
J. Austral. Math. Soc. (Series A) 59 (1995), 375-383

THE NUMBER OF EXCEPTIONAL APPROXIMATIONS
IN ROTH'S THEOREM

WOLFGANG M. SCHMIDT

(Received 24 November 1993)

Communicated by J. H. Loxton

Abstract

Roth's Theorem says that given p > 2 and an algebraic number a, all but finitely many rational numbers
x/y satisfy |a — (x/y)\ > \y\~p. We give upper bounds for the number of these exceptional rationals
when 3 < p < d, where d is the degree of a. Our result supplements bounds given by Bombieri and Van
der Poorten when 2 < p < 3; naturally the bounds become smaller as p increases.

1991 Mathematics subject classification (Amer. Math. Soc): 11J68.

1. Introduction

THEOREM 1. Suppose that p > 3 and that a is algebraic of degree d > p. Leth(a)
be the (multiplicative) height of a as discussed below. Then the number of reduced
rationals x/y (with y > 0) having

(1.1) « - -
y

is at most
(12) log+log/z(a) //log<A2 / loglog(A\

log(p-l) yylogp/ \ logP / /
The number of such rationals with

(1.3) y>h(a)

is bounded by the second summand in (1.2), that is, it is

(1.4) « ((logrf/logp)2(l + (loglogd)/logp).
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Here log+x = logx when x > e, and log"1"* = 1 otherwise. Throughout, the
constants implicit in big "O" and <?C are absolute. As was shown in [2, Ch. II, Theorem
9C], the first summand in (1.2) is best possible, in the sense that it would become false
if log(p — 1) were replaced by a larger quantity. Our theorem supplements Theorem
9B of [2, Ch. II] (which was essentially given in [1]) where the case 2 < p < 3 had
been considered. In that case, with 8 = p — 2 satisfying 0 < 8 < 1, we had at most

(1.5) log log ft (a) + 2 + 1

log(p - 1)

solutions.
The theorem remains correct for a wide choice of heights h(a). For instance

we may take h(a) to be any of Hx(a), H2(a), H3(a), h^a), h2(a), ft3(a), which are
defined as follows. //] (a) is the most naive height, that is, the maximum modulus
of the coefficients of the defining polynomial of a over Z, with these coefficients
coprime. H2(a) is the Mahler measure, that is,

(1.6) H2(a)= Y\ max(l, !«!„)"•

where K = Q(a), M(K) indexes the absolute values of K which extend the ordinary
or a p-adic absolute value of Q, and the nv are the local degrees. H3(a) is a variation
on H2(a), where for v archimedean the factor max(l, |ce|v) in (1.6) is replaced by
(1 + \a\2

v)
1/2. Finally ht(a) = //,(a)1/d (/ = 1, 2, 3).

Our proofs will be close to those in [2], and we will often refer to that work. A new
ingredient will be an estimate of volumes inspired by ideas of Wirsing.

2. Location of the exceptions to Roth's Theorem

Following the definition in [2, §11.6], an interval of real numbers of the type
X < £ < Xc with X > 1 will be called a window of exponential width C. Given
C > 1, such a window can be arbitrarily long if we don't have information on X. In
what follows, h(a) will be h3(a), unless stated otherwise. Accordingly, the height of
a rational number P = x/y in reduced form is h(/3) = (x2 + y2)l/2.

THEOREM 2. Suppose a is algebraic of degree d > 3. Suppose natural m > 2 and
real X, T have T > 1 and

(i) m\og(mT/S) > logd,
(ii) X>2m\Tm.

Then the rational solutions fi of the inequality

(2.1) \a-P\-
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have their heights in the union of the interval

(2.2) h(0) < 260(4/J(or))4x = B,

say, and at most m — 1 windows of exponential width

(2.3) C = 6dmX.

This theorem is analogous to Theorem 6A of [2, Ch. II]. The proof is postponed.
Here we will deduce Theorem 1 from Theorem 2.

