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Abstract. The tens of millions of radio sources to be detected with next-generation surveys pose
new challenges, quite apart from the obvious ones of processing speed and data volumes. For
example, existing algorithms are inadequate for source extraction or cross-matching radio and
optical/IR sources, and a new generation of algorithms are needed using machine learning and
other techniques. The large numbers of sources enable new ways of testing astrophysical models,
using a variety of “large-n astronomy” techniques such as statistical redshifts. Furthermore,
while unexpected discoveries account for some of the most significant discoveries in astronomy,
it will be difficult to discover the unexpected in large volumes of data, unless specific software
is developed to mine the data for the unexpected.

Keywords. techniques: miscellaneous, radio continuum: general, survey, astronomical data
bases: miscellaneous.

1. Introduction
The decade before the construction of the Square Kilometre Array (SKA: Dewdney

et al. 2009) has seen the construction of a number of SKA pathfinder telescopes, three
of which are already in operation: the Meerkat telescope in South Africa (Jonas 2009),
the Australian SKA Pathfinder (ASKAP: Johnston et al. 2008), and the Murchison
Widefield Array in Australia (MWA: Tingay et al. 2013). Each of these three precursor
telescopes is a major new instrument in its own right, using innovative new technology
to exceed the performance of its predecessors by a significant margin.

For example, Figure 1 shows the main 20cm radio surveys, both existing and planned.
The largest existing radio survey, shown in the top right, is the wide but shallow NRAO
VLA Sky Survey (NVSS: Condon et al. 1998). The most sensitive published radio sur-
vey is the deep but narrow JVLA-SWIRE (Lockman hole) observation in the lower left
(Condon et al. 2012). Existing surveys are bounded by a diagonal line that roughly marks
the limit of available time on current-generation radio telescopes. To the left of that line
are three surveys (VLASS, JVLA-COSMOS, and CHILESConPol) that have been made
possible by the upgrade to the Jansky Very Large Array (JVLA: van Moorsel 2014).

Even further to the left are three planned continuum surveys: WODAN, on the up-
graded Westerbork telescope (Röttgering et al. 2010b), the Meerkat surveys, whose exact
specifications are still under discussion, and the Evolutionary Map of the Universe (EMU:
Norris et al. 2011). Missing from this diagram are the important MWA, LOFAR (van
Haarlem et al. 2013) and other surveys as they are at a very different frequency.

All these surveys face similar challenges in terms of the volume of data, the large num-
bers of sources, and the resulting need to develop tools to automate the data analysis that
traditionally was done by hand. Recognising the need to coordinate developments and
avoid duplication of effort, the SKA Pathfinder Radio Continuum Survey Working Group
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Figure 1. Comparison of existing and planned deep 20 cm radio continuum surveys, based on
a diagram by Isabella Prandoni. The horizontal axis shows the sensitivity, and the vertical axis
shows the sky coverage. The right-hand diagonal dashed line shows the approximate envelope of
existing surveys, which is largely determined by the availability of telescope time. Surveys not
at 20cm are represented at the equivalent 20 cm flux density, assuming a spectral index of -0.8.
The squares in the top-left represent the new radio surveys discussed in this paper.

(SPARCS) was established in 2010 and has had annual meetings since. Its achievements
include the writing of a review paper listing these challenges (Norris et al. 2013) and
the establishment of three reference survey fields at declination ∼ +30◦, 0◦, and −30◦,
which can be observed by all existing and new radio telescopes, to ensure agreements
on the measured positions, flux densities, polarisation, spectral index, etc. For example,
the measured flux densities of sources in radio surveys are subject to a large number
of subtle corrections and bias effects, that can cause measurement errors. The SPARCS
fields have been chosen to overlap with a field that is well-studied at other wavelengths,
to maximise the science to be obtained from these observations. It is planned to observe
all three fields, as far and deeply as possible, with all existing survey telescopes as well
as the new SPARCS surveys.

The rest of this paper discusses the challenges common to all these surveys by dis-
cussing them in terms of the largest of these surveys, EMU.

1.1. ASKAP & EMU
The Australian SKA Pathfinder (ASKAP: Johnston et al. 2008) is a new radio telescope
nearing completion on the Australian SKA site in Western Australia, at the Murchison
Radio Astronomy Observatory. It consists of 36 12-metre antennas distributed over a
region 6 km in diameter. It is revolutionary in that each antenna is equipped with a
phased-array feed (PAF: Bunton & Hay 2010) of 96 dual-polarisation pixels operating
at 700–1800 MHz, resulting in a field of view of 30 deg2, and a much high survey speed
than comparable single-pixel telescopes.
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As well as producing images and source catalogues, the real-time processing pipeline
(Cornwell et al. 2011) will also measure spectral index, spectral curvature, and all polar-
isation products.

