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GENERATORS OF U,(V) OVER A QUASI SEMILOCAL
SEMIHEREDITARY RING

HIROYUKI ISHIBASHI

0. Introduction. Let o be a quasi semilocal semihereditary ring, i.e.,
o is a commutative ring with 1 which has finitely many maximal ideals
{A4,|7 € I} and the localization o4; at any maximal ideal 4, is a valuation
ring. We assume 2 is a unit in o. Furthermore * denotes an involution on
o with the property that there exists a unit 6 in o such that 6* = —6. V'is
an n-ary free module over o with f: VX V' — o a A-Hermitian form.
Thus \ is a fixed element of o with A\* = 1 and f is a sesquilinear form
satisfying f(x, ¥)* = N (y, x) for all x, y in V. Assume the form is non-
singular; that is, the mapping M — Hom (M, 4) given by x — f( , x)
is an isomorphism. In this paper we shall write f(x, y) = xy forx, yin V.

Let U be a submodule of V. If there exist n vectors xy, . . ., %;, . . ., X,
such that U =0x® ... ®@ ox, and V=0x1® ...® ox,...®D ox,, then
we call U a subspace of 17 and » the dimension of U, r is denoted by
dim U.

Let U be a subspace of V. We call U a line if dim U = 1, a plane if
dim U = 2, and a hyperplane if dim U = n — 1.

Let U,(V) or U(V) be the unitary group on . We call an element o
in U(V) an isometry on V. An isometry 7 on V which fixes every vector
in a hyperplane 1, of V is called a quasi-symmetry if V. is nonsingular,
and a unitary transvection if V, is singular: Let S be the set of all those
7, 1.e., the set of quasi-symmetries and unitary transvections.

In the present paper, we shall determine the length /(¢) of any isometry
o in U(V), i.e., the minimal number of factors that are needed to express
o as a product of elements in .S. The result is

I(c) =n—d
where d is the dimension of a maximal subspace of ' which is contained
in the module V, of ¢. In this paper set theoretic difference of 4 and B

will be written 4 — B. M @ N is a direct sum of modules M and N.
Clearly, this is a generalization of [7].

1. Statement of the theorem. {4,z € I} is the set of all maximal
ideals of o. For 7 in I, let 7, or — be the canonical homomorphism from
oonto 6 = o/A ;. We use the same notation =; or — to denote the canon-
ical map from V onto V = V/A,V. We note that we consider no form on
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V and we only regard V as a module. Further, for ¢ in U(V) we define ¢ in
Aut (V) by 6% = 5x,x € V.

For a subset U of V, U+ = {x € V|xU = 0}. For submodules U and
Wof V, UL W means UW =0 and UN W = {0}. For ¢ € U(V)
let , be the fix module of o, i.e.,

Vo= {x € Vlex =x} and d = min {dim =,;(V,)|i € I}.

We define I(¢) = 0 for ¢ = 1.
Now, with these notations, we state our theorem.

THEOREM. For any o in U,(V) we have [(¢c) = n — d.

2. Preliminary lemmma. We have finitely many maximal ideals
{A ¢ € I}, Iis the index set. For each 7 in I, ; or ' denotes the canonical
homomorphism of o into 0,4, which carries an element a of o to the class
a’ of oy, represented by a/1.

Therefore for @ and b in o, ¢’ = b’ if and only if ca = ¢b for some ¢ in
o — A ;. We use the same notation ¢; or ’ to denote the canonical homo-
morphisms V — o4,V or U(V) — Aut (o4; V). We consider no form on
04,V and only regard it as a module.

Now, we take a base {x,|u = 1,...,n} for V and fix it.

LEMMA 2.1. Let 1 € I.

(a) For vectors uw and v in V if we have u’ = o', then cu = cv for some c
mo— A,

(b) For any vector v in V we can express cv = ay for some a € o,
c€o—A;andy € V — A,;V.

Proof. First we prove (a). We have the base {x, . . ., x,} for V. Write
u = awx,and v = bu¥u, @y, b, € 0. Thena, = b,/ foru=1,...,n
Hence for each p we have cua, = ¢,b, for some ¢, in o — 4,;. Putting
¢ = Il¢,, we have (a).

