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Abstract

It is well-known that if G is a multigraph (that is, a graph with multiple edges), the maximum
number of pairwise disjoint edges in G is v(G) and its maximum degree is D{G), then
\E{G)\ < i/[3D/2J . We extend this theorem for r-graphs (that is, families of r-element sets)
and for r-multihypergraphs (that is, r-graphs with repeated edges). Several problems remain
open.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 05 C 65;
secondary 05 B 40.

1. Notations, preliminaries

A multihypergraph H is a pair [V, &) where V is a (finite) set, the vertex-
set, and f is a collection of subsets of V, the edge-set. If % does not
contain multiple edges then H is called a hypergraph. For brevity we use
the word "hypergraph" instead of "multihypergraph'' if it does not cause
ambiguity. The rank of H is the maximum cardinality of its edges, r(H) =
max{|is|: E e £?} . If all edges have r elements H is r-uniform. In this case
H is also called an r-graph (or /•-multihypergraph). The degree of a vertex
v in H is denoted by degH(v), or briefly by deg(v), and is the number
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of edges from % containing v. Let D(H) := max{deg(v) : v e V}, the
maximum degree. A subset of edges J[ c % is called a matching if every
two numbers M, M' e ^ are disjoint. The largest size of a matching in H
is the matching number, i/(H). If i/(H) = 1 then H is intersecting.

Abbott, Hanson, Katchalski and Liu investigated the following problem
in a series of papers ([1], [2], [4], [5]). Let r, v, D be positive integers
and put ./V = N(r, i>, D) ,the largest integer N for which there exists an r-
uniform multihypergraph with N (not necessarily distinct) edges and having
no independent set of edges of size greater than v (that is, the matching
number is at most v) and no vertex of degree exceeding D. Such a family
will be called an [r,v, D)-multihypergraph.

The problem of evaluating N(r ,v,D) for all values of the parameters
seems to be difficult. Nevertheless, the above authors established a couple
of upper and lower bounds and obtained exact values of N(r ,v,D) for
various infinite classes of values of r, v and D. They proved

(1.0)[l] N{2,u,D) = v[\D\,

(1.1)[5] N{2>,v,D) < IvD with equality if Z> = 0 (mod 3).

These theorems were also proved partly by Bollobas [9], [10]. (It follows
from a theorem of Shannon (see, for example, [11]), that the chromatic index
of a multigraph G is at most \}D/2\.) (See the last section, Section 8.)

f (2r+ l)i/ if r = 0, 1 (mod 3),

' I 2rv if r = 2 (mod 3).
N(r, v,D)<v{r{D- 1) + 1),

and in (1.4) equality holds if and only if there exists an S(n, D, 2) Steiner
system over « = r(D - 1) + 1 vertices. Although (1.4) is trivial, it gives
the exact values of N(r ,v,D) for several large classes of parameters. (A
(multi) hypergraph S is an S{n, D, 2) Steiner system if it is D-uniform,
|F(S)| = n , and every two vertices are contained in exactly one edge.) It is
well-known that if S(n, D, 2) exists then (n-l)/{D-l) and ( j ) / ( f ) are
integers, and these two constrains are sufficient for n > no(D). (See Wilson
[19].) In all these cases r > D. In this paper we concentrate on the case
when D is large.

2. Fractional matchings and covers

To state our results we recall more definitions. An /"-uniform hypergraph
over r2 - r + 1 vertices is called a finite projective plane of order r - 1,
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denoted by PG{2, r - 1), if it is an Sir1 - r + 1, r, 2) Steiner system. Such
planes are known to exist if r - 1 is a prime power or r — 1, 2 .

A cover T of the hypergraph H is a finite set which intersects all its edges.
The minimum size of a cover is the covering number, T(H) . For example,
r{PG(2, r - 1)) = r. A fractional cover t is a non-negative real-valued
function t: V(H) -* R+ such that

X€E

holds for all edges E e E(U). The value of t, \\t\\, is the sum
The minimum value among all fractional covers is the fractional covering
number, T * ( H ) . The calculation of T*(H) is a linear programming problem,
all coefficients are integer (0 or 1) and so the value of T* is always a rational
number.

A fractional matching w of the hypergraph H is the real relaxation of
matchings. It is a non-negative real-valued function over the edges of H
such that

£> 1

hold for all x e V(H). The value of w , \\w\\, is the total sum J2W(E) •
The maximum of ||tu|| is the fractional matching number, ^*(H). The
calculation of T* and v* are dual linear problems, and hence v* = T* holds
for all hypergraphs.

It is easy to see that x*(PG{2, r - 1)) = r - 1 + ( l / r ) . In [17] the following
theorem was proved: if the (multi)hypergraph H of rank r (where r > 3)
does not contain p + 1 (pointwise) disjoint copies of PG{2, r - 1) then

(2.1) T*(H)<u(r-l)+p/r.

This is a slight improvement on the trivial inequality

T* < T < rv.

Let T > , i/) = sup{t*(H) : r(H) < r , i/(H) < i/}. In [12] the following
statement is proved: there exists a hypergraph H of rank r and matching
number v such that T*(H) - x*{r, v) and

(2.2) \E(H)\<rr*(r,u)<(r2-r+l)u.

