FINITE GROUPS WITH TWO p-REGULAR CONJUGACY CLASS LENGTHS

Antonio Beltrán and María José Felipe

Abstract

Let G be a finite p-solvable group for a fixed prime p. We determine the structure of G when the set of p-regular conjugacy class sizes of G is $\{1, m\}$ for an arbitrary integer $m>1$.

1. Introduction

The question of how certain arithmetical conditions on the sizes of the conjugacy classes of finite groups G influence the structure of G has been widely studied during the last years. For a fixed prime p, our purpose in this note is to obtain information on the structure of finite p-solvable groups from the set of conjugacy class sizes of p^{\prime}-elements, that is, from its p-regular class sizes. A classical result of Ito ([4]) asserts that if 1 and $m>1$ are the only lengths of conjugacy classes of a finite group G, then there exists a prime q such that $G=Q \times A$, where Q is a Sylow q-subgroup of G and A is Abelian. Thus, in particular m is a power of q. Our main result extends Ito's Theorem when this problem is transferred to p-regular classes in a p-solvable group.

Theorem A. Suppose that G is a finite p-solvable group and that $\{1, m\}$ are the p-regular conjugacy class sizes of G. Then $m=p^{a} q^{b}$, with q a prime distinct from p and $a, b \geqslant 0$. If $b=0$ then G has Abelian p-complement. If $b \neq 0$, then $G=P Q \times A$, with $P \in \operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G)$ and $A \leqslant Z(G)$. Furthermore, if $a=0$ then $G=P \times Q \times A$.

2. Proof of Theorem A

In order to obtain Theorem A, we first need some preliminary lemmas. The first one is a generalisation for p-regular elements of a lemma of Ito (in fact, the lemma of Ito is stated in [4] for arbitrary elements and it is assumed that the group is centreless).

We shall denote by $G_{p^{\prime}}$ the set of p-regular elements of G.
Lemma 1. Let G be a finite group, $x \in G_{p^{\prime}}$ and $C_{G}(x)<G$. Assume the following:

1. If $C_{G}(a) \leqslant C_{G}(x)$ for $a \in G_{p^{\prime}}$, then $C_{G}(a)=C_{G}(x)$.

Received 29th July, 2002
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.
2. If $C_{G}(x) \leqslant C_{G}(b)$ for $b \in G_{p^{\prime}}$, then $C_{G}(x)=C_{G}(b)$ or $b \in Z(G)$. Then $C_{G}(x)=P \times L$, with P a Sylow p-subgroup of $C_{G}(x)$ and $L \leqslant Z\left(C_{G}(x)\right)$, or $C_{G}(x)=P Q \times A$, with P a p-Sylow of $C_{G}(x), Q$ a q-Sylow of $C_{G}(x)$, for some prime $q \neq p$, and $A \leqslant Z(G)$.
Proof: Write $x=x_{1} x_{2} \ldots x_{s}$ where the order of each x_{i} is a power of a prime distinct from p and the x_{i} commute pairwise. As $x \notin Z(G)$, there exists an i such that $x_{i} \notin Z(G)$. By applying hypothesis 2 we have $C_{G}(x)=C_{G}\left(x_{i}\right)$, whence there is no loss if we assume that x is a q-element for some prime $q \neq p$.

Suppose that there exists a prime divisor r of $\left|C_{G}(x)\right|$ such that $p \neq r \neq q$ (in other case the lemma is proved) and take R a Sylow r-subgroup of $C_{G}(x)$. If $y \in R$, since x and y have coprime orders then $C_{G}(y x)=C_{G}(x) \cap C_{G}(y)$. By hypothesis 1 it follows that $C_{G}(x)=C_{G}(y x) \subseteq C_{G}(y)$. Thus $R \leqslant Z\left(C_{G}(x)\right)$, so we can write $C_{G}(x)=P Q \times A$, for some $P \in \operatorname{Syl}_{p}\left(C_{G}(x)\right), Q \in \operatorname{Syl}_{q}\left(C_{G}(x)\right)$ and $A \leqslant Z\left(C_{G}(x)\right)$. If $A \subseteq Z(G)$ we are finished. Suppose then that there exists a non-central $u \in A$. Since u is a $\{p, q\}^{\prime}$-element which commutes with x, by applying hypotheses 1 and 2 , we obtain $C_{G}(u x)=C_{G}(x)$ $=C_{G}(u)$. Now, take $z \in Q$. Then $C_{G}(u z)=C_{G}(u) \cap C_{G}(z) \subseteq C_{G}(u)=C_{G}(x)$. By hypothesis 1 , we get $C_{G}(u z)=C_{G}(x)$, so $C_{G}(x) \subseteq C_{G}(z)$. Therefore $z \in Z\left(C_{G}(x)\right)$. If we put $L=Q \times A$ then $C_{G}(x)=P \times L$, with $L \leqslant Z\left(C_{G}(x)\right)$ as wanted.

