ON MENNICKE GROUPS OF DEFICIENCY ZERO II

MUHAMMAD A. ALBAR AND ABDUL-AZIZ A. AL-SHUAIBI

Abstract. Let M be the group defined by the presentation $\langle x, y, z| x^{y}=x^{m}, y^{z}=$ $\left.y^{n}, z^{x}=z^{r}\right\rangle, m, n, r \in Z . M$ is one of the few 3-generator finite groups of deficiency zero. These groups have been considered by Mennicke [3], Macdonald, Wamsley [10], Johnson and Robertson [7], and Albar. Properties like the order of M, the nilpotency and solvability were studied. In this paper we give a better upper bound for M than the one given by Johnson and Robertson [7]. We also describe the structure of some cases of M.

Introduction. The Mennicke groups are defined by the presentations:

$$
M(m, n, r)=\left\langle x, y, z \mid x^{y}=x^{m}, y^{z}=y^{n}, z^{x}=z^{r}\right\rangle
$$

where $m, n, r \geq 2$.
LEMMA 1. The defining relations of M imply that $y^{-u} x^{\nu} y^{u}=x^{v m^{u}}$ for any integers u, v with $u \geq 0$, together with two cyclic permutants.

REMARK 1. The following identity holds in any group $G:(x y)^{n}=y^{n} \prod_{k=n}^{1} x^{x^{k}}$ for any $x, y \in G$ where

$$
y^{n} \prod_{k=n}^{1} x^{y^{k}}=y^{n}\left[y^{-n} x y^{n}\right]\left[y^{-(n-1)} x y^{(n-1)}\right] \cdots\left[y^{-2} x y^{2}\right]\left[y^{-1} x y\right]
$$

We write the relations of M in the forms:

$$
\begin{equation*}
y^{-1} x y=x^{m}, \quad x^{-1} y x=y x^{-(m-1)} \tag{a}
\end{equation*}
$$

(b)

$$
z^{-1} y z=y^{n}, \quad y^{-1} z y=z y^{-(n-1)}
$$

(c)

$$
x^{-1} z x=z^{r}, \quad z^{-1} x z=x z^{-(r-1)}
$$

We begin this paper by using Lemma 1, Remark 1 and relations (a), (b) and (c) to find different bounds for the orders of x, y, z. We then use these bounds to find a bound for the order of M.

Conjugating (a) by z we get $\left(y^{-1} x y\right)^{2}=\left(x^{m}\right)^{z}$.
Using (b) and (c) we obtain $y^{-n} x z^{-(r-1)} y^{n}=z^{-1} x^{m} z$.
Using the lemma we have

$$
x^{m^{n}} y^{-n} z^{-(r-1)} y^{n}=z^{-1} x^{m} z
$$

Received by the editors October 5, 1989; revised: December 18, 1990 .
AMS subject classification: 20 F 05.
Key words and phrases: Presentation of a group, split extension, Tietze transformation, ReidemeisterSchreier process.
(c) Canadian Mathematical Society 1991.
which implies

$$
x^{m^{n}-m} y^{-n} z^{-(r-1)} y^{n}=x^{-m} z^{-1} x^{m} z
$$

Using (c) and the lemma we get

$$
\begin{aligned}
x^{m^{n}-m} y^{-n} z^{-(r-1)} y^{n} & =z^{-r^{m}} z=z^{-r^{m}+1} \\
\Rightarrow x^{m^{n}-m} y^{-n} & =z^{-r^{m}+1} y^{-n} z^{(r-1)} \\
\Rightarrow x^{m^{n}-m} y^{-n} & =z^{-r^{m}+r} z^{-(r-1)} y^{-n} z^{(r-1)} .
\end{aligned}
$$

Using (b) and the lemma we get

$$
\begin{aligned}
x^{m^{n}-m} y^{-n} & =z^{--r^{m}+r} y^{-n^{r}} \\
\Rightarrow x^{m^{n}-m} y^{n^{r}-n} z^{r^{m}-r} & =e
\end{aligned}
$$

