GENERATORS OF $U_{n}(V)$ OVER A QUASI SEMILOCAL SEMIHEREDITARY RING

HIROYUKI ISHIBASHI

0. Introduction. Let o be a quasi semilocal semihereditary ring, i.e., o is a commutative ring with 1 which has finitely many maximal ideals $\left\{A_{i} \mid i \in I\right\}$ and the localization $o_{A i}$ at any maximal ideal A_{i} is a valuation ring. We assume 2 is a unit in o. Furthermore * denotes an involution on o with the property that there exists a unit θ in o such that $\theta^{*}=-\theta . V$ is an n-ary free module over o with $f: V \times V \rightarrow o$ a λ-Hermitian form. Thus λ is a fixed element of o with $\lambda \lambda^{*}=1$ and f is a sesquilinear form satisfying $f(x, y)^{*}=\lambda f(y, x)$ for all x, y in V. Assume the form is nonsingular; that is, the mapping $M \rightarrow \operatorname{Hom}(M, A)$ given by $x \rightarrow f(, x)$ is an isomorphism. In this paper we shall write $f(x, y)=x y$ for x, y in V.

Let U be a submodule of V. If there exist n vectors $x_{1}, \ldots, x_{r}, \ldots, x_{n}$ such that $U=o x \oplus \ldots \oplus o x_{r}$ and $V=o x_{1} \oplus \ldots \oplus o x_{r} \ldots \oplus o x_{n}$, then we call U a subspace of V and r the dimension of U, r is denoted by $\operatorname{dim} U$.

Let U be a subspace of V. We call U a line if $\operatorname{dim} U=1$, a plane if $\operatorname{dim} U=2$, and a hyperplane if $\operatorname{dim} U=n-1$.

Let $U_{n}(V)$ or $U(V)$ be the unitary group on V. We call an element σ in $U(V)$ an isometry on V. An isometry τ on V which fixes every vector in a hyperplane V_{τ} of V is called a quasi-symmetry if V_{τ} is nonsingular, and a unitary transvection if V_{τ} is singular: Let S be the set of all those τ, i.e., the set of quasi-symmetries and unitary transvections.

In the present paper, we shall determine the length $l(\sigma)$ of any isometry σ in $U(V)$, i.e., the minimal number of factors that are needed to express σ as a product of elements in S. The result is

$$
l(\sigma)=n-d
$$

where d is the dimension of a maximal subspace of V which is contained in the module V_{σ} of σ. In this paper set theoretic difference of A and B will be written $A-B . M \oplus N$ is a direct sum of modules M and N.

Clearly, this is a generalization of [7].

1. Statement of the theorem. $\left\{A_{i} \mid i \in I\right\}$ is the set of all maximal ideals of o. For i in I, let π_{i} or - be the canonical homomorphism from o onto $\bar{o}=o / A_{i}$. We use the same notation π_{i} or - to denote the canonical map from V onto $\bar{V}=V / A_{i} V$. We note that we consider no form on

[^0]\bar{V} and we only regard \bar{V} as a module. Further, for σ in $U(V)$ we define $\bar{\sigma}$ in Aut (\bar{V}) by $\bar{\sigma} \bar{x}=\overline{\sigma x}, x \in V$.

For a subset U of $V, U^{\perp}=\{x \in V \mid x U=0\}$. For submodules U and W of $V, U \perp W$ means $U W=0$ and $U \cap W=\{0\}$. For $\sigma \in U(V)$ let V_{σ} be the fix module of σ, i.e.,

$$
V_{\sigma}=\{x \in V \mid \sigma x=x\} \quad \text { and } \quad d=\min \left\{\operatorname{dim} \pi_{i}\left(V_{\sigma}\right) \mid i \in I\right\} .
$$

We define $l(\sigma)=0$ for $\sigma=1$.
Now, with these notations, we state our theorem.
Theorem. For any σ in $U_{n}(V)$ we have $l(\sigma)=n-d$.
2. Preliminary lemma. We have finitely many maximal ideals $\left\{A_{i} \mid i \in I\right\}, I$ is the index set. For each i in I, ψ_{i} or ${ }^{\prime}$ denotes the canonical homomorphism of o into $o_{A i}$ which carries an element a of o to the class a^{\prime} of $o_{A i}$ represented by $a / 1$.

Therefore for a and b in $o, a^{\prime}=b^{\prime}$ if and only if $c a=c b$ for some c in $o-A_{i}$. We use the same notation ψ_{i} or ${ }^{\prime}$ to denote the canonical homomorphisms $V \rightarrow o_{A_{i}} V$ or $U(V) \rightarrow$ Aut $\left(o_{A_{i}} V\right)$. We consider no form on $o_{A i} V$ and only regard it as a module.

Now, we take a base $\left\{x_{\mu} \mid \mu=1, \ldots, n\right\}$ for V and fix it.
Lemma 2.1. Let $i \in I$.
(a) For vectors u and v in V if we have $u^{\prime}=v^{\prime}$, then $c u=c v$ for some c in o $-A_{i}$.
(b) For any vector v in V we can express $c v=a y$ for some $a \in o$, $c \in o-A_{i}$ and $y \in V-A_{i} V$.

Proof. First we prove (a). We have the base $\left\{x_{1}, \ldots, x_{n}\right\}$ for V. Write $u=\sum a_{\mu} x_{\mu}$ and $v=\sum b_{\mu} x_{\mu}, a_{\mu}, b_{\mu} \in o$. Then $a_{\mu}{ }^{\prime}=b_{\mu}{ }^{\prime}$ for $\mu=1, \ldots, n$. Hence for each μ we have $c_{\mu} a_{\mu}=c_{\mu} b_{\mu}$ for some c_{μ} in o $-A_{i}$. Putting $c=\Pi c_{\mu}$, we have (a).

