GENERATORS OF $U_n(V)$ OVER A QUASI SEMILOCAL SEMIHEREDITARY RING

HIROYUKI ISHIBASHI

0. Introduction. Let o be a quasi semilocal semihereditary ring, i.e., o is a commutative ring with 1 which has finitely many maximal ideals $\{A_i | i \in I\}$ and the localization o_{A_i} at any maximal ideal A_i is a valuation ring. We assume 2 is a unit in o. Furthermore * denotes an involution on o with the property that there exists a unit θ in o such that $\theta^* = -\theta$. V is an *n*-ary free module over o with $f: V \times V \rightarrow o$ a λ -Hermitian form. Thus λ is a fixed element of o with $\lambda\lambda^* = 1$ and f is a sesquilinear form satisfying $f(x, y)^* = \lambda f(y, x)$ for all x, y in V. Assume the form is non-singular; that is, the mapping $M \rightarrow \text{Hom } (M, A)$ given by $x \rightarrow f(\cdot, x)$ is an isomorphism. In this paper we shall write f(x, y) = xy for x, y in V.

Let U be a submodule of V. If there exist n vectors $x_1, \ldots, x_r, \ldots, x_n$ such that $U = ox \oplus \ldots \oplus ox_r$ and $V = ox_1 \oplus \ldots \oplus ox_r \ldots \oplus ox_n$, then we call U a subspace of V and r the dimension of U, r is denoted by dim U.

Let U be a subspace of V. We call U a line if dim U = 1, a plane if dim U = 2, and a hyperplane if dim U = n - 1.

Let $U_n(V)$ or U(V) be the unitary group on V. We call an element σ in U(V) an isometry on V. An isometry τ on V which fixes every vector in a hyperplane V_{τ} of V is called a quasi-symmetry if V_{τ} is nonsingular, and a unitary transvection if V_{τ} is singular: Let S be the set of all those τ , i.e., the set of quasi-symmetries and unitary transvections.

In the present paper, we shall determine the length $l(\sigma)$ of any isometry σ in U(V), i.e., the minimal number of factors that are needed to express σ as a product of elements in *S*. The result is

$$l(\sigma) = n - d$$

where d is the dimension of a maximal subspace of V which is contained in the module V_{σ} of σ . In this paper set theoretic difference of A and B will be written A - B. $M \oplus N$ is a direct sum of modules M and N.

Clearly, this is a generalization of [7].

1. Statement of the theorem. $\{A_i | i \in I\}$ is the set of all maximal ideals of o. For i in I, let π_i or - be the canonical homomorphism from o onto $\bar{o} = o/A_i$. We use the same notation π_i or - to denote the canonical map from V onto $\bar{V} = V/A_iV$. We note that we consider no form on

Received April 28, 1980 and in revised form January 28, 1981.

 \overline{V} and we only regard \overline{V} as a module. Further, for σ in U(V) we define $\overline{\sigma}$ in Aut (\overline{V}) by $\overline{\sigma}\overline{x} = \overline{\sigma}\overline{x}, x \in V$.

For a subset U of V, $U^{\perp} = \{x \in V | xU = 0\}$. For submodules U and W of V, $U \perp W$ means UW = 0 and $U \cap W = \{0\}$. For $\sigma \in U(V)$ let V_{σ} be the fix module of σ , i.e.,

 $V_{\sigma} = \{x \in V | \sigma x = x\}$ and $d = \min \{\dim \pi_i(V_{\sigma}) | i \in I\}.$

We define $l(\sigma) = 0$ for $\sigma = 1$.

Now, with these notations, we state our theorem.

THEOREM. For any σ in $U_n(V)$ we have $l(\sigma) = n - d$.

2. Preliminary lemma. We have finitely many maximal ideals $\{A_i | i \in I\}$, *I* is the index set. For each *i* in *I*, ψ_i or ' denotes the canonical homomorphism of *o* into o_{A_i} which carries an element *a* of *o* to the class *a'* of o_{A_i} represented by a/1.

Therefore for a and b in o, a' = b' if and only if ca = cb for some c in $o - A_i$. We use the same notation ψ_i or ' to denote the canonical homomorphisms $V \rightarrow o_{A_i} V$ or $U(V) \rightarrow \text{Aut}(o_{A_i} V)$. We consider no form on $o_{A_i} V$ and only regard it as a module.

Now, we take a base $\{x_{\mu}|\mu = 1, \ldots, n\}$ for V and fix it.

LEMMA 2.1. Let $i \in I$.

(a) For vectors u and v in V if we have u' = v', then cu = cv for some c in $o - A_i$.

(b) For any vector v in V we can express cv = ay for some $a \in o$, $c \in o - A_i$ and $y \in V - A_iV$.

