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F I N I T E G R O U P S W I T H T W O p-REGULAR
C O N J U G A C Y CLASS LENGTHS

ANTONIO BELTRAN AND MARI'A JOSE FELIPE

Let G be a finite p-solvable group for a fixed prime p. We determine the structure
of G when the set of p-regular conjugacy class sizes of G is {l,m} for an arbitrary
integer m > 1.

1. INTRODUCTION

The question of how certain arithmetical conditions on the sizes of the conjugacy
classes of finite groups G influence the structure of G has been widely studied during the
last years. For a fixed prime p, our purpose in this note is to obtain information on the
structure of finite p-solvable groups from the set of conjugacy class sizes of p'-elements,
that is, from its p-regular class sizes. A classical result of Ito ([4]) asserts that if 1 and
m > 1 are the only lengths of conjugacy classes of a finite group G, then there exists a
prime q such that G = Q x A, where Q is a Sylow g-subgroup of G and A is Abelian.
Thus, in particular m is a power of q. Our main result extends Ito's Theorem when this
problem is transferred to p-regular classes in a p-solvable group.

THEOREM A. Suppose that G is a finite p-solvable group and that {1, m} are the
p-regular conjugacy class sizes ofG. Then m = paqb, with q a prime distinct from p and
a,b ^ 0. Ifb — O then G has Abelian p-complement. Ifb^O, then G = PQ x A, with
P e Sylp(G), Q 6 Syl,(G) and A ^ Z(G). Furthermore, if a = 0 then G = P x Q x A.

2. P R O O F OF THEOREM A

In order to obtain Theorem A, we first need some preliminary lemmas. The first one
is a generalisation for p-regular elements of a lemma of Ito (in fact, the lemma of Ito is
stated in [4] for arbitrary elements and it is assumed that the group is centreless).

We shall denote by Gp> the set of p-regular elements of G.

LEMMA 1 . Let G be a finite group, x 6 Gp> and Cc(x) < G. Assume the following:

1. IfCG(a) ^ CG(x) for a € Gj, then CG(a) = CG(x).
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2. IfCG{x) ^ CG{b) for b G Gff, then CG(x) = CG{b) or b € Z{G). Then
CG{x) - P x L, with P a Sylow p-subgroup ofCG{x) and L ^ Z(CG(x)),
or Cc{x) = PQ x A, with P a p-Sylow ofCG(x), Q a q-Sylow ofCG(x),
for some prime q ^ p, and A ^ Z(G).

P R O O F : Write x = xix2 • • .xs where the order of each Xi is a power of a prime
distinct from p and the X{ commute pairwise. As x 0 Z(G), there exists an i such that
X{ g Z(G). By applying hypothesis 2 we have CG(x) = CG(xi), whence there is no loss
if we assume that x is a g-element for some prime q ^ p.

Suppose that there exists a prime divisor r of |CG(:r)| such that p ^ r ^ q (in other
case the lemma is proved) and take R a Sylow r-subgroup of CG{x). If y G R, since x
and y have coprime orders then CG(yx) = CG(x) n CG(y). By hypothesis 1 it follows
that CG(x) = CG{yx) C CG(y). Thus R ^ Z(CG{x)), so we can write CG{x) = PQ x A,
for some P G Sylp(CG(a;)), Q G Syl,(CG(a:)) and A ^ Z(CG(x)). If A C Z(G) we are
finished. Suppose then that there exists a non-central u € A. Since u is a {p, g}'-element
which commutes with x, by applying hypotheses 1 and 2, we obtain CG(ux) = CG(x)
= CG(u). Now, take z € Q. Then CG(u2) = CG(u) D C7G(z) C CG(u) = CG(a;). By
hypothesis 1, we get CG(uz) - CG(x), so CG{x) C CG(z). Therefore z G Z(CG(x)). If
we put L = Q x A then CG(:c) - P x L, with L < Z(CG(a:)) as wanted. D

In the following lemma, we characterise those groups whose non-central p-regular
conjugacy class sizes are powers of the prime p.

LEMMA 2 . Let G be a finite group. Then all conjugacy class sizes in G^ are p-
numbers if and only ifG has Abelian p-complements.

