determine the extent of the logarithmic layer and the inner
scaling for flows over roughness (Breugem et al. 2006; Suga et al. 2010). Particularly, the
linear relation between U+ and log( y+∗ ) in (1.1) is enforced by choosing a Δy that yields
a plateau in β( y+∗ ). The inner velocity and length scales are then determined based on
u∗
τ evaluated at the reference height, y∗ = 0, yielding values for κ that are not necessarily

smooth-wall like, as listed in table 1. However, a logarithmic layer with a plateau in β

emerges only in flows at very high Reτ (Lee & Moser 2015; Hoyas et al. 2022). More
importantly, outer-layer similarity, by definition, refers to the similarity in not just the
logarithmic layer but also the wake, the whole outer region. In the present work, we
argue that for flows at all but the highest Reτ , neglecting smooth-wall similarity in the
wake region while enforcing a plateau in the diagnostic function could result in spurious
predictions of parameters, including �y, u∗

τ and κ , and friction-scaled turbulent statistics.
In this study, we determine the zero-plane displacement �y by minimising the deviation
compared to a smooth-wall flow of the diagnostic function not only in the logarithmic
layer but also above. We assess the validity as a scaling velocity of the friction velocity u∗

τ

and u�
τ , both measured at the height of zero-plane displacement and set as an independent,

free parameter. Additionally, we examine whether the value of κ is modified by the type
of surface or not. We probe the existence of outer-layer similarity in an extensive dataset
of canopy flows. This choice is motivated by canopies being an instance of porous-like
complex surfaces that are particularly obstructing and intrusive to the flow (Ghisalberti
2009).

The paper is organised as follows. The numerical method and relevant canopy
parameters are presented in § 2. Results, with particular emphasis on scaling for the
outer-layer turbulence, are discussed in § 3. Finally, the conclusions are summarised in
§ 4.

2. Direct numerical simulations

We present results for a series of direct numerical simulations (DNS) of closed and
open channels with canopies of rigid filaments covering the walls at moderate Reynolds
numbers Reτ ≈ 500–1000. We note that these Reτ are sufficiently high for convective
effects to be dominant, such that the interpretation of the turbulent statistics in these
canopy flows may be extrapolated to cases with higher Reτ (Sharma & García-Mayoral
2020a). The streamwise, spanwise and wall-normal directions are x, z and y, respectively.
A schematic of the numerical domain is portrayed in figure 1. The dimensions of the
closed channels are Lx × Lz × Ly = 2πδ × πδ × 2(δ + h), where h is the canopy height,
and δ = 1 is the distance between the channel centre and the canopy-tip planes. The canopy
region is below y = 0 for the bottom wall, and above y = 2δ for the top wall. This domain
size is large enough to reproduce the one-point statistics for the friction Reynolds numbers
considered in this study, without imposing artificial constraints on the largest turbulent
eddies (Lozano-Durán & Jiménez 2014).

We vary the canopy density by changing the spacing between elements, resulting in
frontal densities λf ≈ 0.01–2.04, defined as the ratio between the frontal area of the
obstacles and the total plan area. This covers a broad range from sparse to dense canopies
based on the notional limit λf ≈ 0.1 proposed by Nepf (2012a). All canopies in the
closed channel consist of collocated prismatic posts with thickness �+

x = �+
z ≈ 24 and

height h+ ≈ 110. Relevant simulation parameters are listed in table 2. For the canopy
simulations, letters C and O denote closed and open channels, and the number that follows
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Figure 1. Schematics of the numerical domains of (a) full-channel case C108550 and (b) open-channel case
O400550. An instantaneous realisation of the streamwise velocity is shown in the orthogonal planes.

denotes the approximate spacing, s+ = L+
x /nx = L+

z /nz, between the canopy elements,
where nx and nz are the numbers of elements in the streamwise and spanwise directions,
respectively. The number in the subscript is the approximate friction Reynolds number
of the flow. Cases C216900, C288900 and C432900 conducted at Reτ ≈ 900 match the
geometry parameters s+, l+ and h+ of the sparse and intrusive cases C216550, C288550 and
C432550 in inner units, respectively. These cases at high Reynolds numbers are conducted
to verify that outer-layer similarity can recover, even for flows over intrusive textures,
provided that there is a large enough core flow unperturbed by the roughness. Cases C550,
C600, C900, O550 and O1000 are reference smooth-wall simulations.

The DNS of sparse canopies, λf ≈ 0.01, from Sharma & García-Mayoral (2020a), are
included for the assessment of outer-layer similarity in open-channel flows. These channels
are bounded by a bottom no-slip wall and a top free-slip surface at y = δ, as shown
in figure 1(b). Case O400550 consists of prismatic posts with sides �+

x = �+
z ≈ 20 and

height h+ ≈ 110. The canopy of O4001000 matches the dimensions of O400550 in inner
units, with thickness �+

x = �+
z ≈ 20 and height h+ ≈ 110, while the canopy of C8001000

matches the dimensions of O400550 in outer units, with thickness �x/δ = �z/δ ≈ 0.04 and
height h/δ ≈ 0.2. The reference friction velocity uτ in table 2 is calculated from the total
shear stress at the canopy tips for the full-channel cases, and from the net drag for the
open-channel cases. This is the reference friction velocity used in Reτ = δuτ /ν and in the
other friction-scaled variables discussed in this section.

The DNS code implemented in this study is from Sharma & García-Mayoral
(2020a,b) and has been validated in Sharma (2020). It is summarised here for reference.
The numerical method solves the three-dimensional incompressible Navier–Stokes
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Case Reτ λf Nx × Nz s/h �x+ �z+ �y+
f �y+

t

Channel flow C550 550.6 — — — 9.01 4.50 0.27 —
C600 603.3 — — — 8.77 4.39 0.29 —
C950 950.2 — — — 7.77 3.89 0.32 —

C36550 550.3 2.04 96 × 48 0.33 2.00 2.00 2.95 0.50
C54550 550.1 0.91 64 × 32 0.49 3.00 3.00 2.53 0.50
C72550 551.9 0.51 48 × 24 0.65 4.01 4.01 2.01 1.00
C108550 548.5 0.23 32 × 16 0.98 5.98 2.99 2.00 1.00
C144550 547.0 0.13 24 × 12 1.31 5.97 2.98 1.19 1.19
C216550 549.0 0.06 16 × 8 1.96 5.99 2.99 1.00 1.00
C288550 547.9 0.03 12 × 6 2.62 5.98 2.99 0.79 0.79
C432550 548.9 0.01 8 × 4 3.93 5.99 2.99 0.60 0.60
C216900 895.1 0.06 32 × 16 1.96 8.26 4.13 1.1 1.1
C288900 895.7 0.03 24 × 12 2.62 8.26 4.13 1.1 1.1
C432900 892.4 0.01 16 × 8 3.93 8.26 4.13 1.1 1.1