Clearly H2(a) < H3(a) < 2d'2H2(a), and 2-dH2(a) < Hx(a) < 2dH2(a) as
demonstrated, for instance, in [3, Ch. VIII, Theorem 5.9]. Therefore the six quantities
log log //, (a) and log log A, (a) (i = 1,2,3) differ from each other by <3C log d, so that
the bound (1.2) with h(a) any of these implies it for the others. Thus in the proof of
(1.2) we may take h (a) = h3(a). On the other hand, since h0 (a) =: min(/ji(a), h2(a))
is the smallest of the six quantities, we will prove the second assertion of Theorem 1
with/? = /i0 in (1.3).

In what follows, observe that d > p > 3, so that log log d > log log 3 > 0. We set

(2.4) m = {clogd/logp]

where { } denotes the next largest integer and c is a large constant yet to be chosen.
We further set

1 if p < logd,
( 2 ' 5 ) T ' (Plogp)/logd if p>\ogd,

as well as
(2.6) A. = 2(mT)m.

We have T > 1, and the two cases in (2.5) yield respectively

mT = m> (c logd)/ log log d > 8(logd)3/4 > 8p3/4,

mT >cp> 8p3/4

provided c is large enough, and therefore

mlog(mT/8) > c-^—logp3 / 4 > logd.
logp

Both (i), (ii) of Theorem 2 hold. Also log X > m log{mT) > logd, so that

(2.7) X > d;

and
(2.8) p > dc/m > 20dl/m
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directly from (2.4). Depending on the cases in (2.5) we have mT = m «; \ogd or
mT <5C p, so that in general

(2.9) log X «; m (log p + log log d).

We now define B, C, by (2.2), (2.3), and then logfi = 4Alog(4/z(a)) + 0(1),
therefore

(2.10) log log B < log+log h(a)+O{\og X) = log+ log h(a)+O{m(\og p+loglog d),

and similarly

(2.11) log2C < \ogk + \ogd + \ogm + 0(1) «: mQogp + loglogd).

We first will estimate the number of "small" solutions of (1.1), that is, solutions
with 1 < y < B. The approximations x/y with (1.1) are, in the language of [2],
S-approximations with S = p — 2. The approximations with 4 < y < B lie in a
window W <y <Wy with y = log B/ log 4 < log B. By Lemma 8C in [2, Ch. II],
the number of such approximations is

< l + (log2y)/L

where L = log(l + 8) — log(p - 1). The number of possible solutions with y = 1, 2
or 3 is bounded, so that the number of small solutions is

< L~l logy + 0(1) = L"1 log log B + 0(1)

(2.12) <L-1log

by (2.10) and since L » log p.
We now turn to the "large" solutions, that is, those with y > B. With /3 = x/y we

have \x/y\ < \a\ + 1, therefore

h(P)<\x\ + \y\<(\a\+2)y<3h((0iYy

(where the exponent d is needed since h(a) = /j3(a) = H3(a)l/d). On the other hand
y > B > (Ah(a))4x > 0h(a))M by (2.7), so that h(fi) < yv\ and (1.1) yields

(2.13) \a-p\< h(py4<"5 < h(pyiod"m

in view of (2.8). By Theorem 2, the solutions with h(fi) > y > B lie in at most
m — 1 windows of exponential width C. By Lemma 8C in [2], the number of
approximations ft with (2.13) and with y in such a window is < 1 + (log 2C)/L' with
L' = log((4p/5) — 1) » log p. In view of (2.11) we obtain

< 1 + (log2C)/logp <
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We have to multiply by the number m — 1 of possible windows. Adding the estimate
(2.12), we obtain the bound

< L"1 log4\oghia) + O(m2(l + log log d/log p))

for the total number of solutions to (1.1). By our definition (2.4) of m, the first
assertion of Theorem 1 follows.

In the course of our arguments we have shown that the number of solutions with
y > B is bounded by (1.4). In order to verify the second assertion of Theorem 1 it
remains for us to estimate the number of solutions with ho(a) < y < B. Since there
are at most 2 solutions with y = 1, we may restrict to

(2.14) Ha)<y<B

where h(a) =: max(2, h0(oc)). By the comparison of heights //,(a) given above,

ho(a) = min(Ma), M«)) > 2"1/*2(a) > 2"3/2/i3(a) = 2~V2h(a).