Next we prove (b). Write $v=\sum a_{\mu} x_{\mu}, a_{\mu} \in o$. First let $v^{\prime}=0$, i.e., $a_{1}{ }^{\prime}=\ldots=a_{n}{ }^{\prime}=0$. This means that for some c_{1}, \ldots, c_{n} in o $-A_{i}$ we have $c_{1} a_{1}=\ldots=c_{n} a_{n}=0$. So, if we put $c=\Pi c_{\mu}, a=0$ and $y=$ any vector in $V-A_{i} V$, then we have $c v=a y$. Next let $v^{\prime} \neq 0$. Therefore at least one $a_{r}{ }^{\prime}$, say $a_{1}{ }^{\prime}$, is not zero. Since $o_{A i}$ is a valuation ring, we may assume $a_{1}{ }^{\prime}$ divides all $a_{r}{ }^{\prime}$ in $o_{A_{2}}$. From this and by (a) we have (b).
3. Proof of the theorem. For i in I, throughout this paper, - denotes $\pi_{i},{ }^{\prime}$ denotes ψ_{i} and ϵ_{i} denotes an element in o with $\pi_{i} \epsilon_{i}=1$ and $\pi_{j} \epsilon_{i}=0$ for $j \neq i$; such ϵ_{i} exists by the Chinese Remainder Theorem.

Lemma 3.1. Let $\left\{E_{s} \mid 1 \leqq s \leqq r\right\}$ be r hyperplanes of V, then

$$
\operatorname{dim} \overline{\bigcap_{s=1}^{r} E_{s}} \geqq n-r \quad \text { for anyiin } I .
$$

Proof. Take any i in I. If $r=1$, then the lemma is clear. So let $r>1$. Write

$$
D=\bigcap_{s=1}^{r-1} E_{s} \text { and } E=E_{r} .
$$

We suppose $\operatorname{dim} \bar{D} \geqq n-(r-1)$ and show

$$
\operatorname{dim} \overline{D \cap E} \geqq n-r,
$$

which gives us the lemma by induction on r.
We write $d=\operatorname{dim} \bar{D}$. Take a base $\bar{x}_{1}, \ldots, \bar{x}_{d}$ for \bar{D} where x_{1}, \ldots, x_{d} are in D. Since E is a hyperplane, we can write $V=E \oplus o x, x \in V$. We may express $x_{\mu}=u_{\mu}+a_{\mu} x, u_{\mu} \in E$ and $a_{\mu} \in o$ for each $\mu=1, \ldots, d$.

If $a_{\mu}{ }^{\prime}=0$ for all μ, then we have an element c in $o-A_{i}$ with $c a_{\mu}=0$ for all μ. Hence $c x_{\mu}=c u_{\mu}$ is contained in $D \cap E$, and so $\overline{D \cap E}=\bar{D}$. Consequently, $\operatorname{dim} \overline{D \cap E}>n-r$.

Next, we treat the case that at least one $a_{\mu}{ }^{\prime} \neq 0$. Since $o_{A i}$ is a valuation ring, we may assume $a_{1}{ }^{\prime}$ divides any $a_{\mu}{ }^{\prime}$ in $o_{A_{i}}$. Put $a_{\mu}{ }^{\prime}=\left(b_{\mu}{ }^{\prime} / c_{\mu}{ }^{\prime}\right) a_{1}{ }^{\prime}$ for some b_{μ} in o and c_{μ} in $0-A_{i}$. Then

$$
\left(c_{\mu} a_{\mu}\right)^{\prime}=c_{\mu}{ }^{\prime} a_{\mu}{ }^{\prime}=b_{\mu}^{\prime} a_{1}^{\prime}=\left(b_{\mu} a_{1}\right)^{\prime}
$$

Hence $e_{\mu} c_{\mu} a_{\mu}=e_{\mu} b_{\mu} a_{1}$ for some e_{μ} in o $-A_{i}$. Put

$$
v_{\mu}=e_{\mu} c_{\mu} x_{\mu}-e_{\mu} b_{\mu} x_{1} .
$$

Then v_{μ} is in $D \cap E$. Since c_{μ}, e_{μ} are in $o-A_{i}$, we have

$$
\operatorname{dim} \overline{D \cap E} \geqq d-1 \geqq n-r .
$$

Corollary 3.2. $l(\sigma) \geqq n-d$.
Proof. Remember that quasi-symmetries and unitary transvections fix hyperplanes. Apply the lemma.

By the corollary it suffices to show that $l(\sigma) \leqq n-d$. The proof will proceed by induction on $n-d$.

Lemma 3.3. Let U be a submodule of V. If $\bar{V}=\bar{U}$ for all i in I, then $V=U$.
Proof. We have

$$
V=\bigoplus_{\mu=1}^{n} o x_{\mu} .
$$

Take $\left\{u_{\tau_{\mu}}\right\}$ in U with $\bar{x}_{\mu}=\bar{u}_{i_{\mu}}$ for i in I and μ in $\{1, \ldots, n\}$. Put

$$
u_{\mu}=\sum_{i \in I} \epsilon_{i} u_{i_{\mu}} .
$$

Then u_{μ} is contained in U and $\bar{x}_{\mu}=\bar{u}_{\mu}$ for each i and μ. This means
$x_{\mu}-u_{\mu}$ is in $A V$, where $A=\bigcap_{i \in I} A_{i}$. So, we may write

$$
x_{\mu}=u_{\mu}+\sum_{\nu=1}^{n} a_{\mu \nu} x_{\nu}, \quad a_{\mu \nu} \in A
$$

Put $M=\left\{a_{\mu \nu}\right\}$. Then, we have

$$
{ }^{t}\left(u_{1}, \ldots, u_{n}\right)=(E-M)^{i}\left(x_{1}, \ldots, x_{n}\right)
$$

E is the identity matrix. Since $E-M$ is invertible, we have $V=U$.
Let $n-d=0$. Recall we have defined

$$
d=\min \left\{\operatorname{dim} \pi_{i}\left(V_{\sigma}\right) \mid i \in I\right\}
$$

Hence by the lemma we have $V=V_{\sigma}$. Therefore, $\sigma=1$ and we have $l(\sigma)=0=n-d$, whence there is nothing to do.