Open-channel flow O550 537.1 — — — 8.79 4.39 0.21 —
O1000 994.6 — — — 8.14 4.07 0.32 —

O400550 529.7 0.01 8 × 4 3.65 4.33 4.33 0.20 1.77
O4001000 1062.4 0.01 16 × 8 3.53 4.35 4.35 0.35 2.76
O8001000 1001.8 0.01 8 × 4 3.61 4.10 4.10 0.33 3.45

Table 2. Simulation parameters: Reτ = δuτ /ν is the friction Reynolds number based on ν, δ and uτ evaluated
at the canopy tips; λf is the frontal density; Nx and Nz are the numbers of canopy elements in the streamwise and
spanwise directions, respectively; h and s are the canopy height and the spacing in the streamwise and spanwise
directions; �x+ and �z+ are the streamwise and spanwise resolutions; �y+

f and �y+
t are the wall-normal

resolutions at the floor and canopy tips. The wall-normal resolution is validated in the Appendix for reference.
The O550 and open-channel canopy cases are from Sharma & García-Mayoral (2020a).

equations

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, (2.1)

∇ · u = 0, (2.2)

where u is the velocity vector 〈u, w, v〉 with components in the streamwise, spanwise
and wall-normal directions, respectively, p is the kinematic pressure, and Re denotes the
bulk Reynolds number Re = Ubδ/ν based on Ub, δ and the kinematic viscosity ν. No-slip
and no-penetration boundary conditions are enforced at both walls. The canopy elements
are resolved explicitly using a direct-forcing, immersed-boundary method (Iaccarino &
Verzicco 2003; García-Mayoral & Jiménez 2011). The numerical domain is periodic in the
wall-parallel directions, which are discretised spectrally. A second-order central difference
scheme on a staggered grid is used in the wall-normal direction to avoid the ‘chequerboard’
problem (Ferziger & Perić 2002). The wall-normal grid is stretched with �y+

max ≈ 4.5 at
the channel centre for the closed-channel simulations. For the open-channel simulations,
�y+

max ≈ 2.2 when Reτ ≈ 550, and �y+
max ≈ 5.3 when Reτ ≈ 1000. The �y+

min value
occurs at the floor or tips, wherever the mean shear is the highest; �y+

min ≈ 0.5–1 is at
the tips for the intermediate to dense canopies (λf � 0.1), and �y+

min ≈ 0.3–0.8 is at the
floor for the sparse canopies (λf � 0.1). The wall-normal grid resolutions are listed in
table 2.

The typical wall-parallel resolutions are �x+ � 8 and �z+ � 4 for the DNS of
smooth-wall turbulent flows (Jiménez & Moin 1991). However, for the filament canopies
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considered in this study, the element-induced eddies are typically of the order of or smaller
than the element thickness (Poggi et al. 2004). Therefore, the wall-parallel grids are
smaller than �+

x and �+
z to resolve the eddies induced by the canopy elements, as presented

in table 2. To resolve the turbulence within and above the roughness sublayer without
inducing excess computational cost, the numerical domain is partitioned into blocks with
different wall-parallel resolutions (García-Mayoral & Jiménez 2011). The blocks that
contain the roughness sublayer have a more refined resolution than the block encompassing
the channel centre. In the fine blocks, the grid resolution resolves not just the turbulent
scales but also the canopy geometry and element-induced eddies. The height of these
blocks is chosen such that the small and rapid element-induced eddies diffuse naturally
and damp out before reaching the coarse block at the channel centre, which has a standard
�x+ ≈ 8 and �z+ ≈ 4 resolution. This is verified a posteriori by examining the spectral
densities of turbulent fluctuations near the interface to ensure that any small-wavelength
signal has already vanished.

The time advancement uses a fractional-step method with a three-substep Runge–Kutta
scheme where pressure is corrected to enforce incompressibility (Le & Moin 1991; Perot
1993):
[

I − �t
βk

Re
L
]

un
k = un

k−1 + �t
[αk

Re
Lun

k−1 − γkNun
k−1 − ζkNun

k−2 − (αk + βk)Gpn
k

]
,

(2.3)

DGφn
k = 1

�t (αk + βk)
Dun

k, (2.4)

un
k+1 = un

k − �t (αk + βk) Gφn
k , (2.5)

pn
k+1 = pn

k + φn
k , (2.6)

where k = 1, 2, 3 are the Runge–Kutta substeps (e.g. u0
0 = u0, u0

3 = u1), �t is the time
step, I is the identity matrix, L, G and D are the discretised Laplacian, gradient and
divergence operators, N is the advective term dealiased with the 2/3-rule (Canuto et al.
2012), and αk, βk, γk and ζk are the integration coefficients adapted from Le & Moin
(1991). The channel is driven by a constant mean pressure gradient, with the flow rate
adjusted to obtain the targeted friction Reynolds number. Each simulation is run for at
least 10 largest eddy turnover times, δ/uτ , to wash out any initial transients. Once the flow
reaches a statistically steady state, statistics are collected over another 20δ/uτ .

3. Results and discussion

In this section, we present and discuss the scaling for the outer-layer flow, aiming to show
that for canopy flows that exhibit an apparent loss of outer-layer similarity, a modified
outer-layer similarity can be recovered when using the appropriate velocity and length
scales.

3.1. Depth of roughness layer
Before we set out to investigate outer-layer similarity, it is important to establish a lower
bound for y from which it can be expected to hold. In the immediate vicinity of a complex
surface, the flow cannot be expected to be universal, but will be specific to the particular
surface topology. Outer-layer similarity should not be expected within the roughness
sublayer, where turbulence is perturbed directly by the element-induced flow. Thus we
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Examination of outer-layer similarity over obstructing surfaces

first need to identify the height above which the direct effect of the texture, manifesting
as a texture-coherent signature in the flow field, vanishes effectively. The height of the
roughness sublayer, assumed here to be the height beyond which the element-induced
flow vanishes, is generally a function of the element spacing or height, depending on
the density regime (Jiménez 2004; Brunet 2020). On the basis of canopy geometry and
configuration, the frontal density λf gives a notional measure of canopy density (Wooding,
Bradley & Marshall 1973; Nepf 2012a). For conventional sparse canopies (λf � 0.1) with
element spacing larger than height, the roughness sublayer thickness is typically a function
of the canopy height (Poggi et al. 2004; Flack et al. 2007; Abderrahaman-Elena et al.
2019; Sharma & García-Mayoral 2020a). However, for dense canopies (λf � 0.5), the
flow within the obstacles is ‘sheltered’ from the turbulent flow as the elements interact
with turbulence only in the vicinity of the tips, thus the height of the roughness sublayer
depends on the element spacing (MacDonald et al. 2018; Placidi & Ganapathisubramani
2018; Sharma & García-Mayoral 2020b). In the very dense limit, where the element
spacings are vanishingly small, the eddies are essentially precluded from penetrating
within the texture, and the overlying flow essentially perceives a smooth wall at the tips
(Brunet 2020; Sharma & García-Mayoral 2020b).