We let $d=r^{m}-r, f=m^{n}-m, g=n^{r}-n$. So we have

$$
\begin{equation*}
x^{f} y^{g} z^{d}=e \tag{*}
\end{equation*}
$$

Using equations (*), (b) and the lemma we get

$$
\begin{aligned}
z^{-1}\left(z^{d} x^{f}\right) z & =\left(z^{d} x^{f}\right)^{n} \\
\Rightarrow z^{-1} z^{d} x^{f} z & =\left(z^{d} x^{f}\right)\left(z^{d} x^{f}\right)^{n-1} \\
\Rightarrow x^{-f} z^{-1} x^{f} z & =\left(z^{d} x^{f}\right)^{n-1} .
\end{aligned}
$$

Now using (c) with the lemma we get:

$$
z^{-f^{f}+1}=\left(z^{d} x^{f}\right)^{n-1}
$$

We use the identity in Remark 1 to obtain:

$$
z^{-r^{f}+1}=\left(x^{f}\right)^{n-1} \prod_{k=n-1}^{1}\left(z^{d}\right)^{\left(x^{f}\right)^{k}}=x^{f(n-1)} \prod_{k=n-1}^{1}\left(z^{d}\right)^{x^{k}}=x^{f(n-1)} \prod_{k=n-1}^{1} z^{d r^{k}} .
$$

This implies that $x^{f(n-1)}=z^{l}$ for some integer l.
Conjugating by x and using (c) we get $x^{f(n-1)}=z^{l r}=x^{f(n-1) r} \Rightarrow x^{f(n-1)(r-1)}=e$.
Therefore, we obtain $x^{(n-1)(r-1)\left(m^{n-m)}\right.}=e$. Now using (a) we get

$$
\begin{equation*}
x^{(n-1)(r-1)\left(m^{n-1}-1\right)}=e . \tag{1}
\end{equation*}
$$

Similar arguments give us:

$$
\begin{align*}
& y^{(r-1)(m-1)\left(n^{r-1}-1\right)}=e . \tag{2}\\
& z^{(n-1)(m-1)\left(r^{m-1}-1\right)}=e . \tag{3}
\end{align*}
$$

Johnson and Robertson [7] used relation (*) to show that

$$
\begin{align*}
x^{(m-1)^{2}\left(m^{n-1}-1\right)} & =e \\
y^{(n-1)^{2}\left(n^{r-1}-1\right)} & =e \\
z^{(r-1)^{2}\left(r^{m-1}-1\right)} & =e .
\end{align*}
$$

Using relations (a) and (2) we get $x^{\left.m^{(r-1)(m-1)\left(r^{r}-1\right.}-1\right)-1}=e$ which we simplify as follows:

$$
\begin{aligned}
& m^{(m-1)(r-1)\left(n^{r-1}-1\right)}-1=m^{(m-1)(r-1)(n-1)\left(n^{r-2}+\cdots+n+1\right)}-1 \\
& \quad=\left[m^{n-1}\right]^{(m-1)(r-1)\left(n^{r-2}+\cdots+n+1\right)}-1 \\
& \quad=\left(m^{n-1}-1\right)\left[\left(m^{n-1}\right)^{(m-1)(r-1)\left(n^{r-2}+\cdots+n+1\right)-1}+\cdots+\left(m^{n-1}\right)+1\right] .
\end{aligned}
$$

Hence we get

$$
x^{\left(m^{n-1}-1\right)\left[\left(m^{n-1}\right)^{(m-1)(r-1)\left(n^{r-2}+\cdots n+1\right)-1}+\cdots+m^{n-1}+1\right]}=e .
$$