ASKAP has a very high data rate: 70 Tbit/s from the antennas, and 220 TB/day from
the correlator, which is sent via an 800km dedicated fibre link to the Pawsey centre in
Perth. There, the processing software runs on a 200 Tflop/s Cray XC30 supercomputer
that generates 70 PB/year of calibrated data, images, and catalogues. The operating
budget only allows 4 PB/year to be stored, so most of the spectral line time-series data
is discarded.

ASKAP has already generated significant science (e.g. Serra et al. 2015; Allison et al.
2015; Heywood et al. 2016) in “BETA” and “Early Science” mode. Full operations are
expected to start in early 2018, when the major survey programs, such as EMU, will
commence.

ASKAP’s all-sky continuum survey is EMU (Norris et al. 2011) which will survey 75%
of the sky to a sensitivity of 10 μJy/beam rms. EMU will detect about 70 million galaxies,
compared to the 2.5 million detected by all radio-telescopes over the entire history of
radioastronomy. Not only will EMU have greater sensitivity than previous large-area
surveys, but it will also have high resolution and sensitivity to extended emission, and
will measure spectral index and, courtesy of the POSSUM project (Gaensler et al. 2010),
polarisation for the strongest sources.

EMU is driven by 18 “Key Science Projects” (KSPs), which cover areas ranging from
cosmology and galaxy evolution through to Galactic science, but which are unified under
the over-arching goal of understanding the evolution of the Universe. Importantly, one
key science project is to discover the unexpected, which is discussed further below. Many
of the KSPs take advantage of the large number of sources available from EMU to operate
in a “large-n” astronomy mode, where statistical inferences about populations of objects
take precedence over the properties of individual objects.

EMU also has a number of “Development Projects”, covering challenges such as source
extraction, classification, cross-matching to multi-wavelength surveys, and redshift de-
termination, in collaboration with other SPARCS members.

Section 2 of this paper describes these challenges, Section 3 describes the methodology
for discovering the unexpected, and Section 4 presents conclusions.

2. Technical Challenges Facing Large Radio Continuum Surveys
2.1. Compact Source Extraction and Measurement

Astronomy has many tools available to find and extract sources in an image, and they are
often used without checking their outputs. However, none are suitable for an automated
survey, as they require manual parameter adjustment, none accounts for variations in the
point spread function across the image, and few sufficiently characterise the background
and noise levels in an image (e.g. Huynh et al. 2012). There has been no systematic
measurement of the reliability, and false detection rate of the source finders, or the
accuracy of their measurements of position, size, and flux density.

To ensure that the best source finders are used for EMU and other surveys, a number of
well-known source finders (Aegean, Blobcat, IMSAD, PyBDSM, Selavy, Sextractor, and
SFind) were pitted against each other in a data challenge by Hopkins et al. (2015). The
results were disappointing: even for isolated point sources, all current source finders fall
well short of what should be theoretically achievable. In some cases sources well above the
noise threshold were missed, and in other cases new sources were “invented”. Measured
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source flux densities could be wrong by a factor of a few even for strong sources. The
challenge of finding complex sources is even harder.

The results of that data challenge have been used by the developers of the most suc-
cessful radio-astronomical source finders (Aegean by Hancock et al. (2012), PyBDSM
by Mohan & Rafferty (2015), and Selavy by Whiting & Humphreys (2012) to enhance
their software, and a new round of comparisons is now under way (K. Grieve et al., in
preparation). The results of the new comparison will be used to ensure that EMU and
other surveys use the best source finder available.

These analyses have also shown that further development is essential to optimise and
quantify the performance of current source-finding algorithms.

2.2. Diffuse Source Extraction and Measurement
Whereas it was incorrectly thought that the compact source extraction problem had been
solved, it is well known that the identification and extraction of diffuse emission is much
harder. Astrophysically, diffuse emission is extremely important, for example as a tracer
of cluster haloes, Galactic emission, and the cosmic web. However, previous small data
volumes have been sufficiently small that work has focussed on hand-crafted tools (e.g.
Vernstrom et al. 2015) and there has been little development of automated tools to detect
diffuse emission. The thousands of cluster haloes expected to be detected by EMU means
that the development of an automated tool is a high priority. Several algorithms (Dabbech
et al. 2015; Butler-Yeoman et al. 2016; Riggi et al. 2016) are now under development for
automatically detecting diffuse sources in radio-astronomical images.