To measure the extent of roughness effects, here we quantify the intensity of the
element-induced flow using the standard triple decomposition (Reynolds & Hussain 1972)

u(x, y, z, t) = U( y) + u′(x, y, z, t), (3.1)

u′(x, y, z, t) = ũ(x, y, z) + u′′(x, y, z, t), (3.2)

where u is the full instantaneous velocity vector field 〈u, w, v〉, U is the mean-velocity
profile, and u′ is the full temporal and spatial turbulent fluctuation, decomposed into
a time-averaged but spatially varying component ũ and the remaining time-varying
fluctuation u′′. Here, U is the velocity averaged in time and in the wall-parallel directions,
and ũ, often termed the dispersive flow (Castro et al. 2021; Modesti et al. 2021), is obtained
from the average of the flow in time only. Therefore, the root-mean-square (r.m.s.) of ũ at
each height gives a measure of the intensity of the coherent spatial fluctuation induced by
the canopy elements. Abderrahaman-Elena et al. (2019) argued that ũ does not contain the
whole element-coherent signal, but it nevertheless gives a good measure of its intensity.

As shown in figure 2, the intensity of the element-induced fluctuations decays
exponentially with y above the tips. A similar decaying pattern has been observed in flows
over superhydrophobic surfaces (Seo, García-Mayoral & Mani 2015), three-dimensional
sinusoidal roughness (Chan et al. 2018), prismatic roughnesses (Abderrahaman-Elena
et al. 2019) and filament canopies (Sharma & García-Mayoral 2020b). The cause
can be traced to the pressure in this region satisfying a Laplace equation with two
components, one forced by the nonlinear terms of the overlying flow, which is essentially
texture-incoherent, and the other forced by the effective boundary conditions at y = 0,
induced by the texture. The latter then takes the form ∼ e−y/λ for each excited wavelength,
for which the first texture harmonic, λ = s, decays more slowly and dominates (Kamrin,
Bazant & Stone 2010; Seo et al. 2015). The velocities satisfy in turn their own
corresponding Laplace equations, with additional source terms from this texture-induced
pressure, leading to similar exponential decays. Figure 2 evidences this exponential decay
with y/s, which is particularly clear for the pressure, as well as for the wall-normal velocity,
and to a lesser extent for the tangential velocities, which is to be expected given their more
intense source terms in their respective Laplace equations.

For all canopies considered, the texture-coherent pressure and velocity fluctuations
essentially vanish at approximately one canopy spacing above the tips, as depicted in
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Figure 2. The r.m.s. velocity and pressure fluctuations of the element-induced, dispersive flow normalised by
uτ evaluated at the canopy tips: (a,e,i,m) and (c,g,k,o) full-channel cases; (b, f ,j,n) and (d,h,l,p) open-channel
cases. The solid lines from blue to red are cases C36550 to C432550 in the first and third columns, and cases
O400550, O4001000 and O8001000 in the second and fourth columns; the dashed-dotted lines represent the cases
at Reτ ≈ 900 with the same canopy layouts as the solid lines of the same colour, i.e. cases C216900, C288900
and C432900, corresponding to cases C216550, C288550 and C432550. The square markers represent height
y = s for cases at Reτ ≈ 550, and the triangle markers represent that for cases at Reτ ≈ 900–1000.

figure 2. However, this implies that the sparse (λf � 0.1) and tall (h ≈ 0.2δ) canopies,
C216550, C288550, C432550, O400550 and O8001000, are significantly more intrusive to
the overlying flow compared to the other canopies with either intermediate to high
density (λf � 0.1) or small height (h ≈ 0.1δ), as their element-induced flows penetrate
into the channel as far as y ≈ 0.5δ, or even beyond. This implies that the roughness
sublayer of these intrusive canopies can extend well into the overlying flow and reach the
channel centre. Sharma & García-Mayoral (2020b) have reported a similar behaviour for
the element-induced flow over dense canopies, for which the element-induced velocity
fluctuations become negligible at one canopy spacing above the tips regardless of the
canopy height. However, their element-induced flows caused a more profound modification

973 A31-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

79
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.792


Examination of outer-layer similarity over obstructing surfaces

of the background turbulence, which became smooth-wall-like only at heights y/s > 2 − 3
above the tips. For the present flows, however, it will be demonstrated in §§ 3.3 and 3.4
that for the cases that exhibit it, outer-layer similarity recovers above a roughness sublayer
that extends only to a height y/s ≈ 1 above the tips.

3.2. Logarithmic velocity profiles over smooth and rough walls
In this subsection, we discuss and appraise the conventional methods used to assess the
existence of a logarithmic layer, and find the zero-plane displacement height y∗ = 0 that
sets the velocity and length scales u∗

τ and y∗ for turbulent flows over roughness. Generally,
their values are determined by using the total drag (Jackson 1981; Raupach 1992; Cheng
et al. 2007; Leonardi & Castro 2010; Squire et al. 2016), by fitting U+ to be proportional to
log( y+∗ ) in the logarithmic layer (Clauser 1956; Flack & Schultz 2014), or by, equivalently,
enforcing a plateau in β (Breugem et al. 2006; Suga et al. 2010; Manes et al. 2011).

In experiments, generally, friction velocity and zero-plane displacement height are
estimated based on the total drag exerted on the surface, as summarised in Chung et al.
(2021). For small and sparsely distributed roughness, where the overlying flow penetrates
all the way to the floor, this method generally yields u∗

τ and �y that recover outer-layer
similarity (Flack et al. 2005; Wu & Christensen 2007; Schultz & Flack 2013). However, for
dense and tall roughness, the total drag method could result in non-physical prediction for
both u∗

τ and �y. The element-induced drag is significant for dense roughness, therefore the
point of action of the total drag, �y = ∫

h D( y) y dy/
∫

h D( y) dy (Jackson 1981), is located
at an intermediate point in the roughness sublayer. However, DNS of dense filament
canopies have illustrated that the zero-plane displacement height approaches the tips as the
overlying turbulence interacts only with the upper part of the obstacles and cannot perceive
the floor (Brunet 2020; Sharma & García-Mayoral 2020b). In turn, for sparse canopies,
the zero-plane displacement height approaches the floor, even when most of the drag is
still exerted by the canopy elements (Sharma & García-Mayoral 2020a). Consequently,
the total drag may not necessarily be relevant directly for the assessment of outer-layer
similarity and the estimates of the zero-plane displacement �y and the friction velocity
evaluated at y∗ = 0, u∗