So, let $n-d>0$, i.e., $\sigma \neq 1$. We shall show that there exists τ in S such that

$$
\min \left\{\operatorname{dim} \pi_{i}\left(V_{\tau \sigma}\right) \mid i \in I\right\}=d+1
$$

which will imply $l(\tau \sigma) \leqq n-(d+1)$ by induction on $n-d$, and so $l(\sigma) \leqq n-d$ as we desire. Thus, all that we have to do is to find such τ in S.

Definition.

$$
\begin{aligned}
& I_{0}=\left\{i \in I \mid \sigma^{\prime}-1=0 \quad \text { for } \quad i\right\} \\
& I_{1}=\left\{i \in I \mid \sigma^{\prime}-1 \neq 0 \quad \text { for } \quad i\right\}
\end{aligned}
$$

In other words,

$$
I_{0}=\left\{i \in I \mid c(\sigma-1) V=0 \text { for some } c \in o-A_{i}\right\}
$$

and

$$
I_{1}=\left\{i \in I \mid c(\sigma-1) V \neq 0 \text { for any } c \in o-A_{i}\right\}
$$

Clearly, $I=I_{0}+I_{1}$ (direct sum).
Lemma 3.4. Let $i \in I$. If a vector y is contained in $V-A_{i} V$, then there exists a vector x in V with $y x \in o-A_{i}$.

Proof. Write

$$
y=\sum_{\mu=1}^{n} p_{\mu} x_{\mu}, \quad p_{\mu} \in o
$$

Since $y \notin A_{i} V$, at least one p_{μ}, say p_{1}, is not in A_{i}. On the other hand, since V is nonsingular and $\left\{x_{1}, \ldots, x_{n}\right\}$ is a base for V, there exists a vector x in V with $x_{1} x=1$ and $x_{\mu} x=0$ for $\mu \neq 1$. So we have $y x=$ $p_{1} \notin A_{i}$.

The following lemma is essential for the proof of the theorem.
Lemma 3.5. Let $i \in I_{1}$. Then there exist a, c in o and x, y in V such that $\left(C_{1}\right) c(\sigma-1) x=a y$ with $c \notin A_{i}$,
($\left.C_{2}\right) y x \notin A_{i}$,
$\left(C_{3}\right) c(\sigma-1) V \subset a V$.
Proof. We have a direct sum $V=\bigoplus_{\mu=1}^{n} o x_{\mu}$. For each x_{μ}, by (b) of Lemma 2.1 we can express

$$
c_{\mu}(\sigma-1) x_{\mu}=a_{\mu} y_{\mu}
$$

where a_{μ} is in o, c_{μ} in $o-A_{i}$ and y_{μ} in $V-A_{i} V$. Since $i \in I_{1}$, we have $\sigma^{\prime} \neq 1$. This implies that at least one $a_{\mu}{ }^{\prime}$, say $a_{1}{ }^{\prime}$, is not zero. Since $o_{A i}$ is a valuation ring, we may assume $a_{1}{ }^{\prime}$ divides all $a_{\mu}{ }^{\prime}$, say, let $a_{\mu}{ }^{\prime}=$ $a_{1}{ }^{\prime} b_{\mu}{ }^{\prime}$ for b_{μ} in o. Hence for each μ by Lemma 2.1 there exists d_{μ} in $o-A_{i}$ such that $a_{\mu} d_{\mu}=a_{1} b_{\mu} d_{\mu}$. We may take $b_{1}=d_{1}=1$. Therefore, putting $a=a_{1}$ and $c=\prod_{\mu=1}^{n} c_{\mu} d_{\mu}$, we have
(1) $c(\sigma-1) x_{\mu}=a e_{\mu} y_{\mu}$
where $e_{\mu} \in o, e_{1} \in o-A_{i}$ and $c \in o-A_{i}$. From this $\left(C_{3}\right) c(\sigma-1) V \subset$ $a V$ is now clear.

Next, since $y_{1} \in V-A_{i} V$, by Lemma 3.4 for some x_{μ} we have
(2) $y_{1} x_{\mu} \notin A_{i}$.

Let p, q be variables in o. We put

$$
x=p x_{1}+q x_{\mu}, \quad y=p e_{1} y_{1}+q e_{\mu} y_{\mu} .
$$

Then by (1) we have $\left(C_{1}\right) c(\sigma-1) x=a y$ and the equation
(3) $y x=p p^{*} e_{1} y_{1} x_{1}+p q^{*} e_{1} y_{1} x_{\mu}+p^{*} q e_{\mu} y_{\mu} x_{1}+q q^{*} e_{\mu} y_{\mu} x_{\mu}$
holds. Hence it suffices to show that we can choose p, q in o with $y x \notin A_{i}$, which completes our proof. We recall that we have the unit θ in o with $\theta^{*}=-\theta$. Therefore the answer is given by the following table, where denotes π_{i} (note $\bar{e}_{1} \neq 0$ by (1) and $\overline{y_{1} x_{\mu}} \neq 0$ by (2)).