P R O O F : We show first that G is solvable in both directions of the Lemma. Suppose
first that all p-regular conjugacy class lengths of G are p-numbers. Our assumption is
inherited by normal subgroups and factor groups, and hence, arguing by induction on \G\
we may assume that G is simple nonabelian. However, Burnside's Theorem ([3, Theorem
15.2] for instance) asserts that a simple group cannot possess a conjugacy class of prime
power length and thus, the claim follows. Conversely, suppose that G has an Abelian
p-complement. Then G can be written as the product of two nilpotent subgroups, that is,
an Abelian p-complement and a Sylow p-subgroup of G. By Kegel-Wielandt's Theorem
([2, Theorem VI.4.3]), it follows that G is solvable too.

Suppose now that every p-regular conjugacy class of G has p-power size and work
by induction on \G\ to show that G has Abelian p-complement. We assume first that
OP(G) 7̂  1. By induction, G/OP(G) has Abelian p-complement and trivially so does
G. Thus, we can assume that OP(G) = 1 and consequently Op>(G) ̂  1. Let x be a
non-central element in Gp>. As G is solvable and \G : CG(x)\ is a p-power there exists
a p-complement of G, say H, such that x G H C CG(x). Observe that 1 ^ F(G)
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C Opi(G) C H, where F(G) is the Fitting subgroup. This implies that

x G CG{H) C Ca(F(G)) C F(G) C

Therefore, any non-central p-regular element of G belongs to Opi{G) (and any central
p-regular element too), whence G has normal p-complement. Moreover, notice that this
complement is Abelian.

The converse direction is trivial, just noticing that since G is solvable then any two
p-complements of G are conjugated, whence all of them are Abelian. D

The following result determines the structure of p-solvable groups whose p-regular
class sizes are p'-numbers.

LEMMA 3 . Suppose that G is a finite p-solvable group and that p is not a divisor
of the lengths of p-regular conjugacy classes. Then G — P x H where P is a Sylow
p-subgroup and H is a p-complement of G.

PROOF: See Proposition 2 of [1]. D

PROOF OF THEOREM A: By Lemma 2, if m = p" then G has an Abelian p-
complement, so this case is finished. We shall assume then that m is not a p-power,
that is, 6 ^ 0 , and procceed by induction on \G\ in several steps to prove that G has
the given structure. The last assertion in the statement will be followed then as a trivial
consequence of Lemma 3.

S T E P 1. We can assume that CG(X) — Px x Lx, with Px a Sylow p-subgroup of Cc{x)
and Lx ^ Z(CG{X)), for any non-central x € Gp>.

By Lemma 1, we know that for any non-central p-regular element x of G then
Cc(x) = Px x Lx, with Px a Sylow p-subgroup of CQ{X) and Lx ^ Z{CG{X)), or
Cc(x) — PxQx x A, with Px and Qx a Sylow p-subgroup and a Sylow g-subgroup of
CG(X), respectively, for some prime q / p, and A ̂  Z(G).

Suppose that the second possibility holds for some non-central x € (Sy. We can also
assume that there exists some non-central r-element z in G, for some prime r distinct
from p and q. Then

A<(A,z)^Cc(z),

contradicting the fact that |Cc(z)| . ,, = | C G ( Z ) | . y = \A\. Therefore, we can write

G = PQ x A, for some P e Sylp(G) and Q € Syl,(G), so the theorem is proved.

STEP 2. Let x and y be two non-central p-regular elements. Suppose that Cc{x)

/ Cdv), then (Cc(x) n CG{v)), = Z(G),.

Suppose that there exists a non-central element a € (Cc{x) nCc(y) ) .• By applying
Step 1, we have CG{X) C CG{O) and CG{y) Q CG{O)- AS CG{a) ^ G and all proper
centralisers of p-regular elements have the same order, we conclude Cc{x) — Cc(a)

— Cc(y)> a contradiction.
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For the rest of the proof we are going to distinguish two cases, depending on whether

all centralisers of non-central elements in Gpi are conjugated in G or not.

