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Abstract. Stