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Abstract

In this paper we use a result from graph theory on the characterization of the line graphs of the
complete bigraphs to show that if n is any integer a 2 then any finite linear space havingp = n2- n
or p = n2 -n + 1 points, of which at least n2- n have degree n + 1, and q Sn2 + n - 1 lines is
embeddable in an FPP of order n unless n = 4. If n = 4 there is only one possible exception for
each of the two values of p, and for p = n2- n, this exception can be embedded in the FPP of
order 5.

1. Introduction

Recently de Witte (1975c) has proved that any finite linear space (= FLS)
with p = n2 — 1 points, all of degree at most n + \ can be embedded in a finite
projective plane (= FPP) of order n ^ 4). This result extended a theorem of
Bose and Shrikhande (1973) (see also Bose (1973)). Bose and Shrikhande and
also de Witte, in getting rid of the exceptional case in the Bose-Shrikhande
theorem, made extensive use of graph theory. Bose and Shrikhande appealed to
a well-known theorem [Theorem 8.6 of Harary (1969)] on the characterization of
the line graphs of the complete graphs Km for m/ 8. De Witte considered the
three graphs having the same parameters as, but differing from, the line graph of
the complete graph Ks.

* The author is grateful to Professor Paul de Witte for motivating this work and for his
comments and suggestions and to the National Research Council of Canada for their financial
support.
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It is the intention of this paper to apply another well-known theorem from
graph theory to linear geometry. Using the theorem on the characterization of
the line graphs of the complete bigraphs Km,m for m / 4 [Shrikhande (1959) and
Theorem 8.7 of Harary (1969)], we will establish the following:

THEOREM. / / Z£ is an FLS with p = n2-norp = n2-n + l points, of which
at least n2 — n have degree n + 1 and q S n2 + n — 1 lines, where n is some
integer g 2, then £ is embeddable in an FPP of order n unless n = 4. If n = 4
there is only one possible exception for each of the two values of p, and for
p = n2 — n, this exception can be embedded in the FPP of order 5.

The above FLS's are precisely what would arise by deleting two lines
(except possibly one point) from an FPP of order n. Thus the theorem
comments on the reconstructibility of the FPP.

We will use the notation and terminology of de Witte (1975a). Let us recall
those symbols and terms needed for this paper. By a finite linear space
( = FLS) is meant a finite set of p so-called points together with a (finite) set of
q subsets of points, called lines, such that every pair of distinct points is
included in precisely one line and every line contains at least two points. The
number of points on a line x (resp. lines through a point u) will be denoted by
a(x) (resp. b(u)) and called the degree of x(resp. u). A k-line (resp. k-point) is
a line (resp. point) of degree k. Two lines miss each other if they are disjoint
and are parallel if they are either identical or disjoint. One should note that
disjointness and parallelism are not necessarily transitive. An FLS is called
trivial if there is at most one line, and a near-pencil if it is non-trivial and p - 1
points are collinear.

The points and lines of an FLS will often be denoted b y u 0 ( l S o g p ) and
xa ( l g f f S q ) respectively, introduced so that a ^ / 3 implies ba = /?(«„) =
b(up) = bp and p ^<J implies ap = a(xp) ^ a( jc) = a,. The incidence number of
a point ua and a line xa will be denoted by rm, and is equal to 1 if ua lies on xa

and 0 otherwise. The incidence matrix associated with the FLS is the q x p
matrix (rTO).

2. Prerequisites

The results PI to P4 below are well-known; for proofs, cf. de Witte
(1975a). Lemmas 1 and 2 are deep results proved by Shrikhande (1959) and de
Witte (1975b) respectively. For this reason they are stated without proof.
Lemmas 3 and 4 use the same methods of proof as in Bose and Shrikhande
(1973) and de Witte (1975c).
PI. Xaba =£„«„ .

https://doi.org/10.1017/S1446788700013331 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013331


[3] Finite projective planes 29

P2. For all a, p = 1 + 1<,raa (aa-X) if p i? 1.
P3. Any line xa meets 1 + 1arm (ba - 1) lines if q g 1.
P4. If ua does not lie on xa, then ba - aa counts the number of lines passing

through ua and missing x«. Hence, if b, = n + 1 ^ 2, then fl|£n + l .

LEMMA 1: Lef m be an integer g 1, and G a graph, as defined by Harary
(1969), satisfying the following four conditions:
(a) there are m2 vertices ;
(b) every vertex has 2(m — 1) neighbours;
(c) ei>ery two adjacent vertices have m — 2 common neighbours;
(d) every two non-adjacent vertices have 2 common neighbours.
Then G is the line graph of the complete bipartite graph Km,m or the following
exceptional graph with m = 4:

vertex

i ;
2
3
4
5
6
7
8 ;

neighbours

3
3
2
2
6
3
4

» 5

4
4
6
7
7
5
5
9

5 6
8 9
9 11
10 13
8 15
12 13
11 14
10 15

7
10
12
14
16
15
16
16

vertex

9
10
11
12
13
14
15
16

2
2
3
3
4
4
5
5

neighbours

3
4
7
6
6
7
6
7

8 11 14
8 12 13
9 12 14
10 11 13
10 12 14
9 11 13
8 9 13
8 10 11

15
16
16
16
15
15
14
12

LEMMA 2. Let n be a positive integer g 2 and i£ an FLS such that
n 2 S p ^ q g n 2 + n + l. Then !£ is either a near-pencil or ££ is embeddable in an
FPP of order n.

LEMMA 3. In an FLS with q = n2+ n - 1 and all points of degree n + 1, the
following hold:

(i) any (n - \)-line misses 2(n - 1) lines;
(ii) if two (n - \)-lines miss each other, then there are n — 2 lines missing

them both;
(iii) // two distinct (n - l)-lines meet each other, then there are 2 lines

missing them both.

PROOF. By P3 any (n - l)-line misses

q-l-'2rt,a(ba-l)=n2+n-l-l-(n-l)n = 2(n-l)

lines. Now suppose the (n - 1)-lines x and y miss each other. By P4 there is
one line different from y passing through each point of y and missing x. This
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accounts for n of the lines that miss x. Thus there must be n - 2 lines missing
both JC and y. If x and y were distinct (n - 1)-lines meeting one another at the
point w, then by P4 there are 2 lines passing through each point of y different
form w and missing x, and hence there are 2 lines that miss both x and y.

LEMMA 4. Let SB be an FLS with all points of degree n + 1, all lines of degree
n or n — 1, every (n — \)-line meeting every n-line and with the graph defined on
the set of (n — 1)-lines by the disjointness relation equal to the line graph of a
complete bipartite graph Kmm (m § 2). Then SB is embeddable in a finite affine
plane ( = FAP) of order m = n ( g 3). Moreover SB has p = n2- n points and
q = n2 + n - 1 lines, of which n - 1 are of degree n and n2 are of degree n - 1, and
every point lies on one line of degree n and n lines of degree n - 1.

PROOF. Since m ^ l , the line graph of Km,m is non-empty. Hence, there are
(n - 1)-lines, and so n g 3. It is clear that each of the (n - l)-lines may be
represented by the ordered pair (/,/), where i,j are integers 1 Si,j § m, such
that two (n - 1)-lines are disjoint iff their representations agree in one
coordinate. Then SB can be extended as follows. For every integer /, 1 § i g m,
a "new" point up+i is introduced and to each (n - l)-line (/,/) of SB the point
wp+, is added. A "new" line xq+i = {up+i, • • •, up+m} is also added. We claim that
the resulting structure SB' is an FAP of order m = n ( g 3 from above). To show
that SB' is first of all an FLS, we need only show that every two points are
contained in precisely one line, since m g 2. But to vertify this, we need only
consider one new point and one old one, say up+, and ua. If ua does not lie on
the (n - l)-line (/,/), then by P4 we know that there are two (n - 1)-lines
passing through ua and missing (i,j). They must be of the form (i,k) and(/,y).
Clearly ua and up+i both belong to the extended (n - l)-line (i,k). Since any
two distinct lines of =2" containing up+i are disjoint in % we get the uniqueness
of the extended (n - l)-line (i,k). Thus <£' is an FLS. Now since «P+, is added
to all (n - l)-lines (i,j),j = 1, • • -,m, we see that bp+,•= m + 1. Thus if m = n, all
lines of 5£' have degree n and all points have degree n + 1, and if' is an FAP of
order m = n. So we need only show that m = n. By considering P2 at an old
point, we see that p' = n \ and then by considering a new point we have

nz-\ =p'- 1 =(m - \) + m{n - ]) = mn - 1,

and thus m = n. Therefore, SB' is an FAP of order m = n ( ^ 3). Hence
p = p' — n = n2 — n, q = q' — 1 = n2 + n — 1, and by considering PI and P2 we
get the remainder of the conclusions.