Using similar arguments we get

$$
\begin{align*}
\left.y^{\left(n^{r-1}-1\right)\left(\left(n^{r-1}\right)(m-1)(n-1)\left(r^{m-2}+\cdots r+1\right)-1\right.} \cdots+n^{r-1}+1\right] & =e \tag{1"}\\
z^{\left(m^{m-1}-1\right)\left(r^{m-1}\right)^{(n-1)(r-1)\left(m^{n-2}+\cdots+m+1\right)-1}+\cdots+r^{m-1}+1 \mid} & =e
\end{align*}
$$

Using relations (2') and (a) we get $x^{m^{(n-1)^{2}\left(n^{r-1}-1\right)}-1}=e$ which we simplify as follows:

$$
\begin{aligned}
m^{(n-1)^{2}\left(n^{r-1}-1\right)}-1 & =\left(m^{n-1}\right)^{(n-1)\left(n^{r-1}-1\right)}-1 \\
& =\left(m^{n-1}-1\right)\left[\left(m^{n-1}\right)^{(n-1)\left(n^{r-1}-1\right)-1}+\cdots+m^{n-1}+1\right] .
\end{aligned}
$$

Therefore we get

$$
x^{\left(m^{n-1}-1\right)\left[\left(m^{n-1}\right)^{(n-1)\left(n^{n-1}-1\right)-1}+\cdots+m^{n-1}+1\right]}=e .
$$

Similar arguments give

$$
y^{\left(n^{r-1}-1\right)\left[\left(n^{r-1}\right)^{(r-1)\left(m^{m-1}-1\right)-1}+\cdots+n^{r-1}+1 \mid\right.}=e
$$

and

$$
z^{\left.(m-1-1)\left(r^{m-1}\right)^{(m-1)\left(m^{n-1}-1\right)-1}+\cdots+r^{m-1}+1\right]}=e .
$$

We summarize equations (1) to (3), (1^{\prime}) to $\left(3^{\prime}\right),\left(1^{\prime \prime}\right)$ to $\left(3^{\prime \prime}\right)$ and $\left(1^{\prime \prime \prime}\right)$ to $\left(3^{\prime \prime \prime}\right)$ in the theorem in the following section.

A bound for the order of the group.

THEOREM 1. (i) $x^{\left(m^{n-1}-1\right) K_{1 i}}=e$ where $1 \leq i \leq 4, K_{11}=(r-1)(n-1), K_{12}=$ $(m-1)^{2}, K_{13}=\left[m^{n-1}\right]^{(r-1)(m-1)\left(n^{n-2}+\cdots+n+1\right)-1}+\cdots+m^{n-1}+1$, and $K_{14}=$ $\left[m^{n-1}\right]^{(n-1)\left(n^{r-1}-1\right)-1}+\cdots+m^{n-1}+1$.
(ii) $y^{\left(n^{r-1}-1\right) K_{2 i}}=e$ where $1 \leq i \leq 4, K_{21}=(r-1)(m-1), K_{22}=(n-1)^{2}, K_{23}=$ $\left[n^{r-1}\right]^{(m-1)(n-1)\left(r^{m-2}+\cdots+r+1\right)-1}+\cdots+n^{r-1}+1$ and $K_{24}=\left[n^{r-1}\right]^{(r-1)\left(r^{m-1}-1\right)-1}+\cdots+n^{r-1}+1$.
(iii) $z^{\left(r^{m-1}-1\right) K_{3 i}}=e$ where $1 \leq i \leq 4, K_{31}=(m-1)(n-1), K_{32}=(r-1)^{2}, K_{33}=$ $\left[r^{m-1}\right]^{(n-1)(r-1)\left(m^{n-2}+\cdots+m+1\right)-1}+\cdots+r^{m-1}+1$ and $K_{34}=\left[r^{m-1}\right]^{(m-1)\left(m^{n-1}-1\right)-1}+\cdots+r^{m-1}+1$.