Next we prove (b). Write v = Z Xy, @, € o. Firstletv’ = 0, ie.,
a = ... =a, = 0. This means that for some ¢;,...,c,ino — 4, we
have cia; = ... = ¢,a, = 0. So, if we put ¢ = Il¢,, @ = 0andy = any
vector in V' — A;V, then we have cv = ay. Next let o ## 0. Therefore at
least one a,’, say ay/, is not zero. Since oy4; is a valuation ring, we may
assume a,’ divides all ¢,” in 04,. From this and by (a) we have (b).

3. Proof of the theorem. For 7 in , throughout this paper, — denotes
74, ' denotes ¢; and ¢; denotes an element in o with 7,¢; = 1 and m;e; = 0
for 7 # 1; such ¢, exists by the Chinese Remainder Theorem.

LEMMA 3.1. Let {E |1 < s £ r} be r hyperplanes of V, then

dm N E;=2n —7r foranyiin 1.
s=1

https://doi.org/10.4153/CJM-1981-092-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-092-1

1234 HIROYUKI ISHIBASHI

Proof. Take any ¢in I. If r = 1, then the lemma is clear. So let » > 1.

Write
r—1
D=NE, and E = E,
s=1

We suppose dim D = # — (r — 1) and show
dmDNE z2n —r7r,

which gives us the lemma by induction on r.

We write d = dim D. Take a base &, . . ., % for D where %1, . . ., x4
are in D. Since E is a hyperplane, we can write I/ = E® ox, x € V. We
may express x, = #, + ax, #, € £ anda, € oforeachpu=1,...,d.

If ¢,/ = 0 for all x, then we have an element ¢ in o — 4, with ca, = 0
for all u. Hence cx, = cu, is contained in DM E, and so D N\ E = D.
Consequently, dim DM E > n — r.

Next, we treat the case that at least one ¢, #% 0. Since o4, is a valua-
tion ring, we may assume a," divides any @,/ in o4,. Put e,/ = (b, /c')a)
for some b, inoand ¢, in 0 — 4 ;. Then

(cuty) = ¢/a) = b/ay = (buay)'.

Hence e.cua, = ebuay for some ¢, in o — A4 ,. Put
Uy = €%y — €.b,x1.

Then v, is in D M £. Since ¢,, ¢, are in o — 4 ;, we have
dmDNE=2d—-1=2n—r.

CororLLary 3.2, I{(¢) =2 n — d.

Proof. Remember that quasi-symmetries and unitary transvections
fix hyperplanes. Apply the lemma.

By the corollary it suffices to show that /(¢) < n — d. The proof will
proceed by induction on n — d.

LEMMA 3.3. Let U be a submodule of V. If V = U for all i in I, then
V= U.
Proof. We have

n

V=@ ox,.

=1
Take {uy,} in U with &, = #y foriin fand pin {1, ..., n}. Put
Uy, = Z G{I/ti“.
€T

Then u, is contained in U and X, = 4, for each 7 and u. This means
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x, — uy,isin AV, where A = MNiec; A, So, we may write

Xy = U, + ila,.,x,, auy € A.
Put M = {a,,}. Then, we have
Yy, ooy tty) = (E— M)H(xq, ...y %),
E is the identity matrix. Since &£ — M is invertible, we have V' = U.
Let n — d = 0. Recall we have defined
d = min {dim =;(V,)|i € I}.

Hence by the lemma we have 1V = V,. Therefore, ¢ = 1 and we have
I(¢) = 0 = n — d, whence there is nothing to do.

So, let n — d > 0, i.e., ¢ # 1. We shall show that there exists 7 in S
such that

min {dim 7(V,)|t € I} =d + 1,

which will imply I(r¢) £ n — (d + 1) by induction on # — d, and so
I(¢) £ n — d as we desire. Thus, all that we have to do is to find such
7in S.

Definition.
In=1{i€cIle’ —1=0 for ¢}
Ii=1{icIle—1#0 for i}
In other words,
Iy=1{i € Ilc(c — 1)V = 0 for some ¢ € 0o — A}
and
Ii={icIjc(e — 1)V #0foranyc € o — 4,}.
Clearly, I = Iy + I, (direct sum).

LEMmA 3.4, Let © € 1. If a vector y 1s contained in V — AV, then there
exists a vector x in V with yx € o — A .

Proof. Write

y = Z;Puxm Pu€ o
from

Since v ¢ AV, at least one p,, say pi, is not in 4 ,. On the other hand,

since V is nonsingular and {xi, ..., x,} is a base for V, there exists a
vector x in V with x;x = 1 and x,x = 0 for u % 1. So we have yx =
Pl g Ai'
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The following lemma is essential for the proof of the theorem.