τ .
Hama (1954) and Clauser (1956) noted that generally, roughness leads to a downward

but otherwise parallel shift �U+ in the mean-velocity profile. It stems from this that
�y and u∗

τ can be obtained by matching the shape of the mean-velocity profile over
roughness U+ to log( y+∗ ), assuming that the latter represents accurately the corresponding
smooth-wall profile. This matching is usually done iteratively. Figures 3(e, f ) illustrate
how, for the flows over our canopies, U+ can be made logarithmic by selecting a
suitable value of �y and taking u∗

τ based on the total shear stress at the zero-plane
displacement height. However, U+ is not exactly logarithmic even in the logarithmic layer
of a smooth-wall flow, so matching U+ to log( y+∗ ) as in figures 3(e, f ) is different from
matching U+ to the smooth-wall profile in the logarithmic layer as in figures 3(c,d). As
an example, �y ≈ 0.1δ–0.15δ = 0.5h–0.75h enforces a logarithmic mean-velocity profile
for case C144550, but with a non-smooth-wall-like κc, as evidenced in figures 3(a,e).
In addition, the mean-velocity profile above the logarithmic layer is different from a
corresponding smooth-wall profile, suggesting a breakdown of outer-layer similarity, even
though U+ was made logarithmic. Alternatively, by imposing �y ≈ 0.1δ = 0.5h, we may
recover a smooth-wall-like logarithmic layer, as depicted in figure 3(c), where κc ≈ κs ≈
0.39. Nevertheless, the outer-wake region is still not smooth-wall-like, which would still
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Figure 3. Mean-velocity and velocity-deficit profiles for (a,c,e) cases C144550 (solid colour lines) and C432550
(dashed colour lines), and (b,d, f ) cases O4001000 (solid colour lines) and O8001000 (dashed colour lines). From
blue to red, results are based on (a,c) �y = 0 to 0.25δ and (b,d) �y = 0.05δ to 0.15δ; the black solid lines are
reference smooth-wall profiles (a) C550 and (b) O1000; the black dashed lines are the smooth-wall log-law
profile 1/κ log( y+) + A; and the shaded area marks the logarithmic region for smooth-wall flows, y+ = 80 to
y = 0.3δ for closed channels, and y+ = 80 to y = 0.2δ for open channels. The upper bound of the log region
in open channels is lower than that in a closed channel because the free-slip surface induces a ‘cutoff’ to the
wake region, which limits the extent of the logarithmic layer.

break full outer-layer similarity. Moreover, for the intrusive cases C432550 and O8001000,
where the near-wall turbulence is disrupted completely by the element-induced flow, the
mean-velocity profile could still be enforced to take a logarithmic or smooth-wall-like
shape within the ‘logarithmic layer’, as shown in figures 3(c–f ). Nevertheless, the flow
above this ‘logarithmic layer’ is never smooth-wall-like. In contrast, outer-layer similarity
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Examination of outer-layer similarity over obstructing surfaces

may still be achieved without recovering a complete smooth-wall-like logarithmic
region, as illustrated for case O4001000 in figures 3(b,d, f ), where the lower part of the
logarithmic region is perturbed by the canopy, but the flow above y+∗ ≈ 130 is essentially
smooth-wall-like when �y = 0.1δ. The above suggests that outer-layer similarity cannot
be recovered simply by artificially matching U+ to log( y+∗ ), or a smooth-wall profile,
exclusively in the logarithmic layer. The matching should be for any height above the
roughness sublayer.

Within the logarithmic layer, enforcing U+ to be logarithmic, or smooth-wall-like, is
essentially equivalent to enforcing β to have a plateau, or a smooth-wall-like region. While
the shapes of both U+( y+∗ ) and β( y+∗ ) contain the same information, β is more sensitive
to deviations from the smooth-wall reference profile, and it portrays directly the value
of 1/κ if it exhibits a plateau in the logarithmic layer. For these reasons, some recent
studies rely on β to predict �y and u∗

τ (Mizuno & Jiménez 2011; Kuwata & Suga 2017;
Okazaki et al. 2021, 2022). Breugem et al. (2006) and Suga et al. (2010) argued that
the slope of U+ versus log( y+∗ ) must be constant within the logarithmic layer, and the
profile of ( y + �y) dU/dy should therefore exhibit a plateau with value u∗

τ /κ . It is worth
mentioning that although the method and argument by Breugem et al. (2006) and Suga
et al. (2010) have been adapted by some recent studies, these studies actually maximise
the extent of the plateau in the entire flow, instead of just within the logarithmic layer
(e.g. figure 5 in Breugem et al. 2006, figure 6 in Rosti & Brandt 2017, and figure 8 in
Shen et al. 2020). However, let us illustrate using one of our present cases that there are
instances when enforcing a plateau within the logarithmic layer or maximising the extent
of the plateau may result in a breakdown of outer-layer similarity. Figure 4(a) shows the
diagnostic function of case C36550, which consists of closely packed elements. A plateau
in β emerges within the logarithmic layer when picking �y = 0.05δ = 0.25h, and the
extent of this plateau maximises when picking �y = 0.1δ = 0.5h. The resulting Kármán
constant κc ≈ 0.32 or 0.29, respectively, is much smaller than the smooth-wall value
κs ≈ 0.39, implying a significant modification of the outer-layer mean-velocity profile by
the substrate. For dense canopies like C36550, however, we would expect the overlying
turbulent flow to ‘skim’ over the canopy tips, as the turbulent eddies are precluded
from penetrating within and interacting with the full height of the canopy, to the point
that the flow above the tips resembles a smooth-wall flow (Brunet 2020; Sharma &
García-Mayoral 2020b). Figure 4(b) illustrates that the scaling based on �y = 0 produces
a smooth-wall-like diagnostic function for case C36550, suggesting that the overlying
flow indeed perceives an origin in the vicinity of the canopy-tip plane. The underlying
problem is that the emergence of a logarithmic layer relies on a large Reynolds number
δ+ such that the only available length scale in the overlap region, ν/uτ � y � δ, is the
wall-normal distance y (Townsend 1976). Within this overlap region, only a dimensionless
constant κ = uτ /( y ∂U/∂y), can be constructed (Luchini 2017). However, if δ+ is not
sufficiently large, then uτ /( y ∂U/∂y) need not exhibit a flat plateau, as shown in figure 5.
For smooth-wall flows, even Reτ ≈ 5000 is not yet sufficient for the diagnostic function
to exhibit a completely flat plateau, according to numerical evidence (Lee & Moser
2015; Hoyas et al. 2022). The local value of β ≈ 1/κ in the logarithmic layer exhibits
a dependence on y/δ, or y+/Reτ , caused by the contamination from the wake above
(Jiménez & Moser 2007; Mizuno & Jiménez 2011; Luchini 2018). As shown in figure 5,
even for smooth-wall flows, so long as Reτ � 5000, enforcing a plateau in β would
overlook this dependence, and result in non-physical zero-plane displacements and values
of κ down to 0.3, as those listed in the figure. The above results for smooth walls suggest
that artificially prescribing a plateau in β, while not enforcing the similarity in the wake
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Figure 4. (a) Diagnostic function and (b) defect-law velocity profile, scaled with y∗ and u∗
τ for case C36550.