In the following lemma, we characterise those groups whose non-central p-regular conjugacy class sizes are powers of the prime p.

Lemma 2. Let G be a finite group. Then all conjugacy class sizes in $G_{p^{\prime}}$ are p numbers if and only if G has Abelian p-complements.

Proof: We show first that G is solvable in both directions of the Lemma. Suppose first that all p-regular conjugacy class lengths of G are p-numbers. Our assumption is inherited by normal subgroups and factor groups, and hence, arguing by induction on $|G|$ we may assume that G is simple nonabelian. However, Burnside's Theorem ([3, Theorem 15.2] for instance) asserts that a simple group cannot possess a conjugacy class of prime power length and thus, the claim follows. Conversely, suppose that G has an Abelian p-complement. Then G can be written as the product of two nilpotent subgroups, that is, an Abelian p-complement and a Sylow p-subgroup of G. By Kegel-Wielandt's Theorem ($[2$, Theorem VI.4.3]), it follows that G is solvable too.

Suppose now that every p-regular conjugacy class of G has p-power size and work by induction on $|G|$ to show that G has Abelian p-complement. We assume first that $O_{p}(G) \neq 1$. By induction, $G / O_{p}(G)$ has Abelian p-complement and trivially so does G. Thus, we can assume that $O_{p}(G)=1$ and consequently $O_{p^{\prime}}(G) \neq 1$. Let x be a non-central element in $G_{p^{\prime}}$. As G is solvable and $\left|G: C_{G}(x)\right|$ is a p-power there exists a p-complement of G, say H, such that $x \in H \subseteq C_{G}(x)$. Observe that $1 \neq F(G)$
$\subseteq O_{p^{\prime}}(G) \subseteq H$, where $F(G)$ is the Fitting subgroup. This implies that

$$
x \in C_{G}(H) \subseteq C_{G}(F(G)) \subseteq F(G) \subseteq O_{p^{\prime}}(G)
$$

Therefore, any non-central p-regular element of G belongs to $O_{p^{\prime}}(G)$ (and any central p-regular element too), whence G has normal p-complement. Moreover, notice that this complement is Abelian.

The converse direction is trivial, just noticing that since G is solvable then any two p-complements of G are conjugated, whence all of them are Abelian.

The following result determines the structure of p-solvable groups whose p-regular class sizes are p^{\prime}-numbers.

Lemma 3. Suppose that G is a finite p-solvable group and that p is not a divisor of the lengths of p-regular conjugacy classes. Then $G=P \times H$ where P is a Sylow p-subgroup and H is a p-complement of G.

Proof: See Proposition 2 of [1].
Proof of Theorem A: By Lemma 2, if $m=p^{a}$ then G has an Abelian p complement, so this case is finished. We shall assume then that m is not a p-power, that is, $b \neq 0$, and procceed by induction on $|G|$ in several steps to prove that G has the given structure. The last assertion in the statement will be followed then as a trivial consequence of Lemma 3.
Step 1. We can assume that $C_{G}(x)=P_{x} \times L_{x}$, with P_{x} a Sylow p-subgroup of $C_{G}(x)$ and $L_{x} \leqslant Z\left(C_{G}(x)\right)$, for any non-central $x \in G_{p^{\prime}}$.

By Lemma 1, we know that for any non-central p-regular element x of G then $C_{G}(x)=P_{x} \times L_{x}$, with P_{x} a Sylow p-subgroup of $C_{G}(x)$ and $L_{x} \leqslant Z\left(C_{G}(x)\right)$, or $C_{C}(x)=P_{x} Q_{x} \times A$, with P_{x} and Q_{x} a Sylow p-subgroup and a Sylow q-subgroup of $C_{G}(x)$, respectively, for some prime $q \neq p$, and $A \leqslant Z(G)$.