LEmmA 3.5. Let © € I. Then there exist a, ¢ in o and x,y in V such that
(C1) ¢lo — 1)x = ay with ¢ ¢ A,

(Ce) yx ¢ 4,

(C3) cle = D)V Cal.

Proof. We have a direct sum 17 = @,_; ox,. For each x,, by (b) of
Lemma 2.1 we can express
culo — D)x, = @y,

where ¢, isino, ¢,ino — 4;and y,in V. — 4,V. Since ¢ € [,, we have
o’ # 1. This implies that at least one a,/, say ai’, is not zero. Since o
is a valuation ring, we may assume a{ divides all «,/, say, let a,’ =
a,'b,’ for b, in o. Hence for each u by Lemma 2.1 there exists d,ino — 4;
such that a.d, = a;b,d,. We may take b, = d; = 1. Therefore, putting
a = ayand ¢ = []izi cud,, we have

(1) (o — l)xu = AeuYy

wheree, € o,¢; € 0 — A;and ¢ € 0 — A ;. From this (C3) ¢c(e¢ — 1) V C
aV is now clear.
Next, since y; € 1V — 4V, by Lemma 3.4 for some x, we have

(2) vy, 7 A
Let p, ¢ be variables in o. We put
X = pxy+ gx, ¥ = peyi + geyu
Then by (1) we have (C)) ¢(¢ — 1)x = ay and the equation
(3) yx = ppreyixs + pgreyix, + prgeyr + gty

holds. Hence it suffices to show that we can choose p, ¢ in o with yx ¢ 4,
which completes our proof. We recall that we have the unit 6 in o with
6* = —0. Therefore the answer is given by the following table, where —
denotes 7, (note &, # 0 by (1) and yyx, ¥ 0 by (2)).

Cases Yixt e, VuXy 4 q
1 #0 1 0
2 0 0 1 1
3 0 #0 #0 0 1
4 0 #() 0 1 loré

In case 4 above, we take ¢ € {1, 8} with

T*eyix, + geyuxs # 0;

in fact such ¢ exists, since e;y%, # 0. Thus we have shown (C,) yx ¢ 4 ..
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Let us call the above four elements a, ¢ € oand x,y € V in the lemma
“a good foursome for 7" if they satisfy (C,), (C;) and C(3), and denote it
by (a, y, ¢, x). Further, when there exits a good foursome («, ¥, ¢, x) for
7, we say ‘‘x is good for ¢'". With this definition we can say that if z € I,
then there exists a vector x in 7 which is good for 1.

Now, since the involution * on o induces a permutation on the set of
maximal ideals {4 ;|7 € I} of o, we can define a permutation on the index
set I by defining ¢* = jif and only if 4.* = 4.

LEMMA 3.6. If 1, ¢* € Iy, then there exists a vector u; in V which is good
for both i and 1*.

Proof. If © = ¢* then there is nothing to do (apply Lemma 3.5). So let
1 # 1* To simplify the notation we write j = ¢*. Now by Lemma 3.5 we
have good foursomes (aq, ¥, ¢4y x;) for ¢ and (aj, y;, c;, x;) for j. By
condition (Ci), (Cs) we have respectively,

1) ¢ilc — Dx; =ay: and ¢;(c — 1)x; = a,y;
with¢; € o — 4A;and ¢; € 0o — 4, and

2) mi(yx) =0 and 7;(yx;) # 0.

By condition (C;) we can express

B) ¢ilc — x; = aw; and ¢,;(c — )x; = ¢w,;

for some w,, w; € V.
Let p, ¢ be variables in o and put #; = px; + gx;. Then by (1) and
(3) we have

4) cile— Du; =a;(py: + qw;) and c¢;(0 — Du; = a;(pw; + qy;).

Therefore, two foursomes (aq py; + qw,, ¢ u;) and (a, pw; +
qy; €, ;) satisfy the two conditions (C;) and (C3) for ¢z and j respec-
tively. So it suffices to show (C,) for those two foursomes respectively.
Namely, we must show that we can choose p, ¢ in o so that

7 ((py: + qw;)u;) # 0 and
Wj((Pwi + qyj)ui) # 0.

As usual, the Chinese Remainder Theorem will play a central role. To
simplify the notation we write

f= @y + qwju; and g = (pw; + gy;)u..
Therefore

(5) [ =pp*yx: + gprwps + pg*yix; + ggtwix;
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and
(6) g = pprww: + qp*yx: + pgrwee; + q@*y ;.