Cases	$\overline{y_{1} x_{1}}$	$\overline{e_{\mu}}$	$\overline{y_{\mu} x_{\mu}}$	p	q
1	$\neq 0$			1	0
2	0	0		1	1
3	0	$\neq 0$	$\neq 0$	0	1
4	0	$\neq 0$	0	1	1 or θ

In case 4 above, we take $q \in\{1, \theta\}$ with

$$
\overline{q^{*} e_{1} y_{1} x_{\mu}+q e_{\mu} y_{\mu} x_{1}} \neq 0 ;
$$

in fact such q exists, since $\overline{e_{1} y_{1} x_{\mu}} \neq 0$. Thus we have shown (C_{2}) $y x \notin A_{i}$.

Let us call the above four elements $a, c \in o$ and $x, y \in V$ in the lemma "a good foursome for i " if they satisfy $\left(C_{1}\right),\left(C_{2}\right)$ and $C\left({ }_{3}\right)$, and denote it by (a, y, c, x). Further, when there exits a good foursome (a, y, c, x) for i, we say " x is good for i ". With this definition we can say that if $i \in I_{1}$ then there exists a vector x in V which is good for i.

Now, since the involution * on o induces a permutation on the set of maximal ideals $\left\{A_{i} \mid i \in I\right\}$ of o, we can define a permutation on the index set I by defining $i^{*}=j$ if and only if $A_{i}{ }^{*}=A_{j}$.

Lemma 3.6. If $i, i^{*} \in I_{1}$, then there exists a vector u_{i} in V which is good for both i and i^{*}.

Proof. If $i=i^{*}$ then there is nothing to do (apply Lemma 3.5). So let $i \neq i^{*}$. To simplify the notation we write $j=i^{*}$. Now by Lemma 3.5 we have good foursomes $\left(a_{i}, y_{i}, c_{i}, x_{i}\right)$ for i and ($a_{j}, y_{j}, c_{j}, x_{j}$) for j. By condition $\left(C_{1}\right),\left(C_{2}\right)$ we have respectively,
(1) $c_{i}(\sigma-1) x_{i}=a_{i} y_{i}$ and $c_{j}(\sigma-1) x_{j}=a_{j} y_{j}$
with $c_{i} \in o-A_{i}$ and $c_{j} \in o-A_{j}$, and
(2) $\pi_{i}\left(y_{i} x_{i}\right) \neq 0$ and $\pi_{j}\left(y_{j} x_{j}\right) \neq 0$.

By condition (C_{3}) we can express
(3) $\quad c_{i}(\sigma-1) x_{j}=a_{i} w_{j}$ and $\quad c_{j}(\sigma-1) x_{i}=a_{j} w_{i}$
for some $w_{i}, w_{j} \in V$.
Let p, q be variables in o and put $u_{i}=p x_{i}+q x_{j}$. Then by (1) and (3) we have

$$
\begin{equation*}
c_{i}(\sigma-1) u_{i}=a_{i}\left(p y_{i}+q w_{j}\right) \quad \text { and } \quad c_{j}(\sigma-1) u_{i}=a_{j}\left(p w_{i}+q y_{j}\right) . \tag{4}
\end{equation*}
$$

Therefore, two foursomes $\left(a_{i}, p y_{i}+q w_{j}, c_{i}, u_{i}\right)$ and $\left(a_{j}, p w_{i}+\right.$ $q y_{j}, c_{j}, u_{i}$) satisfy the two conditions (C_{1}) and (C_{3}) for i and j respectively. So it suffices to show $\left(C_{2}\right)$ for those two foursomes respectively. Namely, we must show that we can choose p, q in o so that

$$
\begin{aligned}
& \pi_{i}\left(\left(p y_{i}+q w_{j}\right) u_{i}\right) \neq 0 \quad \text { and } \\
& \pi_{j}\left(\left(p w_{i}+q y_{j}\right) u_{i}\right) \neq 0 .
\end{aligned}
$$

As usual, the Chinese Remainder Theorem will play a central role. To simplify the notation we write

$$
f=\left(p y_{i}+q w_{j}\right) u_{i} \quad \text { and } \quad g=\left(p w_{i}+q y_{j}\right) u_{i} .
$$

Therefore

$$
\begin{equation*}
f=p p^{*} y_{i} x_{i}+q p^{*} w_{j} x_{i}+p q^{*} y_{i} x_{j}+q q^{*} w_{j} x_{j} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
g=p p^{*} w_{i} x_{i}+q p^{*} y_{j} x_{i}+p q^{*} w_{i} x_{j}+q q^{*} y_{j} x_{j} . \tag{6}
\end{equation*}
$$

By the Chinese Remainder Theorem we can take p, q in o as in the following table.

Cases	$\pi_{i}\left(w_{j} x_{j}\right)$	$\pi_{j}\left(w_{i} x_{i}\right)$	$\pi_{i}\left(w_{j} x_{i}\right)$	$\pi_{j}\left(w_{i} x_{j}\right)$	$\pi_{i}\left(y_{i} x_{j}\right)$	$\pi_{j}\left(y_{j} x_{i}\right)$	p
1	$\neq 0$					0	1
2		$\neq 0$				1	0
3	0	0	$\neq 0$				α
4	0	0	$\neq 0$		1	β	
5	0	0			$\neq 0$		γ
6	0	0				$\neq 0$	1

In the above, α is any element in o with

$$
\begin{aligned}
& \pi_{i}(\alpha)=0, \pi_{j}(\alpha) \in\{ \pm 1\} \quad \text { and } \\
& \pi_{j}\left(\alpha w_{i} x_{j}+y_{j} x_{j}\right) \neq 0
\end{aligned}
$$

γ is any element in o with

$$
\begin{aligned}
& \pi_{i}\left(\gamma^{*}\right)=0, \quad \pi_{j}\left(\gamma^{*}\right) \in\{ \pm 1\} \quad \text { and } \\
& \pi_{j}\left(\gamma^{*} y_{j} x_{i}+y_{j} x_{j}\right) \neq 0 .
\end{aligned}
$$

As for β and δ they are chosen symmetrically to α and γ respectively.
We now check that p, q satisfy $\pi_{i}(f) \neq 0$ and $\pi_{j}(g) \neq 0$. We treat Cases 1, 3, 5. In Case $1, p=0$ and $q=1$, so $\pi_{i}(f)=\pi_{i}\left(w_{j} x_{j}\right) \neq 0$. Further, by (2), $\pi_{j}(g)=\pi_{j}\left(y_{j} x_{j}\right) \neq 0$. Next we treat Case 3 .