Black solid line, reference smooth-wall profile C550; blue, violet and red solid lines, canopy statistics based on
�y = 0, 0.05δ and 0.1δ, respectively; black, violet and red dashed lines, values of 1/κ for smooth-wall and
canopy flow, where κs ≈ 0.39 and κc ≈ 0.32 and 0.28, respectively.
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Figure 5. Diagnostic function for smooth-wall channel flows at Reτ increasing from blue to red: Reτ ≈ 1000,
2000, 5000 and 10 000. The solid lines represent y+ dU+/dy+, with �y = 0; the dash-dotted lines in (a)
represent β with �y+ ≈ 40, 27, 13, 7, so that a plateau is enforced within the logarithmic layer as in Manes
et al. (2011) and Okazaki et al. (2021, 2022); the dash-dotted lines in (b) represent β with �y+ ≈ 80, 139,
311, 1004, so that the extent of the plateau is maximised as in Breugem et al. (2006), Suga et al. (2010),
Kuwata & Suga (2017), Rosti & Brandt (2017), Fang et al. (2018), Shen et al. (2020), Kazemifar et al.
(2021), Okazaki et al. (2021, 2022) and Karra et al. (2022). Notice that Okazaki et al. (2021, 2022) use
both methods (see figures 5c and 5(a,b,d) in Okazaki et al. 2021, and figures 12 and 21 in Okazaki et al.
2022). With Reτ increasing, the horizontal dotted lines correspond to κc ≈ (0.32, 0.34, 0.37, 0.40) in (a) and
κc ≈ (0.29, 0.29, 0.31, 0.30) in (b), and the vertical lines represent the upper bound of the logarithmic layer,
y/δ ≈ 0.3. The Reτ ≈ 1000, 5000 data are from Lee & Moser (2015), the Reτ ≈ 2000 data are from Hoyas &
Jiménez (2006), and the Reτ ≈ 10 000 data are from Hoyas et al. (2022).

region, could result in an apparent but false breakdown of outer-layer similarity and values
for κ that are consistently lower than the true smooth-wall value, as those listed in table 1.
It is worth mentioning that the logarithmic layer of a smooth-wall channel is generally
understood to span from y+ ≈ 80 to y/δ ≈ 0.3. It is therefore not possible to define κ

meaningfully for flows at Reynolds numbers δ+ � 300, for which there is no significant
range of y in which a logarithmic layer can manifest. Note that some of the flows in table 1
fall in this low-Re range.
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Figure 6. Diagnostic function of case C144550 scaled with �y and u�

τ , the friction velocity decoupled from
y∗ = 0, that minimise the r.m.s. deviation from the smooth-wall profile above yr. Black solid line, reference
smooth-wall profile at Reτ ≈ 550; blue, violet and red solid lines, canopy statistics based on blue dashed line
yr = 0.074δ, violet dashed line yr = 0.174δ, and red dashed line yr = 0.274δ, respectively.

To address the above issues, we propose to obtain u∗
τ and �y by minimising the deviation

between the smooth-wall and canopy diagnostic functions everywhere above the roughness
sublayer, not just in the logarithmic layer. It will be demonstrated in §§ 3.3 and 3.4 that this
method consistently recovers outer-layer similarity.

3.3. Sensitivity of canopy diagnostic function
Outer-layer similarity can be expected to appear only above the roughness sublayer, of
height yr, above which the canopy diagnostic function βc should be smooth-wall-like.
Because the extent of roughness effects can vary depending on the canopy density, as
shown in figure 2, yr needs to be determined separately for each canopy (Jiménez 2004;
Brunet 2020). Care must be taken, because if part of the roughness sublayer is included
in the region where outer-layer similarity is sought, then the values of �y and uτ may
be distorted. Therefore, the latter region needs to be sufficiently far away from the wall,
y > yr, such that all surface effects have vanished. We determine the values of �y and
uτ that recover a smooth-wall-like diagnostic function, or mean-velocity profile, as those
that minimise the deviation between βs and βc, the smooth-wall and canopy diagnostic
functions, above yr. By this method, we recover a smooth-wall-like βc in the outer layer,
including both the logarithmic layer and the ‘wake’ region.

As an example, for case C144550, figure 6 portrays βc scaled with y∗ and u�
τ , the friction

velocity decoupled from y∗ = 0, based on three tentative values of yr. For yr = 0.074δ =
0.37h = 0.28s, βc is not smooth-wall-like, even if the deviation between βc and βs above
yr is minimised. This is because the flow at this yr is still perturbed directly by the canopy
elements, as yr is too small compared to s, which provides an estimate of the roughness
sublayer thickness, as evidenced in figure 2. In turn, adopting yr = 0.274δ = 1.37h =
1.04s overestimates the roughness sublayer thickness, as βc is already smooth-wall-like
based on yr � 0.174δ = 0.87h = 0.66s, implying that the height affected by the canopy
in this case is lower than yr/s ≈ 2–3 reported in Abderrahaman-Elena et al. (2019) and
Sharma & García-Mayoral (2020b). For this canopy, we can conclude that outer-layer
similarity is recovered when yr ≈ 0.66s, and beyond this limit, βc and �y are insensitive
to the lower bound from which outer-layer similarity is enforced, as illustrated in figures 6
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Figure 7. (a) The r.m.s. deviation between βs and βc above yr and (b) zero-plane displacement �y, versus
yr for case C144550. The horizontal dashed lines mark once and twice the baseline error; and the thick black
vertical markers denote the lower and upper bounds for yr above which outer-layer similarity recovers. The
vertical dashed lines are as in figure 6.

and 7(b). The r.m.s. deviation between βc and βs above yr is minimised if yr is sufficiently
far away from the canopy, as shown in figure 7(a).

In the above, we have let κc = κs and u�
τ be independent of �y, and we obtain the values

of �y and u�
τ for each yr by minimising the difference between βc and βs for any y above

yr. However, if yr is not chosen carefully, then the corresponding �y and u�
τ may not result

in a smooth-wall-like βc above yr, as illustrated in figure 6. Therefore, we need to identify
an appropriate lower bound for yr to correctly assess outer-layer similarity, sufficiently
far away from the wall for all surface effects to vanish. Starting at too low values, as yr
increases, the r.m.s. deviation of β in figure 7(a) decreases and eventually stabilises at
a baseline-error level, which may be used to guide the selection of the lower bound of
yr. Here, we propose a lower bound of yr such that the r.m.s. error is twice the baseline
error. Above this lower bound, the deviation between βc and βs is small, suggesting that
βc scaled with y∗ and u�

τ is essentially smooth-wall-like. On the other hand, yr should
not be adopted excessively far above the surface, because outer-layer similarity cannot be
examined properly on too small a portion of the flow. We propose an upper bound for yr
that is 0.1δ above the lower bound, as the r.m.s. of βc − βs varies little beyond this.