By (2.1) we have that r*(r, i/) = ( r - l + ( l / r)) i / if and only if a PG(2,r-l)
exists. Otherwise r*(r , v) <(r - \)v .

3. Multihypergraphs with bounded maximum degree

The following example is due to Bermond, Bond and Sacle [8].
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EXAMPLE 3.1. Suppose that there exists a projective plane of order r - 1,
PG(2, r - 1). Let Lo be a line and Ao c Lo a set of D - r[D/r\ elements.
Let H be the multihypergraph obtained form PG(2, r - 1) such that the
multiplicity of a line L is

[D/r\ ifLHAo = 0,
\D/r] ifLnAo?0, L?Lo,
D-(r-l)\D/r] if L = LQ.

Then H is intersecting of rank r, maximum degree is D and E(H) =
rD-{r-\)\D/r}.

If we take v disjoint copies of H we get

(3.1) v(rD-(r-l)\D/r])<N(r,v,D),

whenever a PG(2, r - 1) exists. Here we will prove

THEOREM 3.2. For every r, v and D one has

x\r, v)D - rx"\r, v) <N{r,v,D) <x*{r,u)D.

THEOREM 3.3. If D>(r- \fv and a PG{2, r - 1) exists then

N(r,v,D) = u(rD-(r-l)\D/r\).

Theorem 3.2 and (2.1) imply that

(3.2)
Z>-oo D v ' ~

In [2] it was proved that

, , ,N .. N(r,l,D) , n(r2 - r) - r4 + 4r3 - 6r2 + 4r
(3.3) Jim v '—^ < r - 1+ max -4^ j j — — .

Substituting n = 2r2 - r + 1 one gets that the right-hand side of (3.3) is at
least

, , , 1 I l r 2 - 1 9 r + 1 2

This is always larger than the bound in (3.2). In the case v = 1, Theorem
3.3 was conjectured by Bermond, Bond and Sacle [8] and in a slightly weaker
form in [7]. They proved that equality holds in (3.1) for v = 1 and r < 4
for all D. Moreover they determined N(r, 1,3), (see (1.3)) and N(r, 1, 4)
for r ̂  3 (mod 4). This case was completed by Bermond and Bond [6]:

3 r + l i f r = 0, 1 (mod 4),

N(r,l,r)={ 3r if r = 2, 3 (mod 4) but r ? 3 ,

8 if r = 3 .
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4. The largest (r, v, Z>)-hypergraphs

Denote by f{r,u, D) the maximum number of r-tuples contained in an
r-graph F with z/(F) < v and Z)(F) < D. Now multiple edges are not
allowed. The function / ( 2 , v, D), that is, the case of graphs, was investi-
gated by several authors ([3], [14], [18]). The determination of f{2, v, D)
was completed by Chvatal and Hanson [13]. In particular they proved that
if D > 2v , then

BoUobas [9] conjectured that this result has the following extension: suppose
r is such that there exists a finite projective plane of order r - 2 , o r r = 2 , 3 .
If D is sufficiently large and divisible by r - 1, then

(4.1) f{r,u,D) =

The lower bound in (4.1) is obtained as follows.
EXAMPLE 4.1. Take v pointwise disjoint projective planes of order r - 2

(or triangles, or points if r = 3, 2) each with ( r - 2)2 + ( r - 2) +1 = r2 - 3r+3
points and with r - 1 points on each line. For each line of each plane take
D/{r - 1) r-tuples in such a way that each of these r-tuples intersects these
projective planes exactly in this line. (If D > v(r2 - 3r + 3), then a point
not in these planes has degree less than D.)

BoUobas [10] proved his conjecture for r = 3 whenever D > 72i/3. In
general (4.1) was proved in [16]. Here we give a more exact version which is
valid if D/{r - 1) is not an integer, too.

THEOREM 4.2. For any given r and v there exists a real c(r, v) such that

T*(r - 1, v)D - c(r, v)<f{r,v,D)< T > -l,u)D + c(r, v).

THEOREM 4.3. If D is sufficiently large compared to r and v, and there
exists a finite projective plane PG(2, r - 2) {or r = 2, 3), then

f{r,v,D) = N{r-\,v,D).

Here the value of N{r - 1, v , D) is

by Theorem 3.3.
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5. Proof of Theorem 3.2

Lower bound. Consider a hypergraph H of rank r and matching number
v such that T*(H) = x*{r,v). Such a hypergraph exists, and by (2.2) we
may suppose that |.E(H)| < rr*(H). Let w : E(H) —> R+ be an optimal
fractional matching. Multiply every edge E of H [w(E)D\ times. The
obtained multihypergraph gives the lower bound.

Note that we obtained that (considering a rational w) equality holds in
Theorem 3.2 for infinitely many values of D for any given r and v .

Upper bound. Let H be an arbitrary multihypergraph. Then w(E) = 1/D
is a fractional matching with value \E(H)\/D, and hence we have

(5.1) \E(H)\<DT*(H).