Let - denote π_{i}. Since $\overline{w_{j} x_{j}}=0, \bar{p}=\bar{\alpha}=0$ and $q=1$, we have $\bar{f}=\overline{\alpha^{*} w_{j} x_{i}}$. Further $\pi_{j}(\alpha) \in\{ \pm 1\}$ implies $\alpha \notin A_{j}$. Hence $\alpha^{*} \notin A_{j}{ }^{*}$ (note $A_{j}{ }^{*}=A_{i}$), i.e., $\overline{\alpha^{*}} \neq 0$. Thus we have $\bar{f} \neq 0$. Let - denote π_{j}. Since $\pi_{i}(\alpha)=0$, by the same way as above we have $\pi_{j}\left(\alpha^{*}\right)=0$. Hence $\overline{p^{*}}=\overline{\alpha^{*}}=0$. Further, since we have

$$
q=1 \quad \text { and } \quad \overline{\alpha w_{i} x_{j}+y_{j} x_{j}} \neq 0
$$

we have $\bar{g} \neq 0$. We consider Case 5 . Let - denote π_{i}. By $\overline{w_{j} x_{j}}=0$, $\overline{p^{*}}=\overline{\gamma^{*}}=0$ and $q=1$, we have $\bar{f}=\overline{\gamma y_{i} x_{j}}$. Since $\pi_{j}\left(\gamma^{*}\right) \neq 0$, we have $\pi_{i}(\gamma) \neq 0$ and so $\bar{f} \neq 0$. Let - denote π_{j}. Since $\pi_{i}\left(\gamma^{*}\right)=0$, we have $\pi_{j}(\gamma)=0$. Further, since $q=1$, we have

$$
\bar{g}=\overline{\gamma^{*} y_{j} x_{i}+y_{j} x_{j}} .
$$

Hence $\bar{g} \neq 0$. The cases 2,4 , and 6 are symmetric to the cases 1,3 , and 5 , respectively and we omit them.

Lemma 3.7. If $i \in I_{1}$, then there exists a vector u_{i} in V which is good for i and $d<\operatorname{dim} \overline{V_{\sigma}+\text { ou }}{ }_{i}$ for i.

Proof. We write - for π_{i}. Using Lemma 3.5, we have a good foursome ($a_{i}, y_{i}, c_{i}, x_{i}$) for i. If it holds that

$$
d<\operatorname{dim} \overline{V_{\sigma}+o x_{i}},
$$

the lemma holds. So we assume this is not the case, i.e.,

$$
d=\operatorname{dim}{\overline{V_{\sigma}+o x}}_{i .} .
$$

Since $d<n$, there exists a vector z in V with

$$
d<\operatorname{dim} \overline{V_{\sigma}+o z}
$$

By condition $\left(C_{3}\right)$ we may write $c_{i}(\sigma-1) z=a_{i} w$ for some w in V. Now for $p \in o$ and $q \in o-A_{i}$ we put

$$
u_{i}=p x_{i}+q z \quad \text { and } \quad v_{i}=p y_{i}+q w .
$$

Then $\left(a_{i}, v_{i}, c_{i}, u_{i}\right)$ satisfies $\left(C_{1}\right),\left(C_{3}\right)$ and

$$
d<\operatorname{dim} \overline{V_{\sigma}+o u_{i}} .
$$

To show $\left(C_{2}\right)$ compute

$$
v_{i} u_{i}=p p^{*} y_{i} x_{i}+q p^{*} w x_{i}+p q^{*} y_{i} z+q q^{*} w z
$$

Since $\overline{y_{i} x_{i}} \neq 0$ and 2 is a unit, we can take $\alpha \in\{ \pm 1\}$ with

$$
\overline{y_{i} x_{i}+\alpha w x_{i}+\alpha^{*} y_{i} z} \neq 0 .
$$

Therefore, our p, q are given by the following table.

Cases	$\overline{w z}$	p	q
1	$\neq 0$	0	1
2	0	1	α

Lemma 3.8. Let $i \in I$. Then there exists a vector u_{i} in V with $d<$ $\operatorname{dim} \overline{V_{\sigma}+o u_{i}}$ for both i and i^{*}.

Proof. Write $j=i^{*}$. Since $d<n$, we can take z_{i}, z_{j} in V with
$d<\operatorname{dim} \overline{V_{\sigma}+o z_{i}}$ for i and
$d<\operatorname{dim} \overline{V_{\sigma}+o z_{j}}$ for j.
Let p be any element in o with $\pi_{i}(p)=1$ and $\pi_{j}(p)=0, q$ in o with $\pi_{i}(q)=0$ and $\pi_{j}(q)=1$. Then $u_{i}=p x_{i}+q x_{j}$ is the desired vector.

Definition. Let $i \in I$. We say a vector u is admissible for i if u satisfies the following two conditions, where $v=(\sigma-1) u$ and $-=\pi_{i}$.
(a) $\bar{V}=\overline{v^{\perp}+o u}$
(b) $d<\operatorname{dim} \overline{V_{\sigma}+o u}$.