Suppose that the second possibility holds for some non-central $x \in G_{p^{\prime}}$. We can also assume that there exists some non-central r-element z in G, for some prime r distinct from p and q. Then

$$
A<\langle A, z\rangle \leqslant C_{G}(z)
$$

contradicting the fact that $\left|C_{G}(z)\right|_{\{p, q\}^{\prime}}=\left|C_{G}(x)\right|_{\{p, q\}^{\prime}}=|A|$. Therefore, we can write $G=P Q \times A$, for some $P \in \operatorname{Syl}_{p}(G)$ and $Q \in \operatorname{Syl}_{q}(G)$, so the theorem is proved.
Step 2. Let x and y be two non-central p-regular elements. Suppose that $C_{G}(x)$ $\neq C_{G}(y)$, then $\left(C_{G}(x) \cap C_{G}(y)\right)_{p^{\prime}}=Z(G)_{p^{\prime}}$.

Suppose that there exists a non-central element $a \in\left(C_{G}(x) \cap C_{G}(y)\right)_{p^{\prime}}$. By applying Step 1, we have $C_{G}(x) \subseteq C_{G}(a)$ and $C_{G}(y) \subseteq C_{G}(a)$. As $C_{G}(a) \neq G$ and all proper centralisers of p-regular elements have the same order, we conclude $C_{G}(x)=C_{G}(a)$ $=C_{G}(y)$, a contradiction.

For the rest of the proof we are going to distinguish two cases, depending on whether all centralisers of non-central elements in $G_{p^{\prime}}$ are conjugated in G or not.
CASE 1. Suppose that $C_{G}(x)$ and $C_{G}(y)$ are conjugated in G for any non-central x, y $\in G_{p^{\prime}}$.
Step 3. We can assume that $O^{p}(G)=G$.
Suppose that $O^{p}(G)<G$. Let x be a p-regular element of $O^{p}(G)$ such that x $\notin Z\left(O^{p}(G)\right)$, so $x \notin Z(G)$. By Step 1, we write $C_{G}(x)=P_{x} \times L_{x}$, with P_{x} a Sylow p-subgroup of $C_{G}(x)$ and $L_{x} \leqslant Z\left(C_{G}(x)\right)$. As $L_{x} \subseteq O^{p}(G)$, then

$$
O^{p}(G) \cap C_{G}(x)=L_{x}\left(P_{x} \cap O^{p}(G)\right)
$$

Furthermore,

$$
\frac{|G|}{\left|O^{p}(G)\right|} \frac{\left|O^{p}(G)\right|}{\left|O^{p}(G) \cap C_{G}(x)\right|}=\frac{|G|}{\left|C_{G}(x)\right|} \frac{\left|P_{x}\right|}{\left|P_{x} \cap O^{p}(G)\right|}
$$

and this yields to

$$
\frac{\left|O^{p}(G)\right|}{\left|O^{p}(G) \cap C_{G}(x)\right|}=m \frac{\left|P_{x} O^{p}(G)\right|}{|G|}=\frac{m}{p^{l}}
$$

where l is a positive integer or zero. Since we are assuming that all centralisers of noncentral $x \in G_{p^{\prime}}$ are G-conjugated the corresponding subgroups P_{x} must be conjugated too. Consequently, p^{l} is a fixed power not depending on x. This implies that $\left\{1, m / p^{l}\right\}$ are the only lengths of p-regular conjugacy classes in $O^{p}(G)$. Also, in any case m / p^{l} is not a power of p, so we can apply the inductive hypothesis to $O^{p}(G)$ to obtain $O^{p}(G)$ $=P_{0} Q \times A_{0}$, with P_{0} a Sylow p-subgroup of $O^{p}(G), Q$ a Sylow q-subgroup of G for some prime $q \neq p$, and $A_{0} \leqslant Z\left(O^{p}(G)\right)$.