2.3. Classification and Cross-Identification
Many science goals associated with radio surveys require the radio sources to be cross-
identified with their counterparts, such as host galaxies, at other wavelengths. This is non-
trivial since about 10% of radio sources have several components. For example, two nearby
unresolved radio components might either be the two lobes of a double radio source,
or the radio emission from two star-forming galaxies. Only by cross-identifying with
optical/infrared data can these two cases be distinguished, since the star forming galaxies
will have a host galaxy coincident with each of the radio components, whereas the host
of the double radio source is likely to lie between them. Conversely, only by classifying
the source do we know where to find the optical counterpart. Thus classification and
cross-identification of radio sources are inextricably linked, and both processes must be
performed simultaneously. Whilst this process is easy for the expert human, the 7 million
complex sources expected to be detected by EMU pose a significant challenge, as there
is currently no automated software to do this for large surveys.

Experience has shown that cross-identification with optical catalogues leads to a much
higher false-identification rate than cross-identification with infrared (IR) catalogues,
and so the primary cross-identification is done with an IR catalogue, and then the IR
position is used to cross-identify with other optical and IR catalogues. Several techniques
are currently being evaluated, using the ∼5000 sources in the ATLAS data set (Norris
et al. 2006; Franzen et al. 2015) as a testbed, as follows:

• Manual classification and cross-identification to provide a training, test, and valida-
tion set (Jesse Swan et al., in preparation);
• An extension of the likelihood-ratio approach (Sutherland & Saunders 1992) is being

developed (Stuart Weston et al., in preparation) to take into account the likelihood that
several radio components may correspond to one optical component;
• A Bayesian approach, which compares the probabilities of different classifications

and cross-identifications, given a set of priors (Fan et al. 2015);
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Figure 2. The broad-band radio spectrum of a radio galaxy, from Jordan Collier et al.(in
preparation). Using either machine-learning photometric redshift techniques, or by modelling of
the source, individual redshifts for some sources will be obtainable from radio data alone.

• The Radio Galaxy Zoo, in which thousands of citizen scientists do the classification
and cross-identification by eye (Banfield et al. 2016);

• Several machine-learning projects, in which different machine learning algorithms
such as neural nets are being evaluated to do the classification and cross-identification.
Finally, the results of all these techniques will be compared. It is likely that several of
them will be used together, as described in §3.

2.4. Redshifts

2.4.1. Statistical Redshifts

For much of the science from radio continuum surveys, it is necessary to know the
redshifts of the sources. However, only about 2% of the 70 million EMU sources will have
spectroscopic redshifts, and so a number of alternative approaches are being explored. For
example, it is often sufficient to assign each source to a redshift bin, rather than measuring
the redshift of each source to a high precision. In many cases, knowledge of the redshift
distribution of a subsample is sufficient, rather than redshifts of individual galaxies.
I call such redshifts “statistical redshifts”. For example, Raccanelli et al. (2014) show
that EMU will be able to use the Integrated Sachs-Wolfe effect to measure primordial
non-gaussianity to high accuracy. With no redshift information, the accuracy σ(fN L ) is
uncompetitive, but with only three redshift bins EMU can measure non-gaussianity more
accurately than even Euclid.

2.4.2. Radio Photometric Redshifts

Radio sources were traditionally thought to have featureless power-law spectral-energy
distributions (SED), and so could not be used to obtain redshifts directly. However, the
advent of radio surveys at high and low frequencies have made it clear that a significant
fraction of radio sources have rich radio SEDs such as that shown in Figure 2, and so in
principle may yield photometric redshifts directly.
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2.4.3. Broadband Photometric Redshifts
Conventional photometric redshifts are obtained by fitting SED templates to optical

and infrared photometry measurements, using as many as 30 photometric bands (e.g.
Salvato et al. 2009). The requirements of radio continuum surveys are different from
those driving these techniques, in several respects:
• Precision is less important than the minimisation of the fraction of catastrophic

outliers, with few applications requiring a precision Δz < 0.1.
• The available photometry, mainly from near-all-sky surveys such as WISE, VHS,

and Skymapper, will be less homogenous that that used by (e.g.) Salvato et al. (2009),
with fewer photometry bands
• EMU radio photometric radio data will be available for all sources, and spectral

indices and low-frequency radio data from MWA will be available for a significant fraction
of sources. Any photometric code should make use of this radio data.
• Standard galaxy templates may not always be appropriate for radio sources, and

tests (Salvato et al. 2017) have shown that even simple machine learning techniques (e.g.
kNN) can sometimes outperform template techniques.
• The use of machine learning techniques enables the use of other data, such as the

polarisation data available for ∼10% of EMU sources. Detection of polarisation virtually
guarantees the source is an AGN.

