IDENTITE ENTRE L'ENSEMBLE DES FONCTIONS DE BAIRE ET L'ENSEMBLE DES FONCTIONS BORELIENNES

PAR GILLES FOURNIER*

Il est bien connu que l'ensemble des fonctions de Baire de \mathbb{R} dans \mathbb{R} est égal à l'ensemble des fonctions boréliennes de \mathbb{R} dans \mathbb{R} . Dans cet article, nous généraliserons ce théorème de deux façons: premièrement, en étudiant plutôt des fonctions de X à Y, deux espaces topologiques normaux; et deuxièmement, en utilisant les suites généralisées de cardinalité donnée.

Nous donnerons une condition nécessaire et suffisante sur l'espace Y pour obtenir l'identité entre l'ensemble des fonctions de Baire de X à Y et celui des fonctions boréliennes de X à Y, pour tout espace topologique X normal possédant une base de cardinalité donnée.

Dans cet article, tous les espaces topologiques seront séparés.

L'auteur tient à remercier M. N. Schlomiuk pour de fructueuses discussions.

1. Définitions et énoncé du théorème. Soit η un cardinal non-fini et soit β_{η} le plus petit ordinal de cardinalité strictement supérieure à η . Définissons maintenant nos principaux outils.

DÉFINITION 11. Soient X et Y deux espaces topologiques, l'ensemble des fonctions de classe 0 (de Baire) de X à Y, noté $C_0(X, Y)$, est l'ensemble des fonctions continues de X à Y. L'ensemble des fonctions de classe α (de Baire) de X à Y, pour $\alpha < \beta_{\eta}$, noté $C_{\alpha}(X, Y)$, est l'ensemble des fonctions limites de suites généralisées, de cardinalité au plus η , de fonctions de classes précédentes. L'ensemble des fonctions η -Baire de X à Y, noté $B_{\eta}(X, Y)$, est l'ensemble des fonctions appartenant à une classe α pour $\alpha < \beta_{\eta}$.

DÉFINITION 12. Soient η un cardinal et X un ensemble, une η -algèbre sur X est un ensemble \mathcal{M} de parties de X vérifiant:

- (1) $X \in \mathcal{M}$
- (2) si $A \in \mathcal{M}$ alors $\mathscr{C}A \in \mathcal{M}$
- (3) si $A = \bigcup_{i \in I} A_i$ où $A_i \in \mathcal{M}$, pour tout $i \in I$, et $\operatorname{card}(I) \leq \eta$ alors $A \in \mathcal{M}$.

Reçu par les rédacteurs le 8 Mars 1974; version revisée reçue le 21 Octobre 1974.

^{*} Cette recherche fut supportée en partie par le C.N.R. et en partie par une bourse d'action concertée du Ministère de l'Education du Québec.

DÉFINITION 13. La classe des ensembles η -boréliens de X est la η -algèbre engendrée par l'ensemble des ouverts de X. Et une fonction η -borélienne de X à Y est une fonction dont l'image inverse de tout ouvert de Y est un ensemble η -borélien de X. Notons $B'_{\eta}(X, Y)$ l'ensemble des fonctions η -boréliennes de X à Y.

Définition 14. Nous dirons qu'un espace topologique est de type η s'il possède une base de cardinalité inférieure ou égale à η .

DÉFINITION 15. La condition de Baire pour un espace topologique Y s'énonce comme suit: pour toute suite finie $\{V_1, \ldots, V_n\}$ d'ouverts non-vides de Y, il existe A, une partie connexe par arcs de Y, telle que $A \cap V_i \neq \emptyset$ pour $i=1,\ldots,n$. Si Y est connexe par arcs, alors il vérifie la condition de Baire.

Théorème 16. Soit \mathcal{N}_{η} la classe des espaces normaux de type η et soit $Y \in \mathcal{N}_{\eta}$ alors $B_{\eta}(X, Y) = B'_{\eta}(X, Y)$ pour tout $X \in \mathcal{N}_{\eta}$ si et seulement si Y vérifie la condition de Baire.

Remarquons que si $\eta = \aleph_0$, ce théorème devient: soit \mathcal{N}_0 la classe des espaces métriques séparables et soit $Y \in \mathcal{N}_0$, alors l'ensemble des fonctions de Baire de X à Y est égal à l'ensemble des fonctions boréliennes de X à Y pour tout $X \in \mathcal{N}_0$, si et seulement si Y vérifie la condition de Baire.

2. Démonstration de la suffisance.

PROPOSITION 21. Soit X quelconque, si $Y \in \mathcal{N}_{\eta}$ alors $B_{\eta}(X, Y) \subset B'_{\eta}(X, Y)$.

DÉMONSTRATION. Adaptation directe du cas classique.

PROPOSITION 22. Si $X \in \mathcal{N}_{\eta}$ alors la fonction caractéristique de tout ensemble η -borélien de X est η -Baire de X à [0, 1].