3. Proof of the theorem

3.1. We will first prove the theorem for p = n2 — n and then use that to prove
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the remainder. By P3 we have a,^n and by P2 we see that there is at least one
n-line passing through every point of J?. Now if two n- lines x and y meet at a
point w, then through every point of y different from w there is a line missing x
by P4 and hence by P3 we get a contradiction. Therefore, through every point
of X there is precisely one line of degree n and n lines of degree n - 1. This
yields q = n2 + n - I lines, of which n - 1 have degree n and n2 have degree
n - 1. In view of lemma 3 all four conditions of lemma 1 are satisfied, if G is the
graph defined on the set of (n - l)-lines by the disjointness relation. Thus if G
is not the exceptional graph listed in lemma 1, then G is the line graph of a
complete bipartite graph Km,m and by lemma 4 we must have that j? is
embeddable in an FAP of order n (and hence in an FPP of order n). If G is the
exceptional graph of lemma 1, then n = 4 and, as we will see in section 4, if must
be given by the incidence matrix in the upper left-hand corner of figure 1. We
call this FLS the Shrikhande-FLS. The whole incidence matrix in figure 1
is the FPP of order 5 and thus the theorem is proved for p = n2 - n. (As can be
seen from figure 1 the Shrikhande-FLS is obtained from the FPP of order 5 by
selecting three non-concurrent lines and deleting all points that do not lie on
precisely one of them).

3.2. We may now consider p = n2 - n + 1 and assume that all but possibly
one of the points has degree n + 1. Let w denote this one point whose degree
may differ from n + 1.

3.2.1. Let us first suppose that Oi^n + 1. Then AC, must pass through w if
b(w) / n + 1. If b(w) = n + 1 we could have chosen w as any point in S£, so
even in this case we may suppose that w lies on x,. By P4 we see that
a, = n + 1, and then from P2 and P3 we get b(w) = n - 1. Hence q = n2 + n - 1.
Since b(w) = n - 1 any line not passing through w has degree at most n - 1 by
P4. Thus by P2 through every (n + 1)-point there is one line of degree n + 1 and
n lines of degree n - 1. By deleting w from 5£ we obtain an FLS, i ? \ with
n2- n points all of degree n + 1 and n2 + n - 1 lines. Thus by 3.1 if !£' is not the
Shrikhande-FLS, it can be embedded in an FPP of order n. The set of
(n + 1)-lines of i? clearly correspond to a set of disjoint n-lines of 5E'. Since
this set of n -lines must meet pairwise in the FPP, they must correspond to
concurrent lines in the FPP, say concurrent at w'. By mapping w into w', we
can embed SE into this FPP in an obvious manner. However, if X' is the
Shrikhande-FLS, then i? is, in fact, non-desarguesian and the embeddability
question remains open. To see that it is non-desarguesian, consider the
following: lines 1,2,3 meet at w (the numbers refer to row and column numbers
in figure 1); the two triangles perspective at w are determined by the points 4, 5,
9 and 3,8, 11; the respective sides of the triangles meet at points 12, 1,7, which
are non-collinear.
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1111000000000000000000000000110
00001 1 1 100000000000000000000101
000000001 1 1 1 000000000000000001 1
100010001000-1110000000000000000
010001000100-1001100000000000000
001000100010- 100001 1000000000000
0010000100010010100100000000000
010000100001 010000001 1000000000
0001000101000100010000100000000
0001010000100010000010010000000
1000000100100001000001001000000
0001 10000001 0001001000000100000
0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0100000001010000
0100000110000000001000010001000
100001000001 000001000000001 1000
0100100000100000000100100010000
1000001001000000000100010100000
0010010010000000000001100100000
0010100001000000000010001001000

1000000000000000101010100000001
0100000000000010010000001100001
0010000000000101000000010010001
0001000000001000000101000001001
0000100000000000110001010000010
0000010000000100001100001000010
0000001000000011000000100001010
000000010000- 10000000100001 10010
0000000010000001010110000000100
0000000001000010001001000010100
0000000000100100100000000101100
000000000001 • 10000000001 1 1000100

Figure 1: The exceptional Shrikhande-FLS embedded in the FPP of order 5.