By the Chinese Remainder Theorem we can take p, ¢ in o as in the
following table.

Cases  mi(wyx;) my(wxs)  mi(wxe)  miwin;)  m(yaxg) w0 P q
1 #( 0 1
2 #0 1 0
3 0 0 #0 @ 1
4 0 0 #0 1 B
5 0 0 #0 v 1
6 0 0 #0) 1 5

In the above, «a is any element in o with
mi(@) = 0, 7;(@) € {£1} and
milawx, + yx;) # 0;

v is any element in o with

mi(y*) =0, m;(y*) € {£1} and
vy + yx;) # 0.
As for B and § they are chosen symmetrically to « and vy respectively.

We now check that p, ¢ satisfy =;(f) # 0 and m;(g) # 0. We treat
Cases 1, 3, 5. In Case 1, p =0 and ¢ = 1, so m;(f) = m:(wyx;) # 0.
Further, by (2), m,;(g) = m;(v;x;) # 0. Next we treat Case 3.

Let — denote w;. Since wx, =0, p = a& =0 and ¢ = 1, we have
f = a*w;x,. Further 7,;(a) € { &1} impliesae ¢ 4,. Hence a* ¢ A4 ,* (note
AX* = A,), ie., oa* # 0. Thus we have f # 0. Let — denote ;. Since
m;(a) = 0, by the same way as above we have w;(e*) = 0. Hence
p* = oF = 0. Further, since we have

g=1 and awux; + yux; # 0,

we have g # 0. We consider Case 5. Let — denote 7,. By wx,; = 0,
¥ =¥ =0and ¢ = 1, we have f = ¥yx,. Since 7,;(v*) # 0, we have
m:(y) # 0 and so f ¢ 0. Let — denote ;. Since m;(v*) = 0, we have
7;(v) = 0. Further, since ¢ = 1, we have

g ="yx + v
Hence g # 0. The cases 2, 4, and 6 are symmetric to the cases 1, 3, and 5,

respectively and we omit them.

LeEmMA 3.7. If © € Iy, then there exists a vector u; in V which is good for
itand d < dim V, + ou; for 1.
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Proof. We write — for ;. Using Lemma 3.5, we have a good foursome
(asy yi, €4y %) for 4. If it holds that
d < dim V, + ox,,
the lemma holds. So we assume this is not the case, i.e.,
d =dim 7, + ox..
Since d < n, there exists a vector z in 17 with
d < dim 7, + oz

By condition (C;) we may write ¢;(¢ — 1)z = «,;w for some w in I”. Now
forp € oand g € 0o — 4 ,; we put

u; = px; + gz and v; = py; + quw.
Then (a4, vy, ¢y, u;) satisfies (Cy), (C3) and
d < dim V, + ou;.
To show (C:) compute
vy = pprys + gpFwx, + pgtyiz + ggFws.

Since yx; # 0 and 2 is a unit, we can take o ¢ {1} with

yix; + awx; + a*y;z # 0.

Therefore, our p, g are given by the following table.

Cases wz P q
#0 1
2 0 1 «

LEMMA 3.8. Let 1 € I. Then there exists a vector u; in V with d <
dim V, 4 ou, for both v and 1*.

Proof. Write j = 1*. Since d < n, we can take z;, 3; in 1”7 with
d <dimV, + oz; for: and
d < dim V, + oz; forj.

Let p be any element in o with m,(p) = 1 and 7;(p) = 0, ¢ in o with
7m:(¢) = 0 and 7;(¢) = 1. Then u; = px; + ¢x; is the desired vector.

Definition. Let © € I. We say a vector u is admissible for 1 if u satisfies
the following two conditions, where v = (¢ — 1)u and — =7,

(@) V=ot+ ou
(b) d < dim V, + ou.
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We say u is admissible if u is admissible for all 7 in 1.
A key point of the proof is to find an admissible vector u in V.
Definition.

Iy = {i € L|i* € I}

Iy = {1 € Li|i* € I}

Ty = {1 € Ly|t* € Iy}

]00 = {1 E Ioll* E Io}

Therefore we have [ = Iy + I10 + Ion + Lo (direct sum), and
Ill* = Illy IlO* = IOly 101* = IlOy IOO* = IOO-

Definition. * defines a classification of I in which each class consists of
{7, 7*}. Let K be the set of representatives of this classification with
I, C K.

