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FINITE GROUPS WITH TWO p-REGULAR
CONJUGACY CLASS LENGTHS

ANTONIO BELTRAN AND MARiA JosE FELIPE

Let G be a finite p-solvable group for a fixed prime p. We determine the structure
of G when the set of p-regular conjugacy class sizes of G is {1,m} for an arbitrary
integer m > 1.

1. INTRODUCTION

The question of how certain arithmetical conditions on the sizes of the conjugacy
classes of finite groups G influence the structure of G has been widely studied during the
last years. For a fixed prime p, our purpose in this note is to obtain information on the
structure of finite p-solvable groups from the set of conjugacy class sizes of p’-elements,
that is, from its p-regular class sizes. A classical result of Ito ([4]) asserts that if 1 and
m > 1 are the only lengths of conjugacy classes of a finite group G, then there exists a
prime ¢ such that G = @ x A, where @ is a Sylow g-subgroup of G and A is Abelian.
Thus, in particular m is a power of ¢. Our main result extends Ito’s Theorem when this
problem is transferred to p-regular classes in a p-solvable group.

THEOREM A. Suppose that G is a finite p-solvable group and that {1,m} are the
p-regular conjugacy class sizes of G. Then m = p°q®, with q a prime distinct from p and
a,b> 0. If b =0 then G has Abelian p-complement. If b # 0, then G = PQ x A, with
P € Syl,(G), Q € Syl,(G) and A < Z(G). Furthermore, ifa =0 then G = P x Q x A.

2. PROOF OF THEOREM A

In order to obtain Theorem A, we first need some preliminary lemmas. The first one
is a generalisation for p-regular elements of a lemma of Ito (in fact, the lemma of Ito is
stated in (4] for arbitrary elements and it is assumed that the group is centreless).

We shall denote by G, the set of p-regular elements of G.

LEMMA 1. Let G be a finite group, z € Gy and Cg(z) < G. Assume the following:

1. IfCg¢(a) < Cg(z) for a € Gy, then Cg(a) = Cg(z).
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2. IfCg(z) < Cg(b) for b € Gy, then Cg(z) = Cg(b) or b € Z(G). Then
Ce(z) = P x L, with P a Sylow p-subgroup of Cg(z) and L < Z(Cg¢(z)),
or Cg(z) = PQ x A, with P a p-Sylow of Cg(z), Q a g-Sylow of Cg(z),
for some prime g # p, and A < Z(G).

PRrROOF: Write £ = x122 ...z, where the order of each z; is a power of a prime
distinct from p and the z; commute pairwise. As z € Z(G), there exists an ¢ such that
z; ¢ Z(G). By applying hypothesis 2 we have Cg(z) = Cg(z;), whence there is no loss
if we assume that z is a g-element for some prime ¢ # p.

Suppose that there exists a prime divisor r of ICG(x)| such that p # r # g (in other
case the lemma is proved) and take R a Sylow r-subgroup of C¢(z). If y € R, since z
and y have coprime orders then Cg(yz) = Cg(z) N Cg(y). By hypothesis 1 it follows
that Cg(z) = Ce(yz) € Ca(y). Thus R < Z(Ce(z)), so we can write Cg(z) = PQ x A,
for some P € Syl,(Cs(z)), Q € Syl,(Cg(z)) and A < Z(Cg(z)). If A C Z(G) we are
finished. Suppose then that there exists a non-central u € A. Since v is a {p, g}'-element
which commutes with z, by applying hypotheses 1 and 2, we obtain C¢(uz) = Cg(z)
= Cg(u). Now, take z € Q. Then Cg(uz) = Cg(u) N Cg(z) C Cs(u) = Cs(z). By
hypothesis 1, we get Cg(uz) = Cg(z), so Co(z) C Cg(2). Therefore z € Z(Cg(z)). If
we put L = Q x A then Cg(z) = P x L, with L € Z(Cg(z)) as wanted.

In the following lemma, we characterise those groups whose non-central p-regular
conjugacy class sizes are powers of the prime p.

LEMMA 2. Let G be a finite group. Then all conjugacy class sizes in G are p-
numbers if and only if G has Abelian p-complements.