Therefore log h((a) ;» log(4/j(or)), so that (2.14) is a window of exponential width

w = log Bj log h(a) « log B/ log(4/j(a)) « X

by (2.2). By Lemma 8C of [2] again, the number of our approximations is

< 1 + (Iog2«;)/log(p - 1) « 1 + (logA)/logp « m{\ + log log rf/log p)

by (2.9). Since m is given by (2.4), this is amply bounded by (1.4).

When 2 < p < 3, the argument in [2] can be modified in an analogous way to show
that the number of solutions of (1.1) with (1.3) is bounded by the second summand in
(1.5).

3. A more general theorem

Given A. > 0 we define the mixed height of numbers a, fi by

//,(<*, p) = (4h(a))k-

THEOREM 3. Let K be a number field of degree d. Suppose natural m > 2 and real
k, T have T > 1 and (i), (ii) of Theorem 2. Let (ct\, Pi),... , (am, fim) be such that
Q(or,-) = K and ̂  € Q (i = 1 , . . . , m). Suppose further that
(iii) \ai - Al < M « , , A)" M "" (i = l , . . . , m),
(iv) hk(ai+u A+ 1) > M « , , Pi?dmk d = 1, • • • , m - 1).
This is impossible.
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This is analogous to Theorem 6A of [2, Ch. II]. Let us first derive Theorem 2 from
it. (2.1), (2.2) yield

\a-p\< h(P)-*«"mB-2""™ < Atf)"8"""\4(4h(a))kr8d"m = M«, P)^"•

If there is no approximation with h(P) > B, we are finished. Otherwise, let P\ have
minimal height with h(Pi) > B. If every p with (2.1) and h(p) > B has h(P) <
h{P\)6dmX, then all these P lie in a single window of exponential width C = 6dmX,
and we are done. Otherwise, let p2 have minimal height with h(P2) > h(Pi)6dmk.
Then

hk(a,p2) > h{p2) > h(pl)
3dmkB3dm>- > (hiPiHShia))1)^" > hx{<x,Px?dmk.

Continue in this fashion. If the solutions with h(P) > B do not lie in m — 1
windows of exponential width C, then P\,... , pm can be found such that the pairs
(a, P\),... ,(a, pm) satisfy the conditions ofTheorem 3, and we reach a contradiction.

THEOREM 4. Let Vm(t) be the volume of the intersection of the cube 0 < x, < 1
(i' = l , . . . , m ) ! / i l " with the half-space xx + • • • + xm < t. Then we have

Vm{t)<(e(\+e-ml')t/m)m.

We postpone the proof of this to the last section. Instead, we will now derive
Theorem 3.

The beginning of the argument is as in [2, §11.7]. Suppose we have pairs (or,-, pt)
(i = 1 , . . . . in) with Q(a,-) = K, P e Q, |a, - ftl < M«, , ft)"*, and with (iv).
Then (7.4) of [2, Ch. II] holds, that is,

(3.1) V < j ^ -

Here t, z were given in [2] by dVm(t) = 1 - A"1, Vm(z) = 2/A. < \/{m\Tm) by (ii).
In particular, Vm(r) < \/m\, and in this case Vm(r) isthe volume of a certain simplex,
and Vm(r) = xm/m\. Therefore r < l /7 \ We will show that

(3.2) ? > /w/(4J1/m).

If (3.2) were false, then m/t > 4 and e(l + e'1"1') < 3. Now Theorem 4 gives
Ot/m)m > Vm(t) = d~l(l - X"1) > (3/4)^"' since A. > 2m > 4, so that

? > (m/3)(3/4)1/mrf-1/m > (m/4)<T1/m,

and (3.2) holds after all. This and our estimate of x yield

t -r > (m/4)d-i/m - T-1 > (m/S)d'l/m

by (i), so that \jr < 8J1/m by (3.1). This finishes the proof of Theorem 3.
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4. Estimation of volumes

Although our estimate is perhaps known, our short argument should be convenient
for the reader. As was pointed out in the Introduction, the basic ideas are due to
Wirsing. Note that