2.4.4. Spatial Clustering Redshifts
Rahman et al. (2016) and others have shown that redshifts can be estimated from

spatial clustering information of nearby galaxies. This is harder for radio continuum
surveys, because radio surveys generally extend to much higher redshifts than optical
surveys, making it difficult to obtain a training set co-located with the target set. For
example, the median redshift for EMU sources is z ∼ 1.4. So while a training set for
photometric redshift techniques may be obtained from one well-studied part of the sky, a
training set for spatial clustering will be available only for low ( z <∼ 1) redshift sources.

3. WTF? Discovering the Unexpected
3.1. The Process of Discovery

At least half the major discoveries in astronomy are unexpected (Harwit 1981; Wilkinson
et al. 2004; Wilkinson 2007; Kellermann 2009; Ekers 2009; Wilkinson 2015). For exam-
ple, Ekers (2009) examined 17 major astronomical discoveries in the last 60 years, and
concluded (see Figure 3) that only seven resulted from systematic observations designed
to test a hypothesis or probe the nature of a type of object. The remaining ten unex-
pected discoveries resulted either from new technology, or from observing the sky in an
innovative way, exploring uncharted parameter space. Similarly, Norris (2016) showed
that, of the 10 greatest discoveries made with the Hubble Space telescope, only one (us-
ing Cepheids to measure the Hubble constant) was amongst its science goals. The other
nine, including the discovery of dark energy, were in some sense unexpected.

A prime example of an unexpected discovery was the discovery of pulsars by Jocelyn
Bell. She observed the radio sky for the first time with high time resolution, to study
interstellar scintillation, and thereby explored an unexplored part of observational pa-
rameter space. She found “bits of scruff” on the chart recorder, which she realised could
not be due to terrestrial interference, but represented a new type of astronomical object.
She describes the process in detail in Bell-Burnell (2009).

Figure 1 shows that radio continuum surveys such as EMU are also venturing into
unexplored parts of observational parameter space. From Occam’s razor, the unexplored
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Figure 3. A plot of recent major astronomical discoveries, taken from Ekers (2009) of which
seven were “known-unknowns” (i.e. discoveries made by testing a prediction) and ten were “un-
known-unknowns” (i.e.. a serendipitous result found by chance while performing an experiment
with different goals).

region of observational parameter space to the left of the line presumably contains as
many potential new discoveries per unit parameter-space as the region to the right. EMU
should therefore significantly expand the volume of observational parameter space, so in
principle should discover unexpected new phenomena and new types of object.

However, it’s unlikely that a latter-day Jocelyn Bell could discover the unexpected in
ASKAP data. She discovered pulsars by laboriously sifting through all her data, and
noticing a tiny anomaly that did not fit her understanding of the telescope. If she were
observing with ASKAP, she would have to sift through petabytes of data from a machine
that is so complex that nobody truly understands every bit of it.

The only way of extracting science from large volumes of data is to interrogate the
data with a well-posed question, such as ‘plot the specific cosmic star formation rate of
star-forming galaxies as a function of redshift’. This is a very efficient way of answering
the known-unknowns, but it is incapable of finding the unknown-unknowns. Since the
human brain cannot sift through petabytes by eye, then we must rely on tools to detect
the unexpected, and such tools do not currently exist.

We have therefore started a project within EMU, named Widefield ouTlier Finder,
or WTF, to develop techniques for mining large volumes of astronomical data for the
unexpected, using machine-learning techniques and algorithms. There are two types of
unexpected discovery: the discovery of unexpected objects, and the discovery of unex-
pected phenomena, which may appear as an anomaly in the properties of a sample of
objects. A detailed description is given by Norris (2016).

3.2. WTF1: Discovering unexpected objects
There are currently ∼ 2.5 million known radio sources. EMU is expected to detect about
70 million objects, and so there is a good chance that these will include new classes of
radio source. WTF will search for them using the process shown in Figure 4. Although
this is designed for EMU, the broad approach is applicable to any survey.