If all centralisers of non-central p-regular elements are equal, say to $C_{G}(x)$ with $x \in G_{p^{\prime}}$, then every p-regular element belongs to $C_{G}(x)_{p^{\prime}}$, which is Abelian by Step 1. Then G has an Abelian p-complement and $m=p^{a}$ by Lemma 2, a contradiction. Thus, we can take x, y non-central elements of $G_{p^{\prime}}$ such that $C_{G}(x) \neq C_{G}(y)$. Also, notice that $x, y \in O^{p}(G)$, whence $A_{0} \subseteq\left(C_{G}(x) \cap C_{G}(y)\right)_{p^{\prime}}=Z(G)_{p^{\prime}}$ by Step 2. Consequently, we can write $G=P Q \times A_{0}$, with $P \in \operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G)$ and $A_{0} \leqslant Z(G)$, so the theorem is proved.
STEP 4. $C_{G}(x)<N_{G}\left(C_{G}(x)\right)$ for every non-central $x \in G_{p^{\prime}}$.
Suppose that $N_{G}\left(C_{G}(x)\right)=C_{G}(x)$ for some non-central $x \in G_{p^{\prime}}$. By Step 1 we know that $C_{G}(x)=P \times L$, with $P \in \operatorname{Syl}_{p}\left(C_{G}(x)\right)$ and L Abelian. We claim that if $q \neq p$ is a prime dividing m, then q also divides $\left|L / Z(G)_{p^{\prime}}\right|$. If q does not divide $\left|L / Z(G)_{p^{\prime}}\right|$, since all centralisers of non-central p-regular elements have the same order, then any q-element is central, so q does not divide m and the claim is proved. Therefore, as we are assuming that m is not a p-power, there exists a Sylow subgroup of $C_{G}(x)$, say $L_{i} \subseteq L$, which is non-central in G and such that L_{i} is properly contained in some Sylow subgroup P_{i} of G. In particular, $L_{i}<N_{P_{i}}\left(L_{i}\right) \subseteq N_{G}\left(L_{i}\right)$, so we can take $y \in N_{G}\left(L_{i}\right)-L_{i}$. If $L^{y} \neq L$, then
$L^{y} \cap L=Z(G)_{p^{\prime}}$ by Step 2. As $L_{i}^{y}=L_{i}$, then $L_{i} \leqslant L^{y} \cap L=Z(G)_{p^{\prime}}$, a contradiction. Thus, $L^{y}=L$. Moreover,

$$
P \subseteq C_{G}(L)=C_{G}\left(L^{y}\right) \subseteq C_{G}\left(x^{y}\right)=P^{y} \times L^{y}
$$

Hence $P=P^{y}$ and as a consequence $y \in N_{G}\left(C_{G}(x)\right)=C_{G}(x)$, which implies the contradiction $y \in L_{i}$.
Step 5. Conclusion in Case 1.
By Step 3, we can consider $O^{p^{\prime}}(G)<G$. Fix a non-central element $x \in G_{p^{\prime}}$. Let $g \in G$ and write $g=g_{p} g_{p^{\prime}}$, where g_{p} and $g_{p^{\prime}}$ are the p-part and p^{\prime}-part of g, respectively. If $g_{p^{\prime}} \in Z(G)$, it certainly follows that $g \in O^{p^{\prime}}(G) Z(G)_{p^{\prime}}$. If $g_{p^{\prime}} \notin Z(G)$, since we are assuming that $C_{G}\left(g_{p^{\prime}}\right)=C_{G}(x)^{n}$ for some $n \in G$, then $g \in C_{G}(x)^{n}$. Therefore

$$
G=\bigcup_{n \in G} C_{G}(x)^{n} \bigcup O^{p^{\prime}}(G) Z(G)_{p^{\prime}}
$$

By counting elements, this implies

$$
|G| \leqslant\left|G: N_{G}\left(C_{G}(x)\right)\right|\left(\left|C_{G}(x)\right|-1\right)+\left|O^{p^{\prime}}(G) Z(G)_{p^{\prime}}\right|
$$

hence

$$
1 \leqslant \frac{\left|C_{G}(x)\right|-1}{\left|N_{G}\left(C_{G}(x)\right)\right|}+\frac{\left|O^{p^{\prime}}(G) Z(G)_{p^{\prime}}\right|}{|G|} .
$$