If H is an (r, v, Z))-multihypergraph then the right-hand-side of (5.1) is not
larger than Dx*(r, v).

6. Proof of Theorem 3.3

The lower bound for N(r, v, D) is given by (3.1). To prove the upper
bound let H bean (r, v, £>)-multihypergraph. Then (2.1) implies that either
T*(H) < i/(r - 1 + 1/r) - 1/r, or H contains v disjoint PG{2, r - 1). In
the first case H has at most (r*(r, v) - \/r)D edges by (5.1), which is less
than the left-hand-side of (3.1) for D > v{r - if. In the latter case H has
no edge which is not a line of a PG(2, r - 1). If a line L in a component of
H has multiplicity at least \D/r]. Then that component consists of at most

\D/r\ + £(degH(x) - \D/r\) <rD-(r- \)\D/r\

edges. Otherwise, if each line has multiplicity at most \_D/r\, then clearly a
component of H has only < [D/r\(r2 - r + 1) edges.

7. Proof of Theorems 4.2 and 4.3

The lower bounds for f(r ,u,D) follow from the trivial inequality

f{r,v,D)>N{r-\,v,D),

and from Theorem 3.2 which yields

N{r-\,v,D)> T*(r - 1, v)D - r\r -\,u)r.
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To prove the upper bounds we need a definition and a lemma. The set-
system Fx, ... , Fk is called a A-system with nucleus N if, for every 1 <
i < j <k, we have Ft n F = JV. A well-known theorem of Erd&s and Rado
[14] is as follows.

(7.1) Suppose r > 2. If the set-system H is of rank r and
|2s(H)| > krr\, then it contains a A-subsystem consisting of
k members.

PROOF OF THE UPPER BOUNDS. We follow the method of [16]. Suppose
that the r-graph F has at most v disjoint edges and its maximum degree
is not more than D. We will prove that c(r, v) < {rv + l)rr!, so without
loss of generality we may suppose that |ii(F)| > {rv + \)rr\. We define two
hypergraphs N and Fo and a multihypergraph FN with vertex set F(F) as
follows. Let N be a system of nuclei of those A-subsystems of F which
contain at least rv + 1 different edges of F . Clearly 0 £ £(N) . Let Fo

be the r-graph obtained from F by omitting those r-tuples that contain an
edge of N . Since Fo does not contain a A-system with rv + 1 members,
we get by (7.1) that

(7.2) | £ (F 0 ) |< (n / + l)rr!.

Let us associate with each edge F e E(¥) - E(F0) a nucleus N € is(N)
such that N c F. Denote by F^ the multihypergraph of the nuclei with
these multiplicities, that is, the multihypergraph containing each member of
N as many times as it has been associated. Note that since every member of
N is a nucleus of a A-system of size at least rv + 1, we have i/(N) < i/(F).
Hence

(7.3) N

Obviously,

(7.4) degF (p) < degF(/>) < D

holds for all vertex p . Apply (5.1) to F ^ ; then we have by (7.2)-(7.4) that

(7.5) * r

As the rank of F ^ is at most r - 1 we have T * ( F ^ ) <x*(r-\,v), which
implies the upper bound in Theorem 4.2.

Now we prove the upper bound for f(r, v, D) in Theorem 4.3 for D >
(r - 1 )(rv + 1)7! + v(r - l)(r - 2). We distinguish two cases. Suppose first
that

(7.6) r ' ( F J V ) < i / ( r - 2 ) + (i/
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Then (7.5) implies that for large enough D we have

r ~ 3 r f 3 - ^ T [ + (™+l)rrt < N { r - \ , v , D ) .
If t*(FAr) is larger than the right-hand-side of (7.6), then N contains v
pointwise disjoint projective planes of order r - 2 by (2.1). Then every r-
tuple of F e E(F) contains a line of one of these planes, since otherwise we
can find v disjoint edges of F which are disjoint from F as well. That is,
£(F0) = 0 . Then

= \E(FN)\<N(r-l,u,D).

8. Problems

(8.1) Clearly, N{r,v,D)> vN(r, 1, D) and, by Theorem 3.3, equality
holds if a PG(2, r - 1) exists (at least whenever D is large). One can think
that here equality holds for all r.

(8.2) The following is a slightly weaker conjecture than (8.1): for all r one
has T*(r, v) = vx*{r, 1).

(8.3) If D > 3 then f(2,u,D) > [^(2u + \)D\ = vD + [D/2} >
vf{2,\,D) = uD. But one can think that in the case r > 3 there ex-
ists a Do = D0(r) such that for all v, r and D> Do we have f(r,v,D) =
vf{r,\,D).

(8.4) The chromatic index of a (multi)hypergraph H is the smallest integer
q = q(H) such that one can decompose E(H) into q matchings. It is well-
known that, for a 2-graph G,

D < q(G) <D+l,

and for a 2-multigraph G,

(These are due to Vizing and Shannon, respectively. See, for example, [11].)
Find the analogy of these theorems for r-(multi)hypergraphs. This question
was proposed by Faber and Lovasz [15] in 1972.
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