Proof. First we prove (a). We have the base $\{x_1, \ldots, x_n\}$ for V. Write $u = \sum a_{\mu}x_{\mu}$ and $v = \sum b_{\mu}x_{\mu}$, a_{μ} , $b_{\mu} \in o$. Then $a_{\mu}' = b_{\mu}'$ for $\mu = 1, \ldots, n$. Hence for each μ we have $c_{\mu}a_{\mu} = c_{\mu}b_{\mu}$ for some c_{μ} in $o - A_i$. Putting $c = \prod c_{\mu}$, we have (a).

Next we prove (b). Write $v = \sum a_{\mu}x_{\mu}$, $a_{\mu} \in o$. First let v' = 0, i.e., $a_1' = \ldots = a_n' = 0$. This means that for some c_1, \ldots, c_n in $o - A_i$ we have $c_1a_1 = \ldots = c_na_n = 0$. So, if we put $c = \prod c_{\mu}$, a = 0 and $y = a_1$ vector in $V - A_iV$, then we have cv = ay. Next let $v' \neq 0$. Therefore at least one a_r' , say a_1' , is not zero. Since o_{A_i} is a valuation ring, we may assume a_1' divides all a_r' in o_{A_i} . From this and by (a) we have (b).

3. Proof of the theorem. For *i* in *I*, throughout this paper, – denotes π_i , ' denotes ψ_i and ϵ_i denotes an element in *o* with $\pi_i \epsilon_i = 1$ and $\pi_j \epsilon_i = 0$ for $j \neq i$; such ϵ_i exists by the Chinese Remainder Theorem.

LEMMA 3.1. Let $\{E_s | 1 \leq s \leq r\}$ be r hyperplanes of V, then

$$\dim \bigcap_{s=1}^{\overline{r}} E_s \ge n-r \quad \text{for any } i \text{ in } I.$$

Proof. Take any *i* in *I*. If r = 1, then the lemma is clear. So let r > 1. Write

$$D = \bigcap_{s=1}^{r-1} E_s$$
 and $E = E_r$.

We suppose dim $\overline{D} \ge n - (r - 1)$ and show

 $\dim \overline{D \cap E} \ge n - r,$

which gives us the lemma by induction on r.

We write $d = \dim \overline{D}$. Take a base $\overline{x}_1, \ldots, \overline{x}_d$ for \overline{D} where x_1, \ldots, x_d are in D. Since E is a hyperplane, we can write $V = E \oplus ox$, $x \in V$. We may express $x_{\mu} = u_{\mu} + a_{\mu}x$, $u_{\mu} \in E$ and $a_{\mu} \in o$ for each $\mu = 1, \ldots, d$.

If $a_{\mu}' = 0$ for all μ , then we have an element c in $o - A_i$ with $ca_{\mu} = 0$ for all μ . Hence $cx_{\mu} = cu_{\mu}$ is contained in $D \cap E$, and so $\overline{D \cap E} = \overline{D}$. Consequently, dim $\overline{D \cap E} > n - r$.

Next, we treat the case that at least one $a_{\mu}' \neq 0$. Since o_{A_i} is a valuation ring, we may assume a_1' divides any a_{μ}' in o_{A_i} . Put $a_{\mu}' = (b_{\mu}'/c'_{\mu})a_1'$ for some b_{μ} in o and c_{μ} in $0 - A_i$. Then

$$(c_{\mu}a_{\mu})' = c_{\mu}'a_{\mu}' = b_{\mu}'a_{1}' = (b_{\mu}a_{1})'.$$

Hence $e_{\mu}c_{\mu}a_{\mu} = e_{\mu}b_{\mu}a_{1}$ for some e_{μ} in $o - A_{i}$. Put

 $v_{\mu} = e_{\mu}c_{\mu}x_{\mu} - e_{\mu}b_{\mu}x_{1}.$

Then v_{μ} is in $D \cap E$. Since c_{μ} , e_{μ} are in $o - A_i$, we have

 $\dim \overline{D \cap E} \ge d - 1 \ge n - r.$

Corollary 3.2. $l(\sigma) \ge n - d$.

Proof. Remember that quasi-symmetries and unitary transvections fix hyperplanes. Apply the lemma.

By the corollary it suffices to show that $l(\sigma) \leq n - d$. The proof will proceed by induction on n - d.

LEMMA 3.3. Let U be a submodule of V. If $\overline{V} = \overline{U}$ for all i in I, then V = U.

Proof. We have

$$V = \bigoplus_{\mu=1}^n o x_\mu.$$

Take $\{u_{i_{\mu}}\}$ in U with $\bar{x}_{\mu} = \bar{u}_{i_{\mu}}$ for i in I and μ in $\{1, \ldots, n\}$. Put

$$u_{\mu} = \sum_{i \in I} \epsilon_{i} u_{i_{\mu}}.$$

Then u_{μ} is contained in U and $\bar{x}_{\mu} = \bar{u}_{\mu}$ for each i and μ . This means

 $x_{\mu} - u_{\mu}$ is in AV, where $A = \bigcap_{i \in I} A_i$. So, we may write

$$x_{\mu} = u_{\mu} + \sum_{\nu=1}^{n} a_{\mu\nu} x_{\nu}, \quad a_{\mu\nu} \in A.$$

Put $M = \{a_{\mu\nu}\}$. Then, we have

$${}^{t}(u_{1},\ldots,u_{n}) = (E - M){}^{t}(x_{1},\ldots,x_{n}),$$

E is the identity matrix. Since E - M is invertible, we have V = U.