For each k in K, applying Lemmas 3.6, 3.7 and 3.8, we can take a vector
uy, in V with the following properties (P;), (P2) and (P3):

(P1) If kB € I, then u; is good for both k and k*.
(Ps) If k € I, then u, is good for k and d < dim V, + ou, for k.
(P3) If B € Iy, then d < dim V, + ou, for both k and k*.

Further, for each & in K, we take an element «, in o with @ = 1 for
k and k* and &, =0 for k € I — {k, k*}. Put u = > cx ouuty and
v = (¢ — 1)u. With these notations our next task is to show that « is an
admissible vector.

Lemma 3.9. (a) Let i bein L. Then it holds that
d < dim V, + ou for i*.
(b) Let 2 be in I,. Then u is good for 1.

Proof. First we prove the case (a). Let ¢ € [,. Take k in K M {1, 7%}.
Then we have @ = 4, for ©*. Note Iy = Iy + Io1. If 72 € Iy then
1* € Iy and so k € Ig. Therefore by the property (P;) for u, we have
(a) of the lemma. If ¢ € Iy then ¢* € I, consequently i* = &, because
I,y C K and Iy; K. Therefore, by the property (P,) for u, we have
also (a) of the lemma.

Next we prove the case (b). Let 7 € I,. Take k in K M {1, 7*}. We
have I, = Iy + Iy If ¢ € Iy; then ¢* € Iy, consequently & € I;;. If
1 € Iy then 7 = k. Hence, in each case, by the properties (P;) and (P-)
we see that u; is good for 7. Let (a;, ¥4, ¢4, #x) be a good foursome for 1.
Then by (C;) and (C3) we have

cilc — Du = ai(akyi -+ Za;wj)
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for some w; in 1 where Y is the sum for j in K — {k}. By (C,) we have
yaup ¢ A, Hence, putting

w=oy; + Zajwf:
7

we have wu = ya; # 0 for 7. Thus (a4, w, ¢4, 1) is a good foursome for 1.
That is, u is good for 7.

LEMMA 3.10. If i € Iy, then V = vt for i* (herev = (¢ — 1)u).

Proof. Since © € I, for some ¢ in o — 4; we have c(c — 1)V = {0}.
Hence cv = 0. Therefore, for all win 7V we have 0 = (e)w = v(c*w), i.e.,
c¢*w C vt and so ¢*V C v+. On the other hand, since ¢ ¢ 4;, we have
¢* ¢ A;* Thus it holds that ¥V = vt for 7*.

LEmMA 3.11. If ¢ € Iy, then u is admissible for i*.
Proof. By (a) of Lemma 3.9 we have
d <dim V, + ou for 7*.
By Lemma 3.10 we have V = vl + ou for *.
LEMMA 3.12. Let 1 € I. For v in V if yu ¢ A, then we have V =
v + ou for 7*.

Proof. We use — for ;*. Take any zin V. Pute = zy and ¢ = uy. We
note that yu # 4, if and only if uy ¢ A.* Hence ¢ # 0. Since ¢z —
au € y*+, we have cz € y- + ou. This implies V = y+ + ou for i*.

LEmMMA 3.13. If ¢ € I, then u is admissible for i*.

Proof. We write ¢* = jand use — for 7. Since 7 € I;, by (b) of Lemma
3.9 we have a good foursome (a,y, ¢, #) for 7. Therefore it holds that
cw=aywithcd A;,,yu ¢ A;and c(c — 1)V C aV.

First, we show 7V = v+ + ou. Since yu ¢ A;, by Lemma 3.12, we have
V =y% ¥ ou for j. We show y* C vt. Take any z in y+. Then cvz =
ayz = 0, which implies vc*z = 0, i.e., ¢*z € v1. On the other hand, by
¢ ¢ A; we have ¢* ¢ A4, hence y+ C vt. Thus, V = o+ + ou.

Next we show d < dim 1/, 4 ou. Suppose the inequality does not hold,
ie., d =dim V, + ou. Then @ € V, and so we may write # = z + s
for some z in V, and s in 4,V. Since yu ¢ A4, we have uy ¢ A;. Thus
zy ¢ A; Henceyz ¢ A,;. Putb = yz, whence b ¢ 4,. Then

ab = ayz = cvz = 0,
because v = (¢ — 1)u and ((¢ — 1) V)V, = {0}. Thus, we have
be(e — 1)V C baV C {0}.