Corollary 1. (i) $x^{\left(m^{n-1}-1\right) K_{1}}=e$ where $K_{1}=g c d\left\{K_{1 i} \mid 1 \leq i \leq 4\right\}$.
(ii) $y^{\left(n^{r-1}-1\right) K_{2}}=e$ where $K_{2}=\operatorname{gcd}\left\{K_{2 i} \mid 1 \leq i \leq 4\right\}$.
$z^{\left(r^{m-1}-1\right) K_{3}}=e$ where $K_{3}=\operatorname{gcd}\left\{K_{3 i} \mid 1 \leq i \leq 4\right\}$.
PROOF. Follows easily from the fact that $g^{s}=g^{t}=e$ in a group implies $g^{(s, t)}=e$.

COROLLARY 2. $|M(m, n, r)| \leq K_{1} K_{2} K_{3}\left(m^{n-1}-1\right)\left(n^{r-1}-1\right)\left(r^{m-1}-1\right)$.
Proof. The relations of the group imply that any element has the form $x^{i} y^{j} z^{k}$ for some integers i, j and k. Since the integers $\left(m^{n-1}-1\right) K_{1},\left(n^{r-1}-1\right) K_{2}$ and $\left(r^{m-1}-1\right) K_{3}$ divide the orders of x, y and z respectively the result follows easily.

Remark 2. When we apply Corollary 2 to special cases of $M(m, n, r)$ we notice that the integers $K_{13}, K_{14}, K_{23}, K_{24}, K_{33}, K_{34}$ are usually very large. A weaker form of the corollary could be used where K_{1} is the $g c d$ of K_{11} and K_{12} and similarly for K_{2} and K_{3}.

REMARK 3. If K_{1}, K_{2} and K_{3} are all one, we have $|M(m, n, r)|=\left(m^{n-1}-1\right)\left(n^{r-1}-\right.$ 1) $\left(r^{m-1}-1\right)$.

REmARK 4. We notice that the bound of the order obtained by Johnson and Robertson is

$$
|M(m, n, r)| \leq K_{12} K_{22} K_{32}\left(m^{n-1}-1\right)\left(n^{r-1}-1\right)\left(r^{m-1}-1\right)
$$

and so the bound given in Corollary 2 is an improvement to the bound given by them.
We now use Theorem 1 to investigate some cases of M. Before that we begin by some preliminaries.

Some special cases.

DEFINITION. A group G is an n-generator group if it can be generated by n elements. The rank of G is the least n for which the group is n-generator.

We observe that M is a 3-generator group but does not have the rank 3 in general.
We let G be the finite split metacyclic group $\left\langle x, y \mid x^{m}=y^{n}=e, x^{y}=x^{r}\right\rangle$ where $r^{n} \equiv 1 \quad\left(\bmod m_{i}\right)$.