Let n - d = 0. Recall we have defined

 $d = \min \{\dim \pi_i(V_{\sigma}) | i \in I\}.$

Hence by the lemma we have $V = V_{\sigma}$. Therefore, $\sigma = 1$ and we have $l(\sigma) = 0 = n - d$, whence there is nothing to do.

So, let n - d > 0, i.e., $\sigma \neq 1$. We shall show that there exists τ in S such that

 $\min \{\dim \pi_i(V_{\tau\sigma}) | i \in I\} = d + 1,$

which will imply $l(\tau\sigma) \leq n - (d+1)$ by induction on n-d, and so $l(\sigma) \leq n-d$ as we desire. Thus, all that we have to do is to find such τ in S.

Definition.

 $I_0 = \{i \in I | \sigma' - 1 = 0 \text{ for } i\}$ $I_1 = \{i \in I | \sigma' - 1 \neq 0 \text{ for } i\}.$

In other words,

$$I_0 = \{i \in I | c(\sigma - 1) V = 0 \text{ for some } c \in o - A_i\}$$

and

$$I_1 = \{i \in I | c(\sigma - 1) V \neq 0 \text{ for any } c \in o - A_i\}.$$

Clearly, $I = I_0 + I_1$ (direct sum).

LEMMA 3.4. Let $i \in I$. If a vector y is contained in $V - A_i V$, then there exists a vector x in V with $yx \in o - A_i$.

Proof. Write

$$y = \sum_{\mu=1}^n p_\mu x_\mu, \quad p_\mu \in o.$$

Since $y \notin A_i V$, at least one p_{μ} , say p_1 , is not in A_i . On the other hand, since V is nonsingular and $\{x_1, \ldots, x_n\}$ is a base for V, there exists a vector x in V with $x_1x = 1$ and $x_{\mu}x = 0$ for $\mu \neq 1$. So we have $yx = p_1 \notin A_i$.

The following lemma is essential for the proof of the theorem.

LEMMA 3.5. Let $i \in I_1$. Then there exist a, c in o and x, y in V such that $(C_1) c(\sigma - 1)x = ay$ with $c \notin A_i$, $(C_2) yx \notin A_i$, $(C_3) c(\sigma - 1)V \subset aV$.

Proof. We have a direct sum $V = \bigoplus_{\mu=1}^{n} ox_{\mu}$. For each x_{μ} , by (b) of Lemma 2.1 we can express

 $c_{\mu}(\sigma - 1)x_{\mu} = a_{\mu}y_{\mu}$

where a_{μ} is in o, c_{μ} in $o - A_i$ and y_{μ} in $V - A_i V$. Since $i \in I_1$, we have $\sigma' \neq 1$. This implies that at least one $a_{\mu'}$, say a_1' , is not zero. Since o_{A_i} is a valuation ring, we may assume a_1' divides all $a_{\mu'}$, say, let $a_{\mu'} = a_1' b_{\mu'}'$ for b_{μ} in o. Hence for each μ by Lemma 2.1 there exists d_{μ} in $o - A_i$ such that $a_{\mu}d_{\mu} = a_1b_{\mu}d_{\mu}$. We may take $b_1 = d_1 = 1$. Therefore, putting $a = a_1$ and $c = \prod_{\mu=1}^{n} c_{\mu}d_{\mu}$, we have

(1)
$$c(\sigma - 1)x_{\mu} = ae_{\mu}y_{\mu}$$

where $e_{\mu} \in o$, $e_1 \in o - A_i$ and $c \in o - A_i$. From this $(C_3) c(\sigma - 1) V \subset aV$ is now clear.

Next, since $y_1 \in V - A_i V$, by Lemma 3.4 for some x_{μ} we have

(2)
$$y_1 x_\mu \notin A_i$$
.

Let p, q be variables in o. We put

 $x = px_1 + qx_\mu, \quad y = pe_1y_1 + qe_\mu y_\mu.$

Then by (1) we have $(C_1) c(\sigma - 1)x = ay$ and the equation

(3)
$$yx = pp^*e_1y_1x_1 + pq^*e_1y_1x_\mu + p^*qe_\mu y_\mu x_1 + qq^*e_\mu y_\mu x_\mu$$

holds. Hence it suffices to show that we can choose p, q in o with $yx \notin A_i$, which completes our proof. We recall that we have the unit θ in o with $\theta^* = -\theta$. Therefore the answer is given by the following table, where - denotes π_i (note $\bar{e}_1 \neq 0$ by (1) and $\overline{y_1x_{\mu}} \neq 0$ by (2)).