We put $\left|N_{G}\left(C_{G}(x)\right)\right|=n_{1}$. Suppose first that $O^{p^{\prime}}(G) Z(G)_{p^{\prime}}<G$. Since $n_{1} \geqslant 2\left|C_{G}(x)\right|$ by Step 4, we obtain the following contradiction

$$
1 \leqslant \frac{1}{2}-\frac{1}{n_{1}}+\frac{1}{2}
$$

Accordingly, we can assume that $O^{p^{\prime}}(G) Z(G)_{p^{\prime}}=G$.
Now, $O^{p^{\prime}}(G)$ cannot be a p-group, otherwise G has a central p-complement, which yields to a contradiction. Therefore, there exist non-central p-regular elements in $O^{p^{\prime}}(G)$ and for any such element y we have

$$
\frac{\left|O^{p^{\prime}}(G)\right|}{\left|C_{G}(y) \cap O^{p^{\prime}}(G)\right|}=\frac{|G|}{\left|C_{G}(y)\right|}=m .
$$

Thus, we can apply the inductive hypothesis to $O^{p^{\prime}}(G)$ to conclude that $O^{p^{\prime}}(G)$ $=P Q_{0} \times S_{0}$, with $P \in \operatorname{Syl}_{p}(G), Q_{0} \in \operatorname{Syl}_{q}\left(O^{p^{\prime}}(G)\right)$ for some prime $q \neq p$, and S_{0} $\leqslant Z\left(O^{p^{\prime}}(G)\right) \leqslant Z(G)$. Since $O^{p^{\prime}}(G) Z(G)_{p^{\prime}}=G$, we get $G=P Q \times A$, with $A \leqslant Z(G)$ and $Q \in \operatorname{Syl}_{q}(G)$, so Case 1 is finished.
CASE 2. We assume now that the centralisers of non-central elements in $G_{p^{\prime}}$ are not all G-conjugated. We put $\bar{G}=G / Z(G)_{p^{\prime}}$ and use bars to work in the factor group.

STEP 6. Let $\bar{x}, \bar{y} \neq 1$ be two p-regular elements in \bar{G} such that $\bar{x} \bar{y}=\bar{y} \bar{x}$ and $C_{G}(x)$ $\neq C_{G}(y)$. Then $o(\bar{x})=o(\bar{y})$ is a prime.

Notice that x and y are p-regular elements. Moreover, since \bar{x} and \bar{y} commute, then $\bar{x} \bar{y}=\bar{x} \bar{y}$ is p-regular and consequently, so is $x y$. Suppose first that $o(\bar{x})<o(\bar{y})$, then $(\bar{x} \bar{y})^{o(\bar{x})}=\bar{y}^{o(\bar{x})} \neq 1$. Furthermore,

$$
1 \neq(\bar{x} \bar{y})^{o(\bar{x})}=\overline{x y} \bar{y}^{o(\bar{x})} \in \overline{C_{G}(x y)} \cap \overline{C_{G}(y)}
$$

By applying Step 2, we deduce that $C_{G}(y)=C_{G}(x y)$, so in particular $x \in C_{G}(y)$. Again by Step 2, we obtain $C_{G}(x)=C_{G}(y)$, contradicting the hypothesis of this step. Therefore, $o(\bar{x})=o(\bar{y})$.

On the other hand, if s is a prime divisor of $o(\bar{x})$ and $\bar{x}^{s} \neq 1$, then $C_{G}(x)$ $\subseteq C_{G}\left(x^{s}\right)<G$, whence we obtain $C_{G}(x)=C_{G}\left(x^{s}\right)$. Moreover, $\bar{x}^{s} \bar{y}=\bar{y} \bar{x}^{s}$. By the above paragraph it follows that $o\left(\bar{x}^{s}\right)=o(\bar{y})=o(\bar{x})$, a contradiction.
Step 7. Let g be a non-central element in $G_{p^{\prime}}$ and consider the conjugacy class of \bar{g} in $\bar{G}, \bar{g}^{\bar{G}}$. Then there exists some non-central $x \in G_{p^{\prime}}$ such that $\bar{g}^{\bar{G}} \cap \overline{C_{G}(x)}=\emptyset$.