We say u is $a d m i s s i b l e ~ i f ~ u$ is admissible for all i in I.
A key point of the proof is to find an admissible vector u in V.
Definition.

$$
\begin{aligned}
& I_{11}=\left\{i \in I_{1} \mid i^{*} \in I_{1}\right\} \\
& I_{10}=\left\{i \in I_{1} \mid i^{*} \in I_{0}\right\} \\
& I_{01}=\left\{i \in I_{0} \mid i^{*} \in I_{1}\right\} \\
& I_{00}=\left\{i \in I_{0} \mid i^{*} \in I_{0}\right\} .
\end{aligned}
$$

Therefore we have $I=I_{11}+I_{10}+I_{01}+I_{00}$ (direct sum), and $I_{11}{ }^{*}=I_{11}, I_{10}{ }^{*}=I_{01}, I_{01}{ }^{*}=I_{10}, I_{00}{ }^{*}=I_{00}$.

Definition. * defines a classification of I in which each class consists of $\left\{i, i^{*}\right\}$. Let K be the set of representatives of this classification with $I_{10} \subset K$.
For each k in K, applying Lemmas 3.6, 3.7 and 3.8 , we can take a vector u_{k} in V with the following properties $\left(P_{1}\right),\left(P_{2}\right)$ and $\left(P_{3}\right)$:
$\left(P_{1}\right)$ If $k \in I_{11}$, then u_{k} is good for both k and k^{*}.
$\left(P_{2}\right)$ If $k \in I_{10}$, then u_{k} is good for k and $d<\operatorname{dim} \overline{V_{\sigma}+o u_{k}}$ for k.
$\left(P_{3}\right)$ If $k \in I_{00}$, then $d<\operatorname{dim} \overline{V_{\sigma}+o u_{k}}$ for both k and k^{*}.
Further, for each k in K, we take an element α_{k} in o with $\bar{\alpha}_{k}=1$ for k and k^{*} and $\bar{\alpha}_{k}=0$ for $k \in I-\left\{k, k^{*}\right\}$. Put $u=\sum_{k \in K} \alpha_{k} u_{k}$ and $v=(\sigma-1) u$. With these notations our next task is to show that u is an admissible vector.

Lemma 3.9. (a) Let i be in I_{0}. Then it holds that

$$
d<\operatorname{dim} \overline{V_{\sigma}+o u} \text { for } i^{*} .
$$

(b) Let i be in I_{1}. Then u is good for i.

Proof. First we prove the case (a). Let $i \in I_{0}$. Take k in $K \cap\left\{i, i^{*}\right\}$. Then we have $\bar{u}=\bar{u}_{k}$ for i^{*}. Note $I_{0}=I_{00}+I_{01}$. If $i \in I_{00}$ then $i^{*} \in I_{00}$ and so $k \in I_{00}$. Therefore by the property $\left(P_{3}\right)$ for u_{k} we have (a) of the lemma. If $i \in I_{01}$ then $i^{*} \in I_{10}$, consequently $i^{*}=k$, because $I_{10} \subset K$ and $I_{01} \not \subset K$. Therefore, by the property $\left(P_{2}\right)$ for u_{k} we have also (a) of the lemma.
Next we prove the case (b). Let $i \in I_{1}$. Take k in $K \cap\left\{i, i^{*}\right\}$. We have $I_{1}=I_{11}+I_{10}$. If $i \in I_{11}$ then $i^{*} \in I_{11}$, consequently $k \in I_{11}$. If $i \in I_{10}$ then $i=k$. Hence, in each case, by the properties $\left(P_{1}\right)$ and (P_{2}) we see that u_{k} is good for i. Let ($a_{i}, y_{i}, c_{i}, u_{k}$) be a good foursome for i. Then by $\left(C_{1}\right)$ and $\left(C_{3}\right)$ we have

$$
c_{i}(\sigma-1) u=a_{i}\left(\alpha_{k} y_{i}+\sum \alpha_{j} w_{j}\right)
$$

for some w_{j} in V where \sum is the sum for j in $K-\{k\}$. By $\left(C_{2}\right)$ we have $y_{i} u_{k} \notin A_{i}$. Hence, putting

$$
w=\alpha_{k} y_{i}+\sum_{j} \alpha_{j} w_{j},
$$

we have $\overline{w u}=\overline{y_{i} u_{k}} \neq 0$ for i. Thus (a_{i}, w, c_{i}, u) is a good foursome for i. That is, u is good for i.

Lemma 3.10. If $i \in I_{0}$, then $\bar{V}=\overline{v^{\perp}}$ for i^{*} (here $\left.v=(\sigma-1) u\right)$.
Proof. Since $i \in I_{0}$, for some c in $o-A_{i}$ we have $c(\sigma-1) V=\{0\}$. Hence $c v=0$. Therefore, for all w in V we have $0=(c v) w=v\left(c^{*} w\right)$, i.e., $c^{*} w \subset v^{\perp}$ and so $c^{*} V \subset v^{\perp}$. On the other hand, since $c \notin A_{i}$, we have $c^{*} \notin A_{i}{ }^{*}$. Thus it holds that $\bar{V}=\overline{v^{\perp}}$ for i^{*}.

Lemma 3.11. If $i \in I_{0}$, then u is admissible for i^{*}.
Proof. By (a) of Lemma 3.9 we have

$$
d<\operatorname{dim} \overline{V_{\sigma}+o u} \text { for } i^{*} .
$$

By Lemma 3.10 we have $\bar{V}=\overline{v^{\perp}+o u}$ for i^{*}.
Lemma 3.12. Let $i \in I$. For y in V if $y u \notin A_{i}$ then we have $\bar{V}=$ $\overline{y^{\perp}+\text { ou }}$ for i^{*}.