Cases	$\overline{y_1x_1}$	$\overline{e_{\mu}}$	$\overline{y_{\mu}x_{\mu}}$	Þ	q
1	≠0			1	0
2	0	0		1	1
3	0	≠0	≠0	0	1
4	0	≠ 0	0	1	1 or θ

In case 4 above, we take $q \in \{1, \theta\}$ with

$$\overline{q^*e_1y_1x_\mu + qe_\mu y_\mu x_1} \neq 0;$$

in fact such q exists, since $\overline{e_1y_1x_{\mu}} \neq 0$. Thus we have shown (C₂) $yx \notin A_i$.

Let us call the above four elements $a, c \in o$ and $x, y \in V$ in the lemma "a good foursome for i" if they satisfy (C_1) , (C_2) and $C(_3)$, and denote it by (a, y, c, x). Further, when there exits a good foursome (a, y, c, x) for i, we say "x is good for i". With this definition we can say that if $i \in I_1$ then there exists a vector x in V which is good for i.

Now, since the involution * on o induces a permutation on the set of maximal ideals $\{A_i | i \in I\}$ of o, we can define a permutation on the index set I by defining $i^* = j$ if and only if $A_i^* = A_j$.

LEMMA 3.6. If $i, i^* \in I_1$, then there exists a vector u_i in V which is good for both i and i^* .

Proof. If $i = i^*$ then there is nothing to do (apply Lemma 3.5). So let $i \neq i^*$. To simplify the notation we write $j = i^*$. Now by Lemma 3.5 we have good foursomes (a_i, y_i, c_i, x_i) for i and (a_j, y_j, c_j, x_j) for j. By condition (C_1) , (C_2) we have respectively,

(1)
$$c_i(\sigma - 1)x_i = a_iy_i$$
 and $c_j(\sigma - 1)x_j = a_jy_j$

with $c_i \in o - A_i$ and $c_j \in o - A_j$, and

(2)
$$\pi_i(y_i x_i) \neq 0$$
 and $\pi_j(y_j x_j) \neq 0$.

By condition (C_3) we can express

(3)
$$c_i(\sigma - 1)x_j = a_i w_j$$
 and $c_j(\sigma - 1)x_i = a_j w_i$

for some $w_i, w_j \in V$.

Let p, q be variables in o and put $u_i = px_i + qx_j$. Then by (1) and (3) we have

(4)
$$c_i(\sigma-1)u_i = a_i(py_i + qw_j)$$
 and $c_j(\sigma-1)u_i = a_j(pw_i + qy_j)$.

Therefore, two foursomes $(a_i, py_i + qw_j, c_i, u_i)$ and $(a_j, pw_i + qy_j, c_j, u_i)$ satisfy the two conditions (C_1) and (C_3) for *i* and *j* respectively. So it suffices to show (C_2) for those two foursomes respectively. Namely, we must show that we can choose p, q in o so that

$$\pi_i((py_i + qw_j)u_i) \neq 0 \text{ and} \\ \pi_j((pw_i + qy_j)u_i) \neq 0.$$

As usual, the Chinese Remainder Theorem will play a central role. To simplify the notation we write

$$f = (py_i + qw_j)u_i$$
 and $g = (pw_i + qy_j)u_i$

Therefore

(5)
$$f = p p^* y_i x_i + q p^* w_j x_i + p q^* y_i x_j + q q^* w_j x_j$$

1238

and

(6)
$$g = pp^*w_ix_i + qp^*y_jx_i + pq^*w_ix_j + qq^*y_jx_j.$$

By the Chinese Remainder Theorem we can take p, q in o as in the following table.

Cases	$\pi_i(w_j x_j)$	$\pi_j(w_i x_i)$	$\pi_i(w_j x_i)$	$\pi_j(w_i x_j)$	$\pi_i(y_i x_j)$	$\pi_j(y_j x_i)$	Þ	q
1	≠0						0	1
2		$\neq 0$					1	0
3	0	0	$\neq 0$				α	1
4	0	0		≠ 0			1	$\boldsymbol{\beta}$
5	0	0			$\neq 0$		γ	1
6	0	0				≠0	1	δ

In the above, α is any element in o with

 $\pi_i(\alpha) = 0, \pi_j(\alpha) \in \{\pm 1\} \text{ and } \\ \pi_j(\alpha w_i x_j + y_j x_j) \neq 0;$

 γ is any element in o with

 $\pi_i(\gamma^*) = 0, \quad \pi_j(\gamma^*) \in \{\pm 1\}$ and $\pi_j(\gamma^*y_jx_i + y_jx_j) \neq 0.$

As for β and δ they are chosen symmetrically to α and γ respectively.