PROOF: We show first that G is solvable in both directions of the Lemma. Suppose
first that all p-regular conjugacy class lengths of G are p-numbers. Our assumption is
inherited by normal subgroups and factor groups, and hence, arguing by induction on |G|
we may assume that G is simple nonabelian. However, Burnside’s Theorem ([3, Theorem
15.2] for instance) asserts that a simple group cannot possess a conjugacy class of prime
power length and thus, the claim follows. Conversely, suppose that G has an Abelian
p-complement. Then G can be written as the product of two nilpotent subgroups, that is,
an Abelian p-complement and a Sylow p-subgroup of G. By Kegel-Wielandt’s Theorem
([2, Theorem VI1.4.3]), it follows that G is solvable too.

Suppose now that every p-regular conjugacy class of G has p-power size and work
by induction on |G| to show that G has Abelian p-complement. We assume first that
0,(G) # 1. By induction, G/O,(G) has Abelian p-complement and trivially so does
G. Thus, we can assume that O,(G) = 1 and consequently Oy (G) # 1. Let z be a
non-central element in G. As G is solvable and |G : Cg(z)| is a p-power there exists
a p-complement of G, say H, such that £ € H C Cg(z). Observe that 1 # F(G)
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C Op(G) € H, where F(G) is the Fitting subgroup. This implies that
z € Co(H) € C(F(G)) € F(G) € 0y(G).

Therefore, any non-central p-regular element of G belongs to Oy(G) (and any central
p-regular element too), whence G has normal p-complement. Moreover, notice that this
complement is Abelian.

The converse direction is trivial, just noticing that since G is solvable then any two
p-complements of G are conjugated, whence all of them are Abelian. 0

The following result determines the structure of p-solvable groups whose p-regular
class sizes are p’-numbers.

LEMMA 3. Suppose that G is a finite p-solvable group and that p is not a divisor
of the lengths of p-regular conjugacy classes. Then G = P x H where P is a Sylow
p-subgroup and H is a p-complement of G.

PROOF: See Proposition 2 of [1]. 0

PROOF OoF THEOREM A: By Lemma 2, if m = p® then G has an Abelian p-
complement, so this case is finished. We shall assume then that m is not a p-power,
that is, b # 0, and procceed by induction on |G| in several steps to prove that G has
the given structure. The last assertion in the statement will be followed then as a trivial
consequence of Lemma 3.

STEP 1. We can assume that Cg(z) = P, x L, with P, a Sylow p-subgroup of Cs(x)
and L, < Z(Cc(z)), for any non-central z € Gp.

By Lemma 1, we know that for any non-central p-regular element z of G then
Cg(z) = Pp x Lg, with P; a Sylow p-subgroup of Cg(z) and L, < Z(Cg(z)), or
Ce(z) = PrQ; x A, with P, and Q. a Sylow p-subgroup and a Sylow ¢-subgroup of
Cec(z), respectively, for some prime g # p, and A < Z(G).

Suppose that the second possibility holds for some non-central z € G,». We can also
assume that there exists some non-central r-element z in G, for some prime r distinct
from p and ¢. Then

A< (A, 2) < Cg(2),
contradicting the fact that |C’G(z)| )y = |CG(a:)| ay = |A]l. Therefore, we can write
G = PQ x A, for some P € Syl,(G) and Q € Syl (G), so the theorem is proved.
STEP 2. Let z and y be two non-central p-regular elements. Suppose that Cg(z)
# Ca(y), then (Co(z) N Ca(y),, = Z(G)y-

Suppose that there exists a non-central element a € (Cg(z) NCg(y)) o BY applying
Step 1, we have Cg(z) C Cg(a) and Cg(y) € Cg(a). As Cg(a) # G and all proper
centralisers of p-regular elements have the same order, we conclude Cg(z) = Cg(a)
= Cg¢(y), a contradiction.
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For the rest of the proof we are going to distinguish two cases, depending on whether
all centralisers of non-central elements in G, are conjugated in G or not.