C A S E 1. Suppose that Ccipc) and Cc(y) are conjugated in G for any non-central x,y

eGp>.

STEP 3. We can assume that O"(G) = G.

Suppose that OP(G) < G. Let i be a p-regular element of OP(G) such that x
$ Z(OP(G)), so x <£ Z(G). By Step 1, we write CG(x) = Px x Lx, with Px a Sylow
p-subgroup of CG{x) and Lx < Z{CG{x)). As Lx C OP{G), then

Op(G) n CG(x) = LX(PX n 0"{G)).

Furthermore,
\G\ \Op(G)\ \G\ \PX\

\Op(G)\\Op(G)nCG(x)\ \CG(x)\\Pxn0p(G)\

and this yields to
\Op(G)\ =m\P*Op(G)\_m

\OP(G)nCa(x)\ \G\ p<

where / is a positive integer or zero. Since we are assuming that all centralisers of non-
central x £ Gp> are G-conjugated the corresponding subgroups Px must be conjugated
too. Consequently, p' is a fixed power not depending on x. This implies that {l,m/p1}
are the only lengths of p-regular conjugacy classes in OP(G). Also, in any case m/pl is
not a power of p, so we can apply the inductive hypothesis to OP(G) to obtain OP(G)
= PoQ x Ao, with Pa a Sylow p-subgroup of OP{G), Q a Sylow g-subgroup of G for some
prime q ^ p, and Ao ^ Z(OP(G)).

If all centralisers of non-central p-regular elements are equal, say to Cc(x) with
x € Gp>, then every p-regular element belongs to CG(x)pi, which is Abelian by Step 1.
Then G has an Abelian p-complement and m = p° by Lemma 2, a contradiction. Thus,
we can take x,y non-central elements of Gp> such that CG{x) # Cc(y)- Also, notice that
x,y € OP{G), whence Ao Q (CG(x) r\CG{y))pl = Z[G)V> by Step 2. Consequently, we
can write G - PQ x Ao, with P € Sylp(G), Q 6 Syl,(G) and Ao < Z(G), so the theorem
is proved.

STEP 4. CG{X) < NG(CG{X)) for every non-central x € Gp>.

Suppose that NG{CG(%)) = Cc(x) for some non-central x G Gp>. By Step 1 we know
that CG{X) — P x L, with P G Sylp(CG(z)) and L Abelian. We claim that if q ^ p is a
prime dividing m, then q also divides \L/Z(G)j/\. If q does not divide \L/Z(G)pi\, since
all centralisers of non-central p-regular elements have the same order, then any g-element
is central, so q does not divide m and the claim is proved. Therefore, as we are assuming
that m is not a p-power, there exists a Sylow subgroup of Cc(x), say Li C L, which is
non-central in G and such that Li is properly contained in some Sylow subgroup Pj of G.
In particular, Li < NPi(Li) C NG{Li), so we can take y € NG{Li) - L{. If Lv ± L, then
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V>C\L = Z{G)p> by Step 2. As Ly = Lu then Li ^ V n L = Z{G)p>, a contradiction.
Thus, Ly = L. Moreover,

P C CG(L) = CG(L") C 00(1") = P v x L».

Hence P = Py and as a consequence y 6 NG(CG{x)) = Cc(a;), which implies the
contradiction y £ Li.

S T E P 5. Conclusion in Case 1.

By Step 3, we can consider OP'(G) < G. Fix a non-central element x G Gp>. Let
3 6 G and write p = gpgp>, where pp and g^ are the p-part and p'-part of g, respectively.
If gp G Z{G), it certainly follows that g G Op'{G)Z{G)vi. If g^ £ Z(G), since we are
assuming that Ccigpf) = CG{X)" for some n € G, then g G CG(x)". Therefore

G=(JCo(a:)B (J

By counting elements, this implies

\G\ 4 \G : Nc{CG(x))\(\Cc(x)\ -

hence

" \NG(CG(x))\ + \G\

NG(CG(x))\ = n!. Suppose first that Op'(G)Z(G)pl < G. Since nx > 2|GG(i)|
b i h f l l i d i i

We put \
by Step 4, we obtain the following contradiction

Accordingly, we can assume that Op'(G)Z(G)pi — G.