We now check that p, q satisfy $\pi_i(f) \neq 0$ and $\pi_j(g) \neq 0$. We treat Cases 1, 3, 5. In Case 1, p = 0 and q = 1, so $\pi_i(f) = \pi_i(w_j x_j) \neq 0$. Further, by (2), $\pi_i(g) = \pi_i(y_i x_i) \neq 0$. Next we treat Case 3.

Let – denote π_i . Since $\overline{w_j x_j} = 0$, $\overline{p} = \overline{\alpha} = 0$ and q = 1, we have $\overline{f} = \overline{\alpha^* w_j x_i}$. Further $\pi_j(\alpha) \in \{\pm 1\}$ implies $\alpha \notin A_j$. Hence $\alpha^* \notin A_j^*$ (note $A_j^* = A_i$), i.e., $\overline{\alpha^*} \neq 0$. Thus we have $\overline{f} \neq 0$. Let – denote π_j . Since $\pi_i(\alpha) = 0$, by the same way as above we have $\pi_j(\alpha^*) = 0$. Hence $\overline{p^*} = \overline{\alpha^*} = 0$. Further, since we have

q = 1 and $\overline{\alpha w_i x_j + y_j x_j} \neq 0$,

we have $\bar{g} \neq 0$. We consider Case 5. Let - denote π_i . By $\overline{w_j x_j} = 0$, $\overline{p^*} = \overline{\gamma^*} = 0$ and q = 1, we have $\bar{f} = \overline{\gamma y_i x_j}$. Since $\pi_j(\gamma^*) \neq 0$, we have $\pi_i(\gamma) \neq 0$ and so $\bar{f} \neq 0$. Let - denote π_j . Since $\pi_i(\gamma^*) = 0$, we have $\pi_j(\gamma) = 0$. Further, since q = 1, we have

 $\bar{g} = \overline{\gamma^* y_j x_j + y_j x_j}.$

Hence $\bar{g} \neq 0$. The cases 2, 4, and 6 are symmetric to the cases 1, 3, and 5, respectively and we omit them.

LEMMA 3.7. If $i \in I_1$, then there exists a vector u_i in V which is good for i and $d < \dim V_{\sigma} + ou_i$ for i.

Proof. We write - for π_i . Using Lemma 3.5, we have a good foursome (a_i, y_i, c_i, x_i) for *i*. If it holds that

 $d < \dim \overline{V_{\sigma} + \operatorname{ox}_{i}},$

the lemma holds. So we assume this is not the case, i.e.,

 $d = \dim \overline{V_{\sigma} + \mathsf{ox}}_{i}.$

Since d < n, there exists a vector z in V with

 $d < \dim \overline{V_{\sigma} + oz}.$

By condition (C_3) we may write $c_i(\sigma - 1)z = a_i w$ for some w in V. Now for $p \in o$ and $q \in o - A_i$ we put

$$u_i = p x_i + q z$$
 and $v_i = p y_i + q w$.

Then (a_i, v_i, c_i, u_i) satisfies (C_1) , (C_3) and

 $d < \dim \overline{V_{\sigma} + ou_i}.$

To show (C_2) compute

$$v_{i}u_{i} = pp^{*}y_{i}x_{i} + qp^{*}wx_{i} + pq^{*}y_{i}z + qq^{*}wz.$$

Since $\overline{y_i x_i} \neq 0$ and 2 is a unit, we can take $\alpha \in \{\pm 1\}$ with

 $\overline{y_i x_i + \alpha w x_i + \alpha^* y_i z} \neq 0.$

Therefore, our p, q are given by the following table.

Cases	\overline{wz}	Þ	q	
1	≠0	0	1	
2	0	1	α	

LEMMA 3.8. Let $i \in I$. Then there exists a vector u_i in V with $d < \dim \overline{V_{\sigma} + ou_i}$ for both i and i^* .

Proof. Write
$$j = i^*$$
. Since $d < n$, we can take z_i, z_j in V with $d < \dim \overline{V_{\sigma} + oz_i}$ for i and $d < \dim \overline{V_{\sigma} + oz_j}$ for j .

Let p be any element in o with $\pi_i(p) = 1$ and $\pi_j(p) = 0$, q in o with $\pi_i(q) = 0$ and $\pi_j(q) = 1$. Then $u_i = px_i + qx_j$ is the desired vector.

Definition. Let $i \in I$. We say a vector u is admissible for i if u satisfies the following two conditions, where $v = (\sigma - 1)u$ and $- = \pi_i$.

(a) $\overline{V} = \overline{v^{\perp} + ou}$ (b) $d < \dim \overline{V_{\sigma} + ou}$. We say u is *admissible* if u is admissible for all i in I.

A key point of the proof is to find an admissible vector u in V.

Definition.