DÉMONSTRATION. Adaptation directe du cas classique.

PROPOSITION 23. Si $X \in \mathcal{N}_{\eta}$ et si Y vérifie la condition de Baire alors $B'_{\eta}(X \mid Y) \subset B_{\eta}(X, \mid Y)$.

DÉMONSTRATION. Soient $f \in B'_{\eta}(X, Y)$ et \mathcal{O} une base de Y telle que $\operatorname{card}(\mathcal{O}) \leq \eta$. Soit $j \in \mathcal{O}_f(\mathcal{O})$, on a alors que $\operatorname{card}(\mathcal{O}_f(\mathcal{O})) \leq \eta$. Soit φ_U la fonction caractéristique de $f^{-1}(U)$ pour tout $U \in j$; elle est η -Baire par la proposition 22, $\operatorname{car} f^{-1}(U)$ est un borélien de X. Choisissons un ordre sur j, disons $j = \{U_1, \ldots, U_n\}$ et considérons la fonction

$$\psi_j = \sum_{i=1}^n (\frac{1}{2})^i \varphi_{U_i} : X \to [0, 1]$$

c'est une fonction η -Baire comme somme de produits de fonctions η -Baire, et, les valeurs des φ_{U_i} étant 0 ou 1, on a, pour tout $i=1,\ldots,n$ et pour tous $x, y \in X$, $\varphi_{U_i}(x) \neq \varphi_{U_i}(y)$ entraîne que $\psi_j(x) \neq \psi_j(y)$. Maintenant considérons la suite finie $\{\bigcap_{U \in k} U \mid k \in \mathcal{P}(j) \text{ et } \bigcap_{U \in k} U \neq \varnothing\}$. Comme Y vérifie la condition de

Baire, il existe A une partie connexe par arcs de Y rencontrant chaque élément de la suite; il existe donc un arc g_i :[0, 1] $\rightarrow Y$ tel que

$$g_{j}\left(\sum_{\{i\mid U_{i}\in k\}}(\frac{1}{2})^{i}\right)\in\bigcap_{U\in k}U\ si\ \bigcap_{U\in k}U\neq\varnothing\quad \text{et}\quad k\in\mathscr{P}(j).$$

Montrons enfin que $\lim_{\mathscr{P}_f(\emptyset)} g_j \psi_j = f$. En effet, soient $x \in X$ et V un voisinage de f(x), il existe $U_0 \in \emptyset$ tel que $f(x) \in U_0 \subset V$. Soit $j_0 = \{U_0\}$ alors si $j_0 \subset j$, on a que $k = \{U \in j \mid f(x) \in U\} \neq \emptyset$ car il contient U_0 . Donc on a:

$$\psi_{j}(x) = \sum_{i=1}^{n} (\frac{1}{2})^{i} \varphi_{U_{i}}(x) = \sum_{\{i \mid f(x) \in U_{i}\}} (\frac{1}{2})^{i} = \sum_{\{i \mid U_{i} \in k\}} (\frac{1}{2})^{i}$$

Ainsi $g_j\psi_j(x)=g_j(\sum_{\{i\mid U,j\in k\}}(\frac{1}{2})^i)\in\bigcap_{U\in k}U$, car, cette intersection contenant f(x), est non-vide. D'où $g_j\psi_j(x)\in U_0\subset V$; c'est-à-dire si, pour tout $x\in X$ et tout voisinage V de f(x), il existe j_0 tel que $j_0\subset j$ alors $g_j\psi_j(x)\in V$. \square

3. Démonstration de la nécessité.

LEMME 31. Soient X et Y deux espaces topologiques et $\{V_0, \ldots, V_n\}$ une suite finie d'ouverts de Y. Si $f=\lim_I f_i$, où f, $f_i:X\to Y$ et si $f(X)\cap V_j\neq\varnothing$ pour tout $j=1,\ldots,n$, alors il existe $k\in I$ tel que $f_k(X)\cap V_j\neq\varnothing$ pour tout $j=1,\ldots,n$.

DÉMONSTRATION. Sinon soit $x_j \in X$ tel que $f(x_j) \in V_j$ pour tout $j = 0, \ldots, n$. On a qu'il existe $i_j \in I$ tel que $i_j < k$ entraîne que $f_k(x_j) \in V_j$, car $\lim_I f_i(x_j) = f(x_j)$. Mais il existe $k \in I$ tel que $k > i_j$ pour tout $j = 0, \ldots, n$, car I est filtrant à droite. D'où $f_k(x_j) \in V_j$ pour tout $j = 0, \ldots, n$ et $f_k(X) \cap V_j \neq \emptyset$ pour tout $j = 0, \ldots, n$ ce qui est une contradiction. \square

PROPOSITION 32. Soient X et $Y \in \mathcal{N}_{\eta}$ et soit $\{V_0, \ldots, V_n\}$ une suite finie d'ouverts de Y. Si pour tout $f \in C_0(X, Y)$, il existe j_f tel que $f(X) \cap V_{j_g} = \emptyset$ alors, pour tout $g \in B_{\eta}(X, Y)$, il existe j_g tel que $g(X) \cap V_{j_g} = \emptyset$.