CasE 1. Suppose that Cg(z) and Cg(y) are conjugated in G for any non-central z,y
€ Gy.
STEP 3. We can assume that OP(G) = G.

Suppose that OP(G) < G. Let z be a p-regular element of OP(G) such that z
¢ Z(O?(G)), so z ¢ Z(G). By Step 1, we write Cg(z) = P, x L,, with P, a Sylow
p-subgroup of Cg(z) and L, < Z(Cg(z)). As L, C OP(G), then

OP(G)N Cg(z) = L, (P N OP(G)).

Furthermore,

G| o*@G)  _ _IG] | P
|07(G)I|OP(G) N Ca(2)l  |Co(a)| |P- N O?(G)|

and this yields to
0P(G)  _ _|POPG)| _m

loPF(@NCe@] 1G] F

where [ is a positive integer or zero. Since we are assuming that all centralisers of non-

central z € Gy are G-conjugated, the corresponding subgroups P, must be conjugated
too. Consequently, p' is a fixed power not depending on z. This implies that {1, m/p'}
are the only lengths of p-regular conjugacy classes in OP(G). Also, in any case m/p' is
not a power of p, so we can apply the inductive hypothesis to OP(G) to obtain OP(G)
= Py@Q x Ag, with Py a Sylow p-subgroup of OP(G), Q a Sylow g-subgroup of G for some
prime g # p, and 4o < Z(0P(G)).

If all centralisers of non-central p-regular elements are equal, say to Cg(z) with
z € Gy, then every p-regular element belongs to C¢(z)y, which is Abelian by Step 1.
Then G has an Abelian p-complement and m = p® by Lemma 2, a contradiction. Thus,
we can take z,y non-central elements of Gy such that Cg(z) # Cg(y). Also, notice that
z,y € OP(G), whence Ay C (Cg(z) N C’G(y))p, = Z(G)p by Step 2. Consequently, we

can write G = PQ x Ay, with P € Syl ,(G), @ € Syl (G) and 4y < Z(G), so the theorem
is proved.
STEP 4. Cg(z) < Ng(Cg(z)) for every non-central z € Gy

Suppose that Ng(Cg(z)) = Cg(z) for some non-central z € G. By Step 1 we know
that Cg(z) = P x L, with P € Syl,(Cg(z)) and L Abelian. We claim that if g # pis a
prime dividing m, then ¢ also divides |L/Z(G),|. If q does not divide |L/Z(G)y|, since
all centralisers of non-central p-regular elements have the same order, then any g-element
is central, so ¢ does not divide m and the claim is proved. Therefore, as we are assuming
that m is not a p-power, there exists a Sylow subgroup of Cg(z), say L; C L, which is
non-central in G and such that L; is properly contained in some Sylow subgroup P, of G.
In particular, L; < Np(L;) C Ng(L;), so we can take y € Ng(L;) — L;. If LY # L, then
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LYNL = Z(G)y by Step 2. As LY = L;, then L; < LY N L = Z(G)y, a contradiction.
Thus, L¥ = L. Moreover,

P C Co(L) = Co(L¥) C Ce(a*) = P¥ x LY.
Hence P = PV and as a consequence y € Ng(Cg(z)) = Cg(z), which implies the
contradiction y € L;.

STEP 5. Conclusion in Case 1.

By Step 3, we can consider O” (G) < G. Fix a non-central element z € G,r. Let
g € G and write g = g,g,, where g, and gy are the p-part and p'-part of g, respectively.
If gy € Z(G), it certainly follows that g € OF (G)Z(G)y. If gy ¢ Z(G), since we are
assuming that Cg(gy) = Ce(z)" for some n € G, then g € Cg(z)". Therefore

G=JCsl@" | 07(6)2(G)y.

neG

By counting elements, this implies
1G] < |G : NG(CG(z)){(|cG(z)| - 1) +|07(©)2(6)y],

hence

Col)l =1 . [07(G)Z(G)y]
'SiNeCe@ T 16T

We put \NG(CG(:::))I = n,. Suppose first that O7 (G)Z(G)py < G. Since ny > 2|Cq(z)|
by Step 4, we obtain the following contradiction

1<

[T

1
-—+
n

N =

Accordingly, we can assume that O” (G)Z(G)y = G.