Theorem 2 [6]. G is the split extension Z_{m} by Z_{n}.
THEOREM 3 [6]. The derived subgroup of G is cyclic of order $\frac{m}{(m, r-1)}$.
REMARK 5. It follows from Theorem 2 that $|G|=m n$.
We now consider general cases of $M(m, n, r)$.
a) $M(m, n, 0) m>2, n>2$: Using Tietze transformations together with Lemma 1 , we get the following presentation for $M=\left\langle x, y \mid x^{m^{n-1}-1}=y^{n-1}=e, x^{y}=x^{m}\right\rangle$. Hence M is a finite metacyclic group. Therefore $M=Z_{d} \rtimes Z_{n-1},|M|=(n-1) d$, M^{\prime} is cyclic of order $\frac{d}{(d, m-1)}$ and M is metabelian of rank 2 where $d=m^{n-1}-1$.
b) $M(m, 2, r) m, r \geq 3$ and $(m-1, r-1)=1$: Using The Reidemeister-Schreier process we find that $M^{\prime}=\left\langle a, y \mid y^{r^{r-1}-1}=a^{d}=e, a y=y a\right\rangle$ where $a=z^{r-1}$ and $d=\frac{r^{m-1}-1}{r-1}$. Therefore M is a metabelian group of order $(m-1)\left(r^{m-1}-1\right)\left(2^{r-1}-1\right)$ and rank ≤ 3.
To explore the structure of M we use Theorem 1 to write the following presentation for $M=\left\langle x, y, z \mid x^{y}=x^{m}, y^{z}=y^{2}, z^{x}=z^{r}, x^{m-1}=y^{2^{r-1}-1}=z^{m-1}-1=e\right\rangle$. Thus we get $x^{y}=x, x^{y-1}=x, y^{z}=y^{2}, y^{z^{-1}}=y^{z^{m-1}-2}=y^{y^{2^{m-1}-2}}$. Hence
the subgroup $H=\left\langle y \mid y^{2-1}-1=e\right\rangle$ of M is normal. Using the presentations of group extensions [2] we easily see that M is the split extension of H by $K=\left\langle x, z \mid x^{m-1}=z^{m^{m-1}-1}=e, z^{x}=z^{r}\right\rangle$. Since K is metacyclic of order $(m-1)\left(r^{m-1}-1\right)$, this also shows that the order of M is $(m-1)\left(r^{m-1}-1\right)\left(2^{r-1}-1\right)$. Note. The results of case (b) hold for $M(m, 2,2)$.
c) $M(n, n, n)$: We notice that $M^{\prime}=\left\langle x^{n-1}, y^{n-1}, z^{n-1}\right\rangle$. Using the Witt identity [10] we find that M^{\prime} is abelian if $n^{n\left(n^{n-1}-1\right)} \equiv 1\left[\bmod (n-1)^{2}\left(n^{n-1}-1\right)\right]$. This congruence relation holds only if $n=1,2$ or 3 . It is easy to see that $M(1,1,1) \cong$ $Z \times Z \times Z$ and $M(2,2,2)=E$ [3]. If $n \geq 3$ the group M is 3-generated because $\frac{M}{M^{\prime}} \cong Z_{n-1} \times Z_{n-1} \times Z_{n-1} . M(3,3,3)$ is metabelian of order 2^{11} [3]. We observe that in Mennicke's paper [8] the order of $M(3,3,3)$ is incorrectly found to be 2^{10}. It follows easily from Mennicke's work that $M(n, n, n)$ is metabelian exactly when $n-1$ is prime to 3 .

REMARK 6. Using Tietze transformations it is possible to show that $M(-m, 2,3) \cong$ $M(m+2,2,3)$ and $M(-m, 2,2) \cong M(m+2,2,2)$ for $m>2$.

Acknowledgement. The authors thank the KFUPM for support they received for conducting research.

References

1. A. A. Al-Shuaibi, On Mennicke groups of deficiency zero. M.Sc. Thesis, KFUPM, 1987.
2. M. A. Albar, On presentations of group extensions, Comm. Algebra 12(1984), 2967-2975.
3. \qquad On Mennicke groups of deficiency zero I, Internat. J. Math. Math. Sci. (4)8(1985), 821-824.
4. W. Fluch, A generalized Higman group, Nederl. Akad. Wetensch. Indag. Math. 44(1982), 153-166.
5. G. Higman, A finitely generated infinite simple group, J. London Math. Soc. 26(1951), 61-64.
6. D. L. Johnson, Topics in the Theory of Group Presentation. London Math. Soc. Lecture Notes Series 42, Cambridge University Press, 1980.
7. D. L. Johnson and E. F. Robertson, Finite Groups of Deficiency Zero. In Homological Group Theory (ed. C.T.C. Wall), Cambridge University Press, 1979.
8. J. Mennicke, Einige endliche gruppen mit drei erzeugenden und drei relationen, Arch. Math. 10(1959), 409-18.
9. M. J. Post, Finite three generator groups with zero deficiency, Comm. Algebra 6(1978), 1289-1296.
10. J. W. Wamsley, The deficiency of finite groups. Ph.D. Thesis, University of Queensland, 1968.