PROPOSITION 33. Soit \mathcal{N}_{η} la classe des espaces normaux de type η , et soit $Y \in \mathcal{N}_{\eta}$ Si $B_{\eta}([0, 1], Y) = B'_{\eta}([0, 1], Y)$, alors Y verifie la condition de Baire.

DÉMONSTRATION. Supposons que Y ne vérifie pas la condition de Baire, c'est-à-dire il existe $\{V_0,\ldots,V_n\}$ des ouverts non-vides de Y tels que toute partie connexe par arcs A de Y ait une intersection vide avec au moins un des ouverts V_i . Soit $x_i \in V_i$ pour $i=0,\ldots,n$ et définissons $f:[0,1] \to Y$ par $f(((i-1)/n,i/n)=x_i$ pour i>1 et $f(0)=x_0$; f est borélienne. Mais pour toute fonction $g \in C_0([0,1], Y)$, on a que g([0,1]) est connexe par arcs, donc il existe $i \in \{0,\ldots,n\}$ tel que $g([0,1]) \cap V_i = \emptyset$. Par la proposition précédente, il en est de même pour toutes les fonctions η -Baire de [0,1] à Y. Ce qui implique que f n'est pas η -Baire car $f([0,1]) \cap V_i \neq \emptyset$ pour tout $i,0 \le i \le n$; ce qui est une contradiction. \square

Comme [0, 1] est normal et de type η pour tout $\eta \geq \aleph_0$, la nécessité du théorème 16 découle immédiatement de la proposition 33.

4. Cas des espaces possédant une composante connexe par arcs contenant deux points distincts.

Théorème 41. Soient X et Y deux espaces normaux de type η . Si X possède une composante connexe par arcs contenant deux points distincts, alors $B_{\eta}(X, Y) = B'_{\eta}(X, Y)$ si et seulement si Y vérifie la condition de Baire.

DÉMONSTRATION. La suffisance est évidente du théorème 16.

Pour la nécessité, soit $\{V_0,\ldots,V_n\}$ une suite finie d'ouverts de Y telle que, pour toute composante connexe par arcs A, de Y, il existe i $(0 \le i \le n)$ tel que $A \cap V_i = \varnothing$. On a donc, pour tout $f \in C_0([0,1],Y)$ (donc pour $f \in B_n([0,1],Y)$, par la proposition 32), qu'il existe i $(0 \le i \le n)$ tel que $f(X) \cap V_i = \varnothing$. Soit B une composante connexe par arcs de X contenant deux points distincts, elle contient donc (n+1) points distincts, disons x_0,\ldots,x_n (car tout espace séparé connexe contenant deux points distincts est de cardinalité supérieure ou égale à \aleph_0). Soit $\alpha:[0,1] \to X$ une fonction continue telle que $\alpha(i/n) = x_i$ pour $i=0,\ldots,n$. Choisissons $y_i \in V_i$ pour $i=0,\ldots,n$ et définissons $f:X \to Y$ par

$$f(x) = \begin{cases} y_i & \text{si } x = x_i \text{ pour } i = 1, \dots, n \\ y_0 & \text{autrement} \end{cases}$$

on a que f est η -borélienne de X à Y donc elle est η -Baire de X à Y. Par conséquent, α est η -Baire; or, pour $i=0,\ldots,n$, on a que $f\alpha(i/n)=f(x_i)=y_i\in V_i$, c'est-à-dire, $\alpha([0,1])\cap V_i\neq\emptyset$ ce qui est une contradiction. \square

Remarquons que si $\eta = \aleph_0$, le théorème 41 devient: soient X et Y deux espaces métriques séparables; si X possède une composante connexe par arcs contenant deux points distincts, alors l'ensemble des fonctions de Baire de X à Y est égal à l'ensemble des fonctions boréliennes de X à Y, si et seulement si Y vérifie la condition de Baire.

REFERENCES

- 1. R. Baire, Leçons sur les fonctions discontinues, Paris, Gauthier-Villars, 1930.
- 2. J. Dugundji, *Topology*, Boston, Allyn and Bacon Inc., 1970.
- 3. C. de La Vallée Poussin, Intégrales de Lebesgue. Fonctions d'ensembles. Classes de Baire, Paris, Gauthier-Villars, 1950.
- 4. F. Obreanu, Sur un théorème de Baire, Acad. Repub. Pop. Romana Bul. Sti. Sect. Sti. Math. Fiz., 4, pp. 285-290 (1952).