Now, O (G) cannot be a p-group, otherwise G has a central p-complement, which
yields to a contradiction. Therefore, there exist non-central p-regular elements in O (G)
and for any such element y we have

|07 (G)] _ _lGl —m
[Ce(y) NOP(G)|  |Ca(y)l

Thus, we can apply the inductive hypothesis to OF (G) to conclude that OF(G)
= PQy x So, with P € Syl,(G), Qo € Squ(O"'(G)) for some prime ¢ # p, and Sy
< Z(0%(G)) < Z(G). Since O (G)Z(G)y = G, we get G = PQ x A, with 4 < Z(G)
and @ € Syl (G), so Case 1 is finished.

CASE 2. We assume now that the centralisers of non-central elements in G are not all
G-conjugated. We put G = G/Z(G)y and use bars to work in the factor group.
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STEP 6. Let Z,j # 1 be two p-regular elements in G such that #j = 7% and Cg(z)
# Ce(y). Then o(Z) = o(y) is a prime.
Notice that z and y are p-regular elements. Moreover, since T and 7 commute, then

Z§ = Z7 is p-regular and consequently, so is zy. Suppose first that o(ZT) < o(7), then
(z)°® = §°® # 1. Furthermore,

1 # (29)°® =75°® € Colzy) N Ca(y).

By applying Step 2, we deduce that C¢(y) = Ce(zy), so in particular z € Ce(y). Again
by Step 2, we obtain Cg(z) = Cg(y), contradicting the hypothesis of this step. Therefore,
o(Z) = o(y).

On the other hand, if s is a prime divisor of o(Z) and T° # 1, then Cg(z)
C Cg(z®) < G, whence we obtain C¢(z) = Cg(z®). Moreover, T = §z°. By the
above paragraph it follows that o(Z*) = o(7) = o(T), a contradiction.
STEP 7. Let g be a non-central element in Gy and consider the conjugacy class of g in
G. g°. Then there exists some non-central ¢ € G such that g° N Cg(z) = 0.

Suppose that this is false. Then for every non-central z € G,» we have that Cg(z)
must contain some conjugate of g, say g~ for some @ € G. Thus, g* = §* € Cg(z),
and consequently g" € Cg(z)y. By applying Step 1 we deduce that Cg(z) C Cs(g"),
and hence the equality holds. It follows that any two centralisers are conjugated in G, a

contradiction.
STEP 8. The order of every non-trivial p-regular element in G is a prime.

Suppose that o(g) is composite for some p-regular element g. Notice that g is
pregular too. By Step 7, there exists a non-central element z € G, such that §°
N Cg(z) = 0. Write Cy for Cs(z)y and observe that C, operates on g by conjugation.
Furthermore, by Step 6 no element in C’_,,: distinct from 1 centralises any element in ﬁa,
and hence all orbits of C,y on g° have the same length, |Cy|, which implies that |Cy|

divides |g°|.
On the other hand, again by applying Step 6, we deduce that CG( )p Operates
without fixed points on g — g° NCg(g). Therefore, |Cc(g)y | divides [5°| — |g NCa(9)|-

As |Cs(g)y| = ICyl, we conclude that |Cg(g)y| also divides 3¢ N Celg Cc(g)|, which is a
contradiction because

0<|g NCelg | |Cc(g |

STEP 9. Conclusion in Case 2.

By Step 1, all Cg(z)y are Abelian and have the same order for any non-central
z € Gy. Therefore, by applying Step 8 we obtain that IC'G(:C),,:| is a power of some
prime ¢ # p. Hence G = G/Z(G)y is a {p,q}-group and consequently we can write
G = PQ x A, where P € Syl (G), Q € Syl,(G) and A < Z(G). 0
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REMARK. The proof of Theorem A has been divided into two cases depending on the
fact that all centralisers of non-central p-regular elements may be conjugated or not. It is
easy to find examples where both cases actually occur when G has exactly two p-regular

conjugacy class lengths.
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