Proof. We use - for $\pi_{i}{ }^{*}$. Take any z in V. Put $a=z y$ and $c=u y$. We note that $y u \neq A_{i}$ if and only if $u y \notin A_{i}{ }^{*}$. Hence $\bar{c} \neq 0$. Since $c z-$ $a u \in y^{\perp}$, we have $c z \in y^{\perp}+o u$. This implies $\bar{V}=\overline{y^{\perp}+o u}$ for i^{*}.

Lemma 3.13. If $i \in I_{1}$ then u is admissible for i^{*}.
Proof. We write $i^{*}=j$ and use - for π_{j}. Since $i \in I_{1}$, by (b) of Lemma 3.9 we have a good foursome (a, y, c, u) for i. Therefore it holds that $c v=a y$ with $c \notin A_{i}, y \notin A_{i}$ and $c(\sigma-1) V \subset a V$.

First, we show $\bar{V}=\overline{v^{\perp}+o u}$. Since $y u \notin A_{i}$, by Lemma 3.12, we have $\bar{V}=\overline{y^{\perp}+o u}$ for j. We show $\overline{y^{\perp}} \subset \overline{v^{\perp}}$. Take any z in y^{\perp}. Then $c v z=$ $a y z=0$, which implies $v c^{*} z=\underline{0}$, i.e., $c^{*} z \in v^{\perp}$. On the other hand, by $c \notin A_{i}$ we have $c^{*} \notin A_{j}$, hence $\frac{1}{y^{\perp}} \subset \overline{v^{\perp}}$. Thus, $\bar{V}=\overline{v^{\perp}+o u}$.
Next we show $d<\operatorname{dim} \overline{V_{\sigma}+o u}$. Suppose the inequality does not hold, i.e., $d=\operatorname{dim} \overline{V_{\sigma}+o u}$. Then $\bar{u} \in \overline{V_{\sigma}}$ and so we may write $u=z+s$ for some z in V_{σ} and s in $A_{j} V$. Since $y u \notin A_{i}$, we have $u y \notin A_{j}$. Thus $z y \notin A_{j}$. Hence $y z \notin A_{i}$. Put $b=y z$, whence $b \notin A_{i}$. Then

$$
a b=a y z=c v z=0,
$$

because $v=(\sigma-1) u$ and $((\sigma-1) V) V_{\sigma}=\{0\}$. Thus, we have

$$
b c(\sigma-1) V \subset b a V \subset\{0\} .
$$

But, since $b c \notin A_{i}$, this would imply $i \in I_{0}$, a contradiction.

Lemma 3.14. u is an admissible vector in V.
Proof. We show that u is admissible for all i in I. Take any i in I. Then $i^{*} \in I$. We have $I=I_{0}+I_{1}$. If $i^{*} \in I_{0}$ then u is admissible for i by Lemma 3.11. If $i^{*} \in I_{1}$ then u is admissible for i by Lemma 3.13.

Now, by the lemma we have for all i in I

$$
\begin{equation*}
\bar{V}=\overline{v^{\perp}+o u} \tag{1}
\end{equation*}
$$

and
(2) $d<\operatorname{dim} \overline{V_{\sigma}+o u}$.

Further, since $v=(\sigma-1) u$ and $V_{\sigma}((\sigma-1) V)=\{0\}$, we have
(3) $V_{\sigma} \subset v^{\perp}$.

Here, we may assume $\bar{u} \neq 0$ without loss of generality. Because, if necessary, we can choose z in V_{σ} with $\overline{u+z} \neq 0$ and take $u+z$ for u above.

Thus, by (1) $\sim(3)$, we can choose a base $\left\{\bar{u}_{i 1}, \ldots, \bar{u}_{i(n-1)}, \bar{u}\right\}$ for \bar{V} for each i in I such that $u_{i 1}, u_{i 2}, \ldots, u_{i d}$ are in V_{σ} and $u_{i(d+1)}, \ldots, u_{i(n-1)}$ are in v^{\perp}. Put

$$
u_{\mu}=\sum_{i \in I} \epsilon_{i} u_{i_{\mu}}
$$

for each $\mu \in\{1, \ldots, n-1\}$, where ϵ_{i} has been defined before as an element in o with $\pi_{j}\left(\epsilon_{i}\right)=\delta_{i j}$ (Kronecker δ) for i, j in I. It is clear that $\left\{\bar{u}_{1}, \ldots, \bar{u}_{n-1}, \bar{u}\right\}$ is a base for \bar{V} for each i in I.

Lemma 3.15. Let u_{1}, \ldots, u_{n} be n vectors in V. For each i in I, if $\bar{V}=$ $\bigoplus_{\mu=1}^{n} \bar{o} \bar{u}_{\mu}$, then $V=\bigoplus_{\mu=1}^{n} o u_{\mu}$.