1 0 if t < 0,
t if 0 < r < l ,
1 if t > 1,

so that the derivative V[(t) exists for t / 0, 1, with V[{t) = 1 for 0 < t < 1 and
Vj'(r) = 0 otherwise. Now

VB+i(0= / ••• / dxx---dxH+i-H
+i<

hi /
0<x, xn<l

.1

n+1)dxn+l == f Vn(t - xn
Jo

Taking the derivative we obtain

C ( 0 = [ Kc - sw;(s)ds = (v; * v;m,

where * denotes the convolution product. Repeated application of the last formula
yields

The Fourier transform of a function f(t) is f(x) = {2n)~xl2 / e~ilxf(t)dt, and
JVL

f is retrieved from its transform by f(t) = (2n)~l/2 I eilxf(x)dx. The Fourier

f f l i d itransform of a convolution product is

(4.2)

Now
[ I e~itxdt =
Jo

= (2TIT1 / 2 / e~"xdt = (27r)-l/2e-'x/2(2/x) sin(jc/2),
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so that (4.1) and m — 1 applications of (4.2) give

Vl{x) = (2nY""[)/2((27r)-1/2e-ix/2(2/x)sm(x/2))m.

From this we find that V^(t) itself is given by

e'x'(e-ix/2(2/x)sm(x/2))mdx,f
and this becomes

[ e2i*'(e-ixx-lsinx)mdx

after an obvious substitution. Therefore

Vm(t)= = n-1 f
Jo

We change the order of integration (certainly allowed when m > 1, which we may
suppose) and integrate over s, to find

(4.3) Vm(t) = TT"1 f(2ix)-l(e2ixl - l)(e-ixx~l sinx)mdx = TT"1 I f(x)dx,
JR JK

say.
Here /(z) is an entire function which tends to zero when the real part of z tends

to ±00 while the imaginary part remains bounded. We therefore may shift the path
of integration to a line L parallel to the real axis and through a point — iy0 with real
jo > 0. We write f{z) = /i(z) + f2(z), with fx, f2 coming respectively from the
summands e2lxt, —1 of e2"" — 1 in (4.3). Both /1( f2 are analytic in the lower half
plane. In fact e~'z sinz stays bounded in the lower half plane, so that \f2(z)\ will
tend to zero like |z|"m~' as z tends to infinity in this half plane. Shifting the path of
integration further and further south we find that / f2(z)dz = 0. Therefore

JL

Vm(t) = 7t~[ I fx(z)dz = (2niyl I z-1(e(2/"/m)-1V1 sinz)mdz
JL JL

(4.4) = n - 1 f z-lK(z)mdz
JL

where, with the notation t/m = s, we have

K(z) = e
&~l)lzz-1 sinz = (2izyle2siz(l - e~2iz).

The best choice of y0 is made by the saddle point method. However, we need not be
that precise, and we set j 0 = l/(2s). Then for z e L, z = (—i/2s) + x with i € l ,
so that

K(z) = (2izyle1+2s"(l - e
(-1/s)-2ix)
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and
\K(z)\ <\2z\-xe(\+e-xls)

with D = 0 / 2 ) ( l + e~x/s). Substitution into (4.4) gives

Vm(t) < n-xDm f \z\-m~xdz = n~xDm I(x2

JL JR.

= n-x(2sD)m f(x2 + iy(m+X)/2dx,
J

since y0 = I/(2s). Denote the last integral by Im. Then Im < Ix = n, so that
Vm < (2sD)m, and Theorem 4 is established.

A more careful analysis is as follows: lm = it • 2'~m I , , s In ) when m is odd.
\(m - \)/2)

By Stirling's formula, (m — l ) 1 / 2 /m —> -s/2?r as odd m —*• oo. It is easily seen that
(m — l ) 1 / 2 /m increases as m runs through odd integers, and hence it is < \f2~H, so
that lm < (2n/(m — l ) ) l / 2 when m > 1 is odd. Since Im decreases with m, we have
Im < (2n/(m - 2))x'2 when m > 4, and then VB(0 < (2/(7r(m - 2)))1/2(25£>)m.
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