 $I_{11} = \{i \in I_1 | i^* \in I_1\}$ $I_{10} = \{i \in I_1 | i^* \in I_0\}$ $I_{01} = \{i \in I_0 | i^* \in I_1\}$ $I_{00} = \{i \in I_0 | i^* \in I_0\}.$

Therefore we have $I = I_{11} + I_{10} + I_{01} + I_{00}$ (direct sum), and $I_{11}^* = I_{11}, I_{10}^* = I_{01}, I_{01}^* = I_{10}, I_{00}^* = I_{00}$.

Definition. * defines a classification of I in which each class consists of $\{i, i^*\}$. Let K be the set of representatives of this classification with $I_{10} \subset K$.

For each k in K, applying Lemmas 3.6, 3.7 and 3.8, we can take a vector u_k in V with the following properties (P_1) , (P_2) and (P_3) :

- (P_1) If $k \in I_{11}$, then u_k is good for both k and k^* .
- (P_2) If $k \in I_{10}$, then u_k is good for k and $d < \dim \overline{V_{\sigma} + ou_k}$ for k.
- (P₃) If $k \in I_{00}$, then $d < \dim \overline{V_{\sigma} + ou_k}$ for both k and k^{*}.

Further, for each k in K, we take an element α_k in o with $\overline{\alpha}_k = 1$ for k and k^* and $\overline{\alpha}_k = 0$ for $k \in I - \{k, k^*\}$. Put $u = \sum_{k \in K} \alpha_k u_k$ and $v = (\sigma - 1)u$. With these notations our next task is to show that u is an admissible vector.

LEMMA 3.9. (a) Let i be in I_0 . Then it holds that

 $d < \dim \overline{V_{\sigma} + ou}$ for i^* .

(b) Let i be in I_1 . Then u is good for i.

Proof. First we prove the case (a). Let $i \in I_0$. Take k in $K \cap \{i, i^*\}$. Then we have $\bar{u} = \bar{u}_k$ for i^* . Note $I_0 = I_{00} + I_{01}$. If $i \in I_{00}$ then $i^* \in I_{00}$ and so $k \in I_{00}$. Therefore by the property (P_3) for u_k we have (a) of the lemma. If $i \in I_{01}$ then $i^* \in I_{10}$, consequently $i^* = k$, because $I_{10} \subset K$ and $I_{01} \not\subset K$. Therefore, by the property (P_2) for u_k we have also (a) of the lemma.

Next we prove the case (b). Let $i \in I_1$. Take k in $K \cap \{i, i^*\}$. We have $I_1 = I_{11} + I_{10}$. If $i \in I_{11}$ then $i^* \in I_{11}$, consequently $k \in I_{11}$. If $i \in I_{10}$ then i = k. Hence, in each case, by the properties (P_1) and (P_2) we see that u_k is good for i. Let (a_i, y_i, c_i, u_k) be a good foursome for i. Then by (C_1) and (C_3) we have

$$c_i(\sigma - 1)u = a_i\left(\alpha_k y_i + \sum \alpha_j w_j\right)$$

for some w_j in V where \sum_{i} is the sum for j in $K - \{k\}$. By (C_2) we have $y_i u_k \notin A_i$. Hence, putting

$$w = \alpha_k y_i + \sum_j \alpha_j w_j,$$

we have $\overline{wu} = \overline{y_i u_k} \neq 0$ for *i*. Thus (a_i, w, c_i, u) is a good foursome for *i*. That is, *u* is good for *i*.

LEMMA 3.10. If $i \in I_0$, then $\overline{V} = \overline{v^{\perp}}$ for i^* (here $v = (\sigma - 1)u$).

Proof. Since $i \in I_0$, for some c in $o - A_i$ we have $c(\sigma - 1)V = \{0\}$. Hence cv = 0. Therefore, for all w in V we have $0 = (cv)w = v(c^*w)$, i.e., $c^*w \subset v^{\perp}$ and so $c^*V \subset v^{\perp}$. On the other hand, since $c \notin A_i$, we have $c^* \notin A_i^*$. Thus it holds that $\overline{V} = \overline{v^{\perp}}$ for i^* .

LEMMA 3.11. If $i \in I_0$, then u is admissible for i^* .

Proof. By (a) of Lemma 3.9 we have

 $d < \dim \overline{V_{\sigma} + ou}$ for i^* .

By Lemma 3.10 we have $\bar{V} = \overline{v^{\perp} + ou}$ for i^* .

LEMMA 3.12. Let $i \in I$. For y in V if $yu \notin A_i$ then we have $\overline{V} = \overline{y^{\perp} + ou}$ for i^* .

Proof. We use - for π_i^* . Take any z in V. Put a = zy and c = uy. We note that $yu \neq A_i$ if and only if $uy \notin A_i^*$. Hence $\bar{c} \neq 0$. Since $cz - au \in y^{\perp}$, we have $cz \in y^{\perp} + ou$. This implies $\bar{V} = y^{\perp} + ou$ for i^* .

LEMMA 3.13. If $i \in I_1$ then u is admissible for i^* .