Using the method that we propose, yr results in �y and u�
τ that consistently recover

outer-layer similarity, with the resulting �y being insensitive to the particular choice
of yr within the range proposed above, as evidenced by the flat region in figure 7(b).
As shown in figure 7(a), the height above which outer-layer similarity recovers for case
C144550 is yr = (0.174 ± 0.05)δ = (0.87 ± 0.25)h = (0.66 ± 0.19)s. This is smaller than
the typical roughness sublayer thickness, which extends up to 2h–3h above the tips
(Jiménez 2004; Brunet 2020). Nevertheless, figure 2 illustrates that the dominant length
scale for the intensity of the texture-coherent flow is the element spacing, and essentially,
these texture-coherent flows vanish at one spacing above the tips. For intermediate to dense
cases with λ � 0.1, where s/h � 1, we observe the recovery of outer-layer similarity
for yr ≈ s � h. Additionally, because yr/δ is smaller than the typical upper bound of a
logarithmic layer, y ≈ 0.3δ, we expect the recovery of a smooth-wall-like logarithmic
layer. Based on the confidence interval for yr, we obtain the zero-plane displacement
�y = (0.113 ± 0.005)δ = (0.57 ± 0.03)h, as shown in figure 7(b), indicating that the
outer-layer flow perceives an origin y∗ = 0 at a depth roughly halfway between the floor
and the canopy tips. However, the height of u�

τ , corresponding to a smooth-wall-like κ , is
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Figure 8. Mean-velocity profiles of the canopy and smooth-wall flows: (a,c) full-channel cases with less
intrusive canopies, C36550 to C144550, and C216900 to C432900; (b,d) open-channel cases. The coloured solid
and dash-dotted lines represent cases as in in figure 2. The black solid lines represent smooth-wall reference
profiles at Reτ ≈ 900–1000, and the black dashed lines represent smooth profiles at Reτ ≈ 550. The square
markers represent the lower bound of yr for cases at Reτ ≈ 550, and the triangle markers represent that for
cases at Reτ ≈ 900–1000.

yu�
τ

= (0.553 ± 0.036)δ = (2.77 ± 0.18)h, which is below the canopy floor (note that yu�
τ

is decoupled from y∗ = 0).
The fact that outer-layer similarity can be assessed only above a minimum height

yr implies that such similarity cannot be assessed for certain flows/substrates. In
figures 8(c,d) and 9(c), we observe a breakdown of outer-layer similarity for the
open-channel cases O400550 (yr ≥ 0.636δ) and O8001000 (yr ≥ 0.274δ). This is because
these intrusive canopies perturb the overlying flow extensively, well into the region where a
logarithmic layer would have been found otherwise. In contrast, for intermediate to dense
cases, C36550 to C144550, C216900 to C432900, and O4001000, which have less intrusive
canopies, the canopy flow becomes smooth-wall-like no higher than yr = 0.224δ, allowing
for the recovery of a smooth-wall-like outer layer. The canopy diagnostic functions in
figures 9(a,b) also show that whether outer-layer similarity recovers depends on the extent
of the roughness layer, which is associated with yr. In contrast, prescribing a constant slope
for U+ versus log( y∗), or enforcing a plateau in βc, can result consistently in a breakdown
of outer-layer similarity and a Kármán constant different from the smooth-wall one, as
illustrated in figures 9(c,d).
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Figure 9. Diagnostic functions of the canopy and smooth-wall flows: (a,c) full-channel cases; (b,d)
open-channel cases. Plots (a,b) enforce smooth-wall-like βc above yr; (b,d) enforce plateaus in βc. The lines
and markers are as in figure 8.

3.4. Universality or non-universality of the Kármán constant
In the above, the friction velocity u�

τ was not computed from the stress at the zero-plane
displacement height y∗ = 0, and was instead set as an independent variable, such that βc
was smooth-wall-like and κ was universal, κc = κs. Alternatively, the friction velocity u∗

τ

could be computed from the stress at y∗ = 0, and κc found by enforcing a match of the
diagnostic function to that of a smooth-wall profile. In the logarithmic layer, (1.2) can be
expressed as

y∗
dU
dy∗

κs

u�
τ

= κs β( y∗, u�
τ ) ≈ 1, (3.3)

y∗
dU
dy∗

κc

u∗
τ

= κc β( y∗, u∗
τ ) ≈ 1, (3.4)

from which we can observe that the group κ/uτ needs to have a certain value, but the
mean-velocity profile does not provide information on whether this should be achieved
by fixing κ and finding uτ , or vice versa, or otherwise. As long as κc/u∗

τ = κs/u�
τ , the

modified logarithmic profile in (3.4) is recovered. Figure 10(a) shows that whether u�
τ

or κc /= κs ≈ 0.4 is set as an independent parameter, the resulting mean-velocity profile or
diagnostic function is still smooth-wall-like. In this subsection, we discuss the implications
of fixing either uτ or κ . While it is not possible to identify which option provides a
complete outer-layer similarity by inspecting just the mean-velocity profile, other turbulent
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Figure 10. (a) Modified diagnostic function κβ, and (b) Reynolds shear stress, of case C144550. Black solid
line, reference smooth-wall profiles at Reτ ≈ 550; red dashed line, canopy profile scaled with u�

τ and y∗; blue
solid line, canopy profile scaled with u∗

τ and y∗.
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Figure 11. Pre-multiplied spectral energy densities for case C144550 (line contours) and reference smooth-wall
case C550 (filled contour) normalised by their respectively r.m.s. level at y∗ = 0.3δ. Red dashed line, canopy
statistics scaled with u�

τ and ν; blue solid line, canopy statistics scaled with u∗
τ and ν. The contours are at 0.01,

0.05 and 0.1 times the r.m.s. level.

statistics collapse with the smooth-wall data when the friction velocity is evaluated at
the zero-plane displacement height. As an example, the Reynolds shear stress profile
in figure 10(b) collapses to smooth-wall data when scaled with u∗

τ , compared to u�
τ .

If, alternatively, a universal κc is enforced, the Reynolds shear stress would differ from
smooth-wall values by a factor (u∗

τ /u�
τ )

2. The spectral density maps in figure 11 also show
that outer-layer similarity is achieved with u∗

τ obtained from the shear at the zero-plane
displacement height y∗ = 0, and κc having a non-smooth-wall value.