Suppose that this is false. Then for every non-central $x \in G_{p^{\prime}}$ we have that $\overline{C_{G}(x)}$ must contain some conjugate of \bar{g}, say $\bar{g}^{\bar{n}}$ for some $\bar{n} \in \bar{G}$. Thus, $\overline{g^{n}}=\bar{g}^{\bar{n}} \in \overline{C_{G}(x)}$, and consequently $g^{n} \in C_{G}(x)_{p^{\prime}}$. By applying Step 1 we deduce that $C_{G}(x) \subseteq C_{G}\left(g^{n}\right)$, and hence the equality holds. It follows that any two centralisers are conjugated in G, a contradiction.
STEP 8. The order of every non-trivial p-regular element in \bar{G} is a prime.
Suppose that $o(\bar{g})$ is composite for some p-regular element \bar{g}. Notice that g is p-regular too. By Step 7, there exists a non-central element $x \in G_{p^{\prime}}$ such that $\bar{g}^{\bar{G}}$ $\cap \overline{C_{G}(x)}=\emptyset$. Write $\overline{C_{p^{\prime}}}$ for $\overline{C_{G}(x)_{p^{\prime}}}$ and observe that $\overline{C_{p^{\prime}}}$ operates on $\overline{g^{G}}$ by conjugation. Furthermore, by Step 6 no element in $\overline{C_{p^{\prime}}}$ distinct from 1 centralises any element in $\bar{g}^{\bar{G}}$, and hence all orbits of $\overline{C_{p^{\prime}}}$ on $\bar{g}^{\bar{G}}$ have the same length, $\left|\overline{C_{p^{\prime}}}\right|$, which implies that $\left|\overline{C_{p^{\prime}}}\right|$ divides $\left|\bar{g}^{\bar{G}}\right|$.

On the other hand, again by applying Step 6, we deduce that $\overline{C_{G}(g)_{p^{\prime}}}$ operates without fixed points on $\bar{g}^{\bar{G}}-\bar{g}^{\bar{G}} \cap \overline{C_{G}(g)}$. Therefore, $\left|\overline{C_{G}(g)_{p^{\prime}}}\right|$ divides $\left|\bar{g}^{\bar{G}}\right|-\left|\bar{g}^{\bar{G}} \cap \overline{C_{G}(g)}\right|$. As $\left|\overline{C_{G}(g)_{p^{\prime}}}\right|=\left|\overline{C_{p^{\prime}}}\right|$, we conclude that $\left|\overline{C_{G}(g)_{p^{\prime}}}\right|$ also divides $\left|\bar{g}^{\bar{G}} \cap \overline{C_{G}(g)}\right|$, which is a contradiction because

$$
0<\left|\bar{g}^{\bar{G}} \cap \overline{C_{G}(g)}\right|<\left|\overline{C_{G}(g)_{p^{\prime}}}\right| .
$$

Step 9. Conclusion in Case 2.
By Step 1, all $C_{G}(x)_{p^{\prime}}$ are Abelian and have the same order for any non-central $x \in G_{p^{\prime}}$. Therefore, by applying Step 8 we obtain that $\left|\overline{C_{G}(x)_{p^{\prime}}}\right|$ is a power of some prime $q \neq p$. Hence $\bar{G}=G / Z(G)_{p^{\prime}}$ is a $\{p, q\}$-group and consequently we can write $G=P Q \times A$, where $P \in \operatorname{Syl}_{p}(G), Q \in \operatorname{Syl}_{q}(G)$ and $A \leqslant Z(G)$.

Remark. The proof of Theorem A has been divided into two cases depending on the fact that all centralisers of non-central p-regular elements may be conjugated or not. It is easy to find examples where both cases actually occur when G has exactly two p-regular conjugacy class lengths.

References

[1] A. Beltrán and M.J. Felipe, 'On the diameter of a p-regular conjugacy class graph of finite groups', Comm. Algebra 30 (2002), 5861-5873.
[2] B. Huppert, Endliche Gruppen I (Springer-Verlag, Berlin, Heildelberg, New York, 1967).
[3] B. Huppert, Character theory of finite groups, De Gruyter Expositions in Mathematics 25 (De Gruyter and Co, Berlin, New York, 1998).
[4] N. Ito, 'On finite groups with given conjugate type I', Nagoya Math. J. 6 (1953), 17-28.
Departamento de Matemáticas
Universidad Jaume I
12071 Castellón
Spain
e-mail: abeltran@mat.uji.es

Departamento de Matemática Aplicada Universidad Politécnica de Valencia 46022 Valencia
Spain
e-mail: mfelipe@mat.upv.es