But, since bc ¢ A4, this would imply ¢ € I,, a contradiction.
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LEMmMA 3.14. u 15 an admissible vector in V.

Proof. We show that « is admissible for all 7 in . Take any ¢ in 1.
Then 7% € I. We have I = [, 4+ I;. If 2* € I, then u is admissible for ¢
by Lemma 3.11. If ¥ € I, then u is admissible for < by Lemma 3.13.

Now, by the lemma we have for all 7 in [
(1) V=0v+ou
and
(2) d <dim T, + ou.
Further, since v = (¢ — 1)u and V,((¢ — 1)V) = {0}, we have
(3) 1V, Co-

Here, we may assume # # 0 without loss of generality. Because, if
necessary, we can choose z in V, with # 4+ z % 0 and take « + z for u

above.
Thus, by (1) ~ (3), we can choose a base {#@x, ..., hin1, &} for V
for each 7z in I such that u, #, . . ., g are in Vy, and #5441y, - -« 5 %itn1)

are in vt. Put

i = €illy,

€7
for each uw € {1,...,n — 1}, where ¢; has been defined before as an
element in o with 7,(e;) = 8;; (Kronecker 6) for 7, j in I. It is clear that
{4y, ..., 1,1, %} is a base for V for each 7 in I.
Lemma 3.15. Let uy, . . ., u, be n vectors in V. For each ¢ in I, if V =

P 61y, then V = Py ou,.

Proof. By Lemma 3.3, we know

n
V=D ol
u=1
Hence we show the linear independence of {u,} over o. Suppose
ey + ..o+ au, =0, a, € o,

with at least one nonzero coefficient, say a¢;. We take a maximal ideal 4 ;
which contains the annilator of «;. Then a,” # 0 in o,4,. Since oy4; is a
valuation ring, we may assume «¢,’ divides all ¢,’. So we have

(L]’(lh, + (bgl/(?g/)%z/ + . ) = O, [)“ G 0, Cy E o — Ai.
Hence, we have

(11((:‘11'1,1 + €ollo + . ) = 0, €y € o, €1 € o — Ai.
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Since V = @,-: 64, is nonsingular, we have a vector v in V with
9 = 1 and #,0 = 0 for u # 1. Put
b = (ewuy + eatt2 + .. .)0.

Then b € o — A; and a;b = 0, which contradicts the choice of 4,.

By the lemma, we see that {u1, . . ., 1,1, #} is a base for V.
We write

n—1

U=@® u,

et
Then it holds that

4) V=U®®ou

) UCot

6) d < dim UN 7, for all i in I.

By (4) we can define a linear map 7 on V by defining 7 = 1 on U and
i = u + v. Since v = (¢ — 1)u and U C vt by (5), 7 preserves the
form on V. In fact, we shall see that 7 isin U, (V) by the following lemma.

LEmMMmA 3.16. V' = U® oou.

Proof. We shall show that V = U @ 667 for all 7 in I, which will imply
V = U ® oox by Lemma 3.15. Since U is a hyperplane of 17, we have
U < V. Therefore it suffices to show that V = U + oou.

First let « € I,. Hence we have ¢ in o — 4; with ¢ = 0. We note
o = 6 = oc. Hence

U+oou=Uou+v)=Uo(ut+v)=U-+ou=71

by (4).
Next let z € I;. Then by (b) of Lemma 3.9 we have a good foursome
(a, w, ¢, u) for 7. Hence we have

U+ oou = U+ oc(u +v) = U+ olcu + aw).

Therefore if @ = 0 then the right hand side equals U + o = V and we
have the lemma. So we treat the case @ # 0. In this case, we suppose
U + oou & V which will imply a contradiction. Since U is a hyperplane
of V, our assumption means gu ¢ U. Since U C v+, we have (cu)v = 0.
Therefore

0= (ou)v = oulow — u) = (u — ou)u = —ou.

Hence 0 = cvu = awn = awu, a contradiction, because we have
wu # 0.
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By the lemma 7 is an automorphism on V and so 7 is contained in
U, (V). Write D = ou, + ... + oug. Then D C V,. Since D C U, we
have D C V,. Therefore D C V,-1,. Further, since 74 = ou, we have
rlou = u. From these two, now we have

D ® ou C Vi1,

Finally, since D @ ou is a subspace of I/ with
dim (D ® ou) = d + 1,

we have
d+ 1 <dim V1, foralliin [

Thus we have completed the proof of the theorem.
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