For the cases with less intrusive canopies, C36550 to C144550, C216900 to C432900, and
O4001000, the r.m.s. velocity fluctuations, Reynolds shear stress and pre-multiplied spectral
energy densities scaled with u∗

τ essentially collapse with their respective smooth-wall
values above a height y∗ ≈ 0.3δ, as shown in figures 12–14. This suggests that u∗

τ , and
not u�

τ , is the velocity scale for the outer-layer turbulence. However, for the more intrusive
cases, for example O8001000, the roughness sublayer extends well into the overlying
flow, which no longer exhibits a smooth-wall-like logarithmic layer, as evidenced by the
footprint of the element-induced flow in figures 14(i–l). These intrusive textures cause
a more in-depth modification of the outer-layer flow, and can lead to the breakdown of
outer-layer similarity. Similar observations have been reported on large riblets and porous
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Figure 12. The r.m.s. velocity fluctuations scaled with y∗ and u∗
τ : (a,c,e) full-channel cases; (b,d, f )

open-channel cases. Lines are as in figure 8.

walls, where outer-layer similarity is limited if surface effects penetrate into a significant
portion of δ (Breugem et al. 2006; Manes et al. 2011; Endrikat et al. 2022).

By minimising the r.m.s. deviation of βc from βs, as discussed in §§ 3.3 and 3.4, we
obtain the values of �y and u∗

τ that provide the scales for the outer-layer turbulent flow.
The trend of the zero-plane displacement in figure 15(a) suggests that the flows over
dense canopies perceive an origin close to the tips, and that this origin becomes deeper
as the canopy density decreases. In figure 15(b), the densest case has a smooth-wall-like
Kármán constant, κc ≈ 0.4, and the value of κc decreases as the canopy density decreases.
However, for the sparsest cases, κc appears to tend back to its smooth-wall value. We note
that the decreases in κc for all canopies in this study never exceed 15 % of its smooth-wall
value, which is significantly smaller than obtained by fitting U+ to a log( y+∗ ) profile as in
Breugem et al. (2006), Suga et al. (2010), Rosti & Brandt (2017), Kuwata & Suga (2017),
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Figure 13. Reynolds shear stress scaled with y∗ and u∗
τ : (a) full-channel cases; (b) open-channel cases. The

lines are as in figure 8.
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Figure 14. Pre-multiplied spectral energy densities for canopy flow (line contours) and reference smooth-wall
cases (filled contours) normalised by their respective r.m.s. level at y∗ = 0.3δ: (a–d) full-channel cases; (e–h)
and (i–l) open-channel cases. The line colour scheme is as in figure 8. The contours are at 0.01, 0.05 and 0.1
times the mean-square fluctuation level.

973 A31-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

79
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.792


Z. Chen and R. García-Mayoral

0
0.46

0.40

0.34

0.28

–0.5

–1.0

–1.5

10–2 10–1 100 10–2 10–1 100

λf λf

κc

–
�

y/
h

(a) (b)

Figure 15. (a) Ratio of zero-plane displacement depth to canopy height, −�y/h, and (b) Kármán constant,
κc, versus canopy density λf , for all cases considered. Markers ©, ∗, × and � represent full-channel cases
at Reτ ≈ 550 and Reτ ≈ 900, and open-channel cases at Reτ ≈ 550 and Reτ ≈ 1000, respectively. The colour
scheme is as in figure 2. Transparent markers represent cases with substantial texture-induced coherent flows
in the outer layer, and coloured markers represent cases with a smooth-wall-like outer layer. In (a), the black
dashed line represents �y corresponding to zero-plane displacement height at the canopy tip (−�y/h = 0) and
at the floor (−�y/h = −1). In (b), the black dashed line represents κs ≈ 0.39.

Kazemifar et al. (2021) and Okazaki et al. (2021, 2022), where the values of κc reported
were as low as κc ≈ 0.2.

The present results for dense and sparse canopies are consistent with the results in Nepf
(2012a), Brunet (2020) and Chung et al. (2021), who summarised that for roughness in
the dense or sparse regime, the zero-plane displacement height approaches the roughness
crest or trough, respectively. For instance, for the dense canopy C36550, λf ≈ 2.04, the
smooth-wall-like overlying flow perceives an origin at the tips, and the Kármán constant
has a smooth-wall value κc ≈ κs ≈ 0.39, as illustrated in figure 15. MacDonald et al.
(2016) and Sharma & García-Mayoral (2020b) have also observed such skimming flow for
closely-packed sinusoidal roughness and filament canopies, where s+ � 3. In particular,
in the dense regime, where the spacing between elements is comparable to the viscous
length scale ν/uτ , essentially the overlying turbulence is precluded from penetrating
the roughness, and the unmodified overlying flow is smooth-wall-like with a zero-plane
displacement height at the tips.

Sparse canopies, where the ratio between element spacing and height is large, are
generally more intrusive than the intermediate to dense canopies because the roughness
sublayer can extend to y/s ≈ 1 into the channel, as discussed in § 3.1. For the sparse
and tall canopies, C216550, C288550, C432550, O400550 and O8001000, the surface effects
penetrate deep into the overlying flow and can reach the channel centre, impeding the
assessment of outer-layer similarity. For these substrates, outer-layer similarity could be
assessed only at higher Reτ . This motivated us to conduct simulations C216900, C288900,
C432900, O4001000, for which the canopies have similar dimensions to C216550, C288550,
C432550, O400550, in inner units, but such that the unperturbed core flow is a larger
portion of the channel. As illustrated in figure 15, the larger-Reτ flows allow for a clearer
assessment of outer-layer similarity, with zero-plane displacement height at the floor, and
κc ≈ κs ≈ 0.39. Our observations are consistent with those in Poggi et al. (2004), Nepf
et al. (2007) and Sharma & García-Mayoral (2020a), where the flows over sparse canopies
exhibit characteristics of smooth-wall flows, with reference wall at the canopy floor.
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Examination of outer-layer similarity over obstructing surfaces

Flows over canopies with an intermediate density (λf � 0.1) perceive an origin between
the tips and floor, as shown in figure 15(a). For these intermediate canopies, with
s/h � 1, the overlying flow interacts mainly with the upper part of the obstacles, and
turbulence does not penetrate all the way to the floor (Grimmond & Oke 1999; Luhar,
Rominger & Nepf 2008; MacDonald et al. 2018; Sharma & García-Mayoral 2020b).
These intermediate-canopy flows exhibit values of the Kármán constant κc ≈ 0.34–0.36,
different from the smooth-wall value κs ≈ 0.39, implying that the intermediate canopies
disrupt the overlying flow more profoundly than both dense and sparse substrates.
Nevertheless, other than for the change in κ , the turbulent statistics remain essentially
smooth-wall-like in the logarithmic layer and above, as depicted in figures 8, 9 and 12–14.
This suggests a modified outer-layer similarity, where κc /= 0.39, but where otherwise the
turbulence is outer-layer-similar to a smooth-wall flow. For h � δ, we could expect that
the flow far from the wall is not influenced by the details of the surface topology, as is the
classical view of wall turbulence (Clauser 1956). Further work is required to study if the
same canopies would also exhibit κc /= 0.39 at larger δ/h ratios, say δ/h ≈ 40 as proposed
by Jiménez (2004).