The ASKAPSOFT real-time processing pipeline processes EMU data to produce im-
ages and source catalogues in the “CASDA” Observation database. This is followed by
the “Value-added pipeline”, which implements the processes described in §2 to produce
the Survey catalogue, EVACAT (EMU Value-added Catalogue). WTF then mines EVA-
CAT, together with the radio images, for unexpected objects.
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Figure 4. (Left) The flowchart for discovering unexpected objects. (Right)The flowchart for
discovering unexpected phenomena.

One function of WTF is to mine the images for unconventional sources. For example,
a ring of emission several arcmin in diameter but with an amplitude of only half the rms
noise level in any one pixel, would be invisible to the human eye, or to a conventional
source extraction code. Such a ring could easily be detected using a suitable matched
filter, such as a Hough transform (Hollitt & Johnston-Hollitt 2012). Many other examples
of potential diffuse and unconventional sources may be imagined. Detecting sources with
unknown unconventional morphology is much harder and is the subject of continuing
research such as Geach (2012) and Baron & Poznanski (2016).

The catalogue will be searched in an n-dimensional parameter space with axes such
as flux density, spectral index, and IR-to-radio ratio. Known types of object (e.g. stars,
galaxies, quasars) will appear as clusters in this parameter space. Algorithms are being
explored that will search the parameter space for anomalies, such as clusters of objects
that do not correspond to known types of objects.

3.3. WTF2: Discovering Unexpected Phenomena
An unexpected discovery can result from the properties of a sample of objects differing
from those predicted by theory. For example, dark energy was discovered (Riess et al.
1998; Perlmutter et al. 1999) when the relationship between the brightness and redshift of
type 1A supernovae differed from that predicted by theory. Here I describe an approach
in which data is tested against theory to reveal discrepancies. Rather than trying to
derive theoretical quantities from the data, which requires a number of assumptions and
corrections, the opposite approach is taken of generating simulated observations from the
theory, which can then easily have the observational constraints (the “window function”)
applied, and then compared to data in an empirical “characteristic distribution” (e.g.
source counts as a function of observed flux density, or the angular power spectrum).

By doing this, the simulations are effectively being used to encapsulate our current un-
derstanding of astrophysics, so that we can check if the observed data is consistent with
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Figure 5. The angular power spectrum for radio sources in the SPT field, taken from Rees
et al.(2017). Points with error bars are the measured angular power spectrum of the data ob-
tained by O’Brien et al.(2017), and the blue line shows the distribution predicted by the semi-em-
pirical model described in the text. The dotted line shows the cosmological signal predicted by
LCDM,and the dashed line show the effect of radio source size and double radio sources. The
solid black line is the sum of these latter two predictions.

our current understanding. Any significant difference between the two either represents
an error in the data or simulation, or an unexpected discovery. This process is shown
in Figure 4, and includes the following steps. The starting point is a simulation, such
as the Millennium Simulation (Springel et al. 2005) which encapsulates our knowledge
about cosmology and galaxy formation. From this is generated a simulated sky, using
our knowledge of the observed properties of galaxies, using a tool such as the Theoretical
Astrophysical Observatory (TAO: Bernyk et al. 2016), together with a semi-empirical
model of radio sources. The model sky is them converted to a simulated observed sky
using observational constraints such as sensitivity and resolution. The sky is then “ob-
served” using the window function of the real data, which includes factors such as area
of sky observed, and any varying sensitivity across the observations.

For example, Figure 5 taken from Rees et al. (2017), shows the angular power spectrum
for radio sources in the SPT (South Pole Telescope) field, using the radio observations
described by O’Brien et al. (2016). The simulated data were based on the Millennium
Simulation, from which a simulated sky of galaxies was generated using the TAO tool.
From this, a radio sky was generated using semi-empirical assumptions about the prop-
erties of radio sources based on the zFOURGE survey (Rees et al. 2016).

4. Conclusions
Next-generation radio continuum surveys face a number of technical challenges and

opportunities, which must be addressed if we are to extract the science from the tsunami
of data. Many of the solutions will take advantage of the large data volumes and use ma-
chine learning algorithms. Over half the major discoveries in astronomy are unexpected,
but are unlikely to be made by humans in the large data volumes that characterise
next-generation surveys. Instead, software must be designed explicitly to maximise their
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ability to mine the data for unexpected discoveries, including both unexpected objects
and unexpected phenomena.
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