Proof. By Lemma 3.3, we know

$$
V=\sum_{\mu=1}^{n} o u_{\mu}
$$

Hence we show the linear independence of $\left\{u_{\mu}\right\}$ over o. Suppose

$$
a_{1} u_{1}+\ldots+a_{n} u_{n}=0, \quad a_{\mu} \in o
$$

with at least one nonzero coefficient, say a_{1}. We take a maximal ideal A_{i} which contains the annilator of a_{1}. Then $a_{1}{ }^{\prime} \neq 0$ in $o_{A i}$. Since $o_{A i}$ is a valuation ring, we may assume $a_{1}{ }^{\prime}$ divides all $a_{\mu}{ }^{\prime}$. So we have

$$
a_{1}^{\prime}\left(u_{1}^{\prime}+\left(b_{2}^{\prime} / c_{2}^{\prime}\right) u_{2}^{\prime}+\ldots\right)=0, \quad b_{\mu} \in o, c_{\mu} \in o-A_{i}
$$

Hence, we have

$$
a_{1}\left(e_{1} u_{1}+e_{2} u_{2}+\ldots\right)=0, \quad e_{\mu} \in o, \quad e_{1} \in o-A_{i}
$$

Since $\bar{V}=\bigoplus_{\mu=1}^{n} \bar{o} \bar{u}_{\mu}$ is nonsingular, we have a vector v in V with $\bar{u}_{1} \bar{v}=1$ and $\bar{u}_{\mu} \bar{v}=0$ for $\mu \neq 1$. Put

$$
b=\left(e_{1} u_{1}+e_{2} u_{2}+\ldots\right) v
$$

Then $b \in o-A_{i}$ and $a_{1} b=0$, which contradicts the choice of A_{t}.
By the lemma, we see that $\left\{u_{1}, \ldots, u_{n-1}, u\right\}$ is a base for V.
We write

$$
U=\bigoplus_{\mu=1}^{n-1} u_{\mu}
$$

Then it holds that

$$
\begin{equation*}
V=U \oplus o u \tag{4}
\end{equation*}
$$

(5) $U \subset v^{\perp}$
(b) $d \leqq \operatorname{dim} \overline{U \cap V_{\sigma}}$ for all i in I.

By (4) we can define a linear map τ on V by defining $\tau=1$ on U and $\tau u=u+v$. Since $v=(\sigma-1) u$ and $U \subset v^{\perp}$ by (5), τ preserves the form on V. In fact, we shall see that τ is in $U_{n}(V)$ by the following lemma.

Lemma 3.16. $V=U \oplus$ oбu .
Proof. We shall show that $\bar{V}=\bar{U} \oplus \bar{o} \overline{\sigma u}$ for all i in I, which will imply $V=U \oplus o \sigma x$ by Lemma 3.15. Since U is a hyperplane of V, we have $\bar{U} \subsetneq \bar{V}$. Therefore it suffices to show that $\bar{V}=\overline{U+o \sigma u}$.

First let $i \in I_{0}$. Hence we have c in $o-A_{i}$ with $c v=0$. We note $\overline{c o}=\bar{o}=\overline{o c}$. Hence

$$
\overline{U+o \sigma u}=\overline{U+o(u+v)}=\overline{U+o c(u+v)}=\overline{U+o u}=\bar{V}
$$

by (4).
Next let $i \in I_{1}$. Then by (b) of Lemma 3.9 we have a good foursome (a, w, c, u) for i. Hence we have

$$
\overline{U+o \sigma u}=\overline{U+o c(u+v)}=\overline{U+o(c u+a w)} .
$$

Therefore if $\bar{a}=0$ then the right hand side equals $\overline{U+o u}=\bar{V}$ and we have the lemma. So we treat the case $\bar{a} \neq 0$. In this case, we suppose $\overline{U+o \sigma u} \subsetneq \bar{V}$ which will imply a contradiction. Since \bar{U} is a hyperplane of \bar{V}, our assumption means $\overline{\sigma u} \in \bar{U}$. Since $U \subset v^{\perp}$, we have $\overline{(\sigma u) v}=0$. Therefore

$$
0=\overline{(\sigma u) v}=\overline{\sigma u(\sigma u-u)}=\overline{(u-\sigma u) u}=-\overline{v u} .
$$

Hence $0=\overline{c v u}=\overline{a w u}=\overline{\bar{a} w u}$, a contradiction, because we have $\overline{w u} \neq 0$.

By the lemma τ is an automorphism on V and so τ is contained in $U_{n}(V)$. Write $D=o u_{1}+\ldots+o u_{d}$. Then $D \subset V_{\sigma}$. Since $D \subset U$, we have $D \subset V_{\tau}$. Therefore $D \subset V_{\tau^{-1} \sigma}$. Further, since $\tau u=\sigma u$, we have $\tau^{-1} \sigma u=u$. From these two, now we have
$D \oplus$ ou $\subset V_{\tau^{-1} \sigma}$.
Finally, since $D \oplus$ ou is a subspace of V with

$$
\operatorname{dim}(D \oplus o u)=d+1,
$$

we have
$d+1 \leqq \operatorname{dim} \overline{V_{r^{-1}}}$ for all i in I.
Thus we have completed the proof of the theorem.

References

1. C. Chang, Unitary groups over semilocal domain, J. Algebra 39 (1976), 160-173.
2. J. Dieudonné, Sur les groupes classiques, Actual. Scient. et ind., n 1040 (Hermann, Paris, 1948).
3. - Sur les générateurs des groupes classiques, Summa Brasil. Math. 3 (1955), 149-179.
4. E. W. Ellers, Decomposition of orthgonal symplectic, and unitary isometries into simple isometries, Abh. Math. Sem. Univ. Hamburg 46 (1977), 97-127.
5. H. Ishibashi, Generators of $O_{n}(V)$ over a quasi semilocal semhereditary domain, Comm. in Algebra 7 (1979), 1043-1064.
6. - Generators of $S p_{n}(V)$ over a quasi semilocal semihereditary domain, Comm. in Algebra 6 (1979), 1673-1683.
7. - Generators of $U_{n}(V)$ over a quasi semilocal semihereditary domain, J. Algebra 60 (1979), 199-203.
8. D. G. James, Unitary groups over local rings, J. Algebra 52 (1978), 354-363.

Josai University, Sakado, Saitama, Japan

[^0]: Received April 28, 1980 and in revised form January 28, 1981.