Proof. We write $i^* = j$ and use - for π_j . Since $i \in I_1$, by (b) of Lemma 3.9 we have a good foursome (a, y, c, u) for i. Therefore it holds that cv = ay with $c \notin A_i$, $yu \notin A_i$ and $c(\sigma - 1)V \subset aV$.

First, we show $\overline{V} = \overline{v^{\perp} + ou}$. Since $yu \notin A_i$, by Lemma 3.12, we have $\overline{V} = \overline{y^{\perp} + ou}$ for j. We show $\overline{y^{\perp}} \subset \overline{v^{\perp}}$. Take any z in y^{\perp} . Then cvz = ayz = 0, which implies $vc^*z = 0$, i.e., $c^*z \in v^{\perp}$. On the other hand, by $c \notin A_i$ we have $c^* \notin A_j$, hence $\overline{y^{\perp}} \subset \overline{v^{\perp}}$. Thus, $\overline{V} = \overline{v^{\perp} + ou}$.

Next we show $d < \dim \overline{V_{\sigma} + ou}$. Suppose the inequality does not hold, i.e., $d = \dim \overline{V_{\sigma} + ou}$. Then $\overline{u} \in \overline{V_{\sigma}}$ and so we may write u = z + sfor some z in V_{σ} and s in $A_{j}V$. Since $yu \notin A_{i}$, we have $uy \notin A_{j}$. Thus $zy \notin A_{j}$. Hence $yz \notin A_{i}$. Put b = yz, whence $b \notin A_{i}$. Then

ab = ayz = cvz = 0,

because $v = (\sigma - 1)u$ and $((\sigma - 1)V)V_{\sigma} = \{0\}$. Thus, we have

 $bc(\sigma - 1) V \subset ba V \subset \{0\}.$

But, since $bc \notin A_i$, this would imply $i \in I_0$, a contradiction.

LEMMA 3.14. *u* is an admissible vector in *V*.

Proof. We show that u is admissible for all i in I. Take any i in I. Then $i^* \in I$. We have $I = I_0 + I_1$. If $i^* \in I_0$ then u is admissible for i by Lemma 3.11. If $i^* \in I_1$ then u is admissible for i by Lemma 3.13.

Now, by the lemma we have for all i in I

(1)
$$\bar{V} = \overline{v^{\perp} + ou}$$

and

(2) $d < \dim \overline{V_{\sigma} + ou}$.

Further, since $v = (\sigma - 1)u$ and $V_{\sigma}((\sigma - 1)V) = \{0\}$, we have

(3) $V_{\sigma} \subset v^{\perp}$.

Here, we may assume $\bar{u} \neq 0$ without loss of generality. Because, if necessary, we can choose z in V_{σ} with $\overline{u+z} \neq 0$ and take u+z for u above.

Thus, by (1) \sim (3), we can choose a base $\{\bar{u}_{i1}, \ldots, \bar{u}_{i(n-1)}, \bar{u}\}$ for \bar{V} for each *i* in *I* such that $u_{i1}, u_{i2}, \ldots, u_{id}$ are in V_{σ} and $u_{i(d+1)}, \ldots, u_{t(n-1)}$ are in v^{\perp} . Put

$$u_{\mu} = \sum_{i \in I} \epsilon_{i} u_{i_{\mu}}$$

for each $\mu \in \{1, \ldots, n-1\}$, where ϵ_i has been defined before as an element in o with $\pi_j(\epsilon_i) = \delta_{ij}$ (Kronecker δ) for i, j in I. It is clear that $\{\bar{u}_1, \ldots, \bar{u}_{n-1}, \bar{u}\}$ is a base for \bar{V} for each i in I.

LEMMA 3.15. Let u_1, \ldots, u_n be *n* vectors in *V*. For each *i* in *I*, if $\bar{V} = \bigoplus_{\mu=1}^n \bar{o}\bar{u}_{\mu}$, then $V = \bigoplus_{\mu=1}^n ou_{\mu}$.

Proof. By Lemma 3.3, we know

$$V = \sum_{\mu=1}^{n} o u_{\mu}.$$

Hence we show the linear independence of $\{u_{\mu}\}$ over o. Suppose

$$a_1u_1+\ldots+a_nu_n=0, \quad a_{\mu}\in o,$$

with at least one nonzero coefficient, say a_1 . We take a maximal ideal A_i which contains the annilator of a_1 . Then $a_1' \neq 0$ in o_{A_i} . Since o_{A_i} is a valuation ring, we may assume a_1' divides all $a_{\mu'}$. So we have

$$a_1'(u_1' + (b_2'/c_2')u_2' + \ldots) = 0, \quad b_\mu \in o, \ c_\mu \in o - A_i.$$

Hence, we have

$$a_1(e_1u_1 + e_2u_2 + \ldots) = 0, \quad e_\mu \in o, \quad e_1 \in o - A_i.$$

Since $\bar{V} = \bigoplus_{\mu=1}^{n} \bar{o}\bar{u}_{\mu}$ is nonsingular, we have a vector v in V with $\bar{u}_{1}\bar{v} = 1$ and $\bar{u}_{\mu}\bar{v} = 0$ for $\mu \neq 1$. Put

$$b = (e_1u_1 + e_2u_2 + \ldots)v.$$

Then $b \in o - A_i$ and $a_1 b = 0$, which contradicts the choice of A_i .