3.2.2. Now suppose that ax S n. Then by P2 we have that b(w) g n and
also that through any (n + 1)-point there are at least 2 lines of degree n.
Whenever two n-lines meet at an (n + l)-point, we see by P3 and P4 that
one of them must pass through w and b(w)f=n. Thus b(w)=n and there
are exactly 2 lines of degree n passing through each (n + 1)-point. Then by P2
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we may conclude that J? contains only n -lines and (n - 1)-lines. Now let us
extend ££ in the following manner:

For each n-line x passing through w, we will add a "new" point [x] to «2"
such that [x] should lie on precisely those lines of Z£ that are parallel to x. In
addition we will add a "new" line, *,+,, to Z£, where xq+x contains precisely the n
"new" points. We must now verify that the resulting structure, .2", is an FLS.
Since i? has (n - 1)-lines, we have n g 3 and hence every line of ££' contains at
least two points. To verify that every two distinct points determine a unique
line, we need only check it when at least one of the points is "new", say [x].
But by P4 there was one line through every (n + 1)-point parallel to any given
n -line in !£ and thus [x ] is joined to any "old" point by a unique line. If we have
two distinct "new" points, say [x] and [y], then they are joined by xq+u If they
are joined by an "old" line, then there is a line z that misses both x and y in i£.
But from above we must have a(z)^n - 1 and hence by P4 again b(w)^
n + 1, since x and y meet at w. This is impossible and therefore .2" is an FLS
with p'=p+n=n2+l points and q' = q + 1 ^ n 2 + n lines. By lemma 2, ££'
and so also i? can be embedded in an FPP of order n, unless ,2" is a near-pencil.
Since .2" is obviously not a near-pencil, we are through.

4. Uniqueness of the Shrikhande-FLS

In this section we will show that any FLS with p = 12, q = 19, all points
having degree 5, and every point lying on precisely one line of degree 4
and four lines of degree 3 must in fact be the Shrikhande-FLS. Let the three
4-lines be denoted by a, b, c and the points be distributed as a ={1,2,3,4},
b ={5,6,7,8}, c ={9,10,11,12}. The 3-lines will have the interrelations de-
scribed in the exceptional graph of lemma 1, e.g. line 1 is disjoint from lines
2,3,4,5,6,7. Clearly every 3-line meets each of a,b,c. Without loss of
generality we may assume that line 1 (denoted LI) is given by LI ={1,5,9}.
Similarly we may assume that L2 = {2, 6, 10} and L3 = {3,7,11} since LI, L2, L3
are pairwise disjoint. Now L8 meets LI, say at 1. L8 also meets L3 at either 7 or
11, but since choosing 7 over 11 only results in the changing of the roles of b
and c we may further suppose that L3 and L8 meet at 11. Since L8 meets b,
L8 = {1,8,11}. L9 cannot contain any of 1,2,3,6,7,8,10,11 and is thus= {4,5,12}.
Now L10 cannot pass through any of 1,2,6,8,10,11 and must contain either 9
or 12. Therefore it cannot contain 5, since then it would have two points in
common with either LI or L9. Thus it must contain 7 and, by considering L3,
point 4 and finally 9, by considering L9. This determines L4 = {3,8,12}. Now
consider L5. It cannot pass through 1,5,8,9,11. By considering L2 it cannot
pass through both 6 and 10 and hence must pass through at least one of 7 or 12.
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But by considering L3 and L4 we see that L5 cannot pass through 3. Since L5
meets both L3 and L4 we obtain L5 = {2,7,12}. The remaining point-sets can be
readily determined now in increasing numerical order. The matrix in the upper
left-hand corner of figure 1 is then obtained as follows: column i corresponds
to point i, and row / corresponds to line j — 3 for j ' ^ 4 , and rows 1,2,3
correspond to lines a,b,c respectively.
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