Now, Op' (G) cannot be a p-group, otherwise G has a central p-complement, which
yields to a contradiction. Therefore, there exist non-central p-regular elements in Op (G)
and for any such element y we have

\O*(G)\ _ \G\ =m

\CG(v)n0'{G)\ \CG(y)\ '"

Thus, we can apply the inductive hypothesis to 0p'{G) to conclude that OP'(G)
= PQo x SQ, with P G Sylp(G), Qo € Syl,(Op'(G)) for some prime q + p, and So

^ Z{O^{G)) < Z(G). Since Op'{G)Z{G)pl = G, we get G = PQ x A, with A sj Z(G)
and Q G Sylg(G), so Case 1 is finished.

CASE 2. We assume now that the centralisers of non-central elements in Gj/ are not all
G-conjugated. We put G = G/Z{G)vi and use bars to work in the factor group.
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S T E P 6. Let i , y ^ 1 be two p-regular elements in G such that xy = yx and Cc[x)

7̂  CG{V)- Then o(x) — o(y) is a prime.

Notice that x and y are p-regular elements. Moreover, since x and y commute, then
xy — xy is p-regular and consequently, so is xy. Suppose first that o(x) < o(y), then
(xy)o{s) = j / o ( s ) ^ 1. Furthermore,

1 # (xy)°™ = xy°{t) G C ^ ) n Ccjy).

By applying Step 2, we deduce that CG(J/) = Cc(xy), so in particular x € Cc(y)- Again
by Step 2, we obtain C G ( £ ) = Cc(y), contradicting the hypothesis of this step. Therefore,
o{x) = o{y).

On the other hand, if s is a prime divisor of o(x) and x* ^ 1, then CG{X)

C CG(X S ) < G, whence we obtain Cc(x) — Cc(x'). Moreover, xsy = yxs. By the
above paragraph it follows that o(xs) = o(y) — o(x), a contradiction.

S T E P 7. Let g be a non-central element in Gp< and consider the conjugacy class of ~g in
G, 5° . Then there exists some non-central z 6 Gp/ such that if* D GG(X) = 0.

Suppose that this is false. Then for every non-central x G Gpi we have that CG{X)
must contain some conjugate of g, say 5" for some n € G. Thus, 5" = p" € Cc(x),
and consequently 5" € CG(X)P>. By applying Step 1 we deduce that CQ{X) C Cc(gn),
and hence the equality holds. It follows that any two centralisers are conjugated in G, a
contradiction.

STEP 8. The order of every non-trivial p-regular element in G is a prime.

Suppose that 0(5) is composite for some p-regular element g~. Notice that g is
p-regular too. By Step 7, there exists a non-central element x € Gp- such that g°
n GG(X) = 0- Write C^ for CG{X)P> and observe that Cj operates on g° by conjugation.
Furthermore, by Step 6 no element in Cp> distinct from 1 centralises any element in g°,
and hence all orbits of Cp> on g~° have the same length, |GP<|, which implies that
divides

On the other hand, again by applying Step 6, we deduce that Cc{g)^ operates
without fixed points on g5-^nCG(j). Therefore, \C~G~(gj?\ divides |<p| - |5
As ICcCffVl — ICp-l. we conclude that iGc^Jp-l also divides l ^ n G c ^ ) ! , w^ i c h i s a

contradiction because
0 < \

STEP 9. Conclusion in Case 2.

By Step 1, all Ccix)^ are Abelian and have the same order for any non-central
x € Gp>. Therefore, by applying Step 8 we obtain that IGGCZVI is a power of some
prime q ^ p. Hence G = G/Z(G)pi is a {p, g}-group and consequently we can write
G = PQx A, where P € Syl (G), Q G Syl (G) and A ^ Z(G). D

https://doi.org/10.1017/S000497270003361X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003361X


[7] Finite groups 169

R E M A R K . The proof of Theorem A has been divided into two cases depending on the
fact that all centralisers of non-central p-regular elements may be conjugated or not. It is
easy to find examples where both cases actually occur when G has exactly two p-regular
conjugacy class lengths.
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