4. Conclusions

In the present work, we have assessed outer-layer similarity in flows over canopies
ranging from sparse to dense (λf ≈ 0.01–2.03) at Reτ ≈ 550–1000. We have discussed and
appraised the conventional methods for the assessment of outer-layer similarity, showing
that these methods could be inaccurate for flows over dense roughness and for flows at
moderate Reτ .

To investigate outer-layer turbulence, we first determined the depth of the roughness
sublayer, within which the turbulence is disrupted significantly by the element-induced
flow. It was shown that the roughness sublayer for the present flows extends to a height
equal to the element spacing. For the cases with tall (h ≈ 0.2δ) and sparse (λf � 0.1)
elements, C216550, C288550, C432550, O400550 and O8001000, the element-induced flows
penetrate effectively into the channel as far as y ≈ 0.5δ, or even above. As a result,
these intrusive canopies leave only a small portion of core flow unperturbed, making the
assessment of outer-layer similarity difficult. To verify whether outer-layer similarity can
recover for these intrusive cases, simulations at higher Reτ , producing a larger unperturbed
region, were required.

Conventionally, outer-layer similarity for a flow over roughness is recovered by imposing
a zero-plane displacement and the corresponding friction velocity on the mean-velocity
profile, such that the logarithmic layer is smooth-wall-like. We have discussed some
caveats of conventional drag-based and mean-velocity-based methods used to determine
these constants. For drag-based methods, and for densely packed roughness elements,
the point of action of the total drag is located within the elements, while the overlying
flow actually perceives an origin in the vicinity of the tips. For mean-velocity-based
methods, we have shown that at moderate Reτ , even smooth-wall flows do not exhibit
a constant slope for U+ versus log( y+∗ ), or a plateau in β. Therefore, matching the shape
of U+ to log( y+∗ ), or equivalently, enforcing a plateau in the diagnostic function β, may
result in an artificial breakdown of outer-layer similarity and spurious predictions for the
zero-plane displacement and the friction velocity at any but the highest Reτ available in
DNS literature.

To obtain the zero-plane displacement and friction velocity scale that recovers a
smooth-wall-like diagnostic function, we minimise the deviation between the canopy and
smooth-wall diagnostic function everywhere above the roughness sublayer, instead of in
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the logarithmic layer alone. By this method, we obtain a smooth-wall-like β not only in
the logarithmic layer, but also in the wake region, enforcing outer-layer similarity in its
full sense. We also explore the possibility of the zero-plane displacement and the friction
velocity being set independently, but find that outer-layer similarity is recovered more
consistently when they are coupled. For the dense canopies like C36550, the unmodified
overlying flow is smooth-wall-like with a zero-plane displacement height at the tips, and
the Kármán constant has a smooth-wall value κc ≈ κs ≈ 0.39. This is the case because the
skimming turbulence is precluded from penetrating into the obstacles, and perceives an
origin at the tips. For sparse canopies (λf � 0.1), the higher-Reτ cases, C216900, C288900,
C432900 and O4001000, allow for the assessment of outer-layer similarity, with zero-plane
displacement height at the floor, and κc ≈ κs ≈ 0.39. For intermediate canopies (λf �
0.1), with s/h � 1, the overlying flow interacts mainly with the upper part of the obstacles,
and turbulence does not penetrate all the way to the floor. These intermediate-canopy flows
perceive a zero-plane displacement height between the tips and floor, and exhibit values
of the Kármán constant κc ≈ 0.34–0.36, different from the smooth-wall value κs ≈ 0.39,
implying that the intermediate canopies disrupt the overlying flow more profoundly than
both dense and sparse substrates. Nevertheless, other than for the change in κ , the turbulent
statistics remain essentially smooth-wall like in the logarithmic layer and above.
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Appendix. Grid independence and validation

In this study, the no-slip condition within the canopy elements is enforced using the
direct-forcing, immersed-boundary method (Iaccarino & Verzicco 2003) as implemented
in García-Mayoral & Jiménez (2011) and modified by Sharma & García-Mayoral
(2020a,b). This method applies a body force term to the right-hand side of (2.4) and drives
the velocity at the immersed-boundary points to zero. The reader is referred to the works
of Sharma & García-Mayoral (2020b) and Sharma (2020) for a detailed discussion on
the accuracy of the immersed-boundary method implemented and wall-parallel resolution
used. In the present study, the velocity within the rigid canopy elements is observed to
be less than 0.1uτ , with uτ evaluated at the canopy tips, for all the DNS conducted. As
portrayed in figure 16, the velocity at the ‘solid’ points within the obstacles is significantly
smaller than that at the surrounding ‘fluid’ points, illustrating that the immersed-boundary
method resolves the canopy topology.

To analyse grid convergence, we have carried out three DNS for case C108550 with
different wall-normal resolutions, as portrayed in figure 17. Compared to smooth-wall
flows, where the maximum mean shear occurs at the wall, dU+/dy+ = 1, in our flows it
occurs at the canopy-tip plane and is not as high, in the present case dU+/dy+ ≈ 0.16,
peaking again at the floor at dU+/dy+ = 0.1. Since the local shear is the driver of
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Figure 16. Instantaneous realisations of the (a) streamwise, (b) wall-normal and (c) spanwise velocities in a
plane intersecting the canopy elements for case C54550, scaled with uτ evaluated at the canopy tips. The darkest
red and blue contours represent intensities of ±1.0, respectively.
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Figure 17. Wall-normal resolution, scaled with ν and uτ evaluated at the canopy tips, for case C108550 for a
fine resolution (black solid line), a standard resolution (red solid line) and a coarse resolution (blue solid line).

turbulence, the wall-normal resolution required for the direct simulation of these flows
is thus lower than for smooth-wall flows in terms of �y+, and can be adjusted following
the local shear, as shown in figures 17 and 18(b). Consistent with this discussion, let us
also note that the resolution at the floor in all of our simulations, for the case portrayed
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Figure 18. Turbulent statistics based on ν and uτ evaluated at the canopy tips for case C108550. The colour
scheme is as in figure 17.

(C108550), �y+ ≈ 2, is actually �y+ ≈ 0.3 when scaled with the local, dynamically
relevant friction velocity proposed in Sharma & García-Mayoral (2018, 2020b). Figure 18
portrays the results obtained for the resolution used in this paper, plus one finer and one
coarser. All results collapse, evidencing grid convergence.
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