By the lemma, we see that $\{u_1, \ldots, u_{n-1}, u\}$ is a base for V. We write

$$U = \bigoplus_{\mu=1}^{n-1} u_{\mu}$$

Then it holds that

(4)
$$V = U \oplus ou$$

(5)
$$U \subset v^{\perp}$$

(6) $d \leq \dim \overline{U \cap V_{\sigma}}$ for all i in I.

By (4) we can define a linear map τ on V by defining $\tau = 1$ on U and $\tau u = u + v$. Since $v = (\sigma - 1)u$ and $U \subset v^{\perp}$ by (5), τ preserves the form on V. In fact, we shall see that τ is in $U_n(V)$ by the following lemma.

Lemma 3.16. $V = U \oplus o\sigma u$.

Proof. We shall show that $\overline{V} = \overline{U} \oplus \overline{\sigma \sigma u}$ for all i in I, which will imply $V = U \oplus \sigma \sigma x$ by Lemma 3.15. Since U is a hyperplane of V, we have $\overline{U} \subsetneq \overline{V}$. Therefore it suffices to show that $\overline{V} = \overline{U + \sigma \sigma u}$.

First let $i \in I_0$. Hence we have c in $o - A_i$ with cv = 0. We note $\overline{co} = \overline{o} = \overline{oc}$. Hence

$$\overline{U + o\sigma u} = \overline{U + o(u + v)} = \overline{U + oc(u + v)} = \overline{U + ou} = \overline{V}$$

by (4).

Next let $i \in I_1$. Then by (b) of Lemma 3.9 we have a good foursome (a, w, c, u) for i. Hence we have

$$\overline{U + o\sigma u} = \overline{U + oc(u + v)} = \overline{U + o(cu + aw)}.$$

Therefore if $\bar{a} = 0$ then the right hand side equals $\overline{U + ou} = \overline{V}$ and we have the lemma. So we treat the case $\bar{a} \neq 0$. In this case, we suppose $\overline{U + o\sigma u} \subsetneq \overline{V}$ which will imply a contradiction. Since \overline{U} is a hyperplane of \overline{V} , our assumption means $\overline{\sigma u} \in \overline{U}$. Since $U \subset v^{\perp}$, we have $(\overline{\sigma u})v = 0$. Therefore

$$0 = \overline{(\sigma u)v} = \overline{\sigma u(\sigma u - u)} = \overline{(u - \sigma u)u} = -\overline{vu}.$$

Hence $0 = \overline{cvu} = \overline{awu} = \overline{\overline{awu}}$, a contradiction, because we have $\overline{wu} \neq 0$.

By the lemma τ is an automorphism on V and so τ is contained in $U_n(V)$. Write $D = ou_1 + \ldots + ou_d$. Then $D \subset V_{\sigma}$. Since $D \subset U$, we have $D \subset V_{\tau}$. Therefore $D \subset V_{\tau^{-1}\sigma}$. Further, since $\tau u = \sigma u$, we have $\tau^{-1}\sigma u = u$. From these two, now we have

 $D \oplus ou \subset V_{\tau^{-1}\sigma}.$

Finally, since $D \oplus ou$ is a subspace of V with

 $\dim (D \oplus ou) = d + 1,$

we have

 $d + 1 \leq \dim \overline{V_{\tau^{-1}\sigma}}$ for all *i* in *I*.

Thus we have completed the proof of the theorem.

References

- 1. C. Chang, Unitary groups over semilocal domain, J. Algebra 39 (1976), 160-173.
- 2. J. Dieudonné, Sur les groupes classiques, Actual. Scient. et ind., n 1040 (Hermann, Paris, 1948).
- 3. —— Sur les générateurs des groupes classiques, Summa Brasil. Math. 3 (1955), 149–179.
- 4. E. W. Ellers, Decomposition of orthgonal symplectic, and unitary isometries into simple isometries, Abh. Math. Sem. Univ. Hamburg 46 (1977), 97-127.
- 5. H. Ishibashi, Generators of $O_n(V)$ over a quasi semilocal semhereditary domain, Comm. in Algebra 7 (1979), 1043–1064.
- 6. Generators of $Sp_n(V)$ over a quasi semilocal semihereditary domain, Comm. in Algebra 6 (1979), 1673–1683.
- 7. Generators of $U_n(V)$ over a quasi semilocal semihereditary domain, J. Algebra 60 (1979), 199–203.
- 8. D. G. James, Unitary groups over local rings, J. Algebra 52 (1978), 354-363.

Josai University, Sakado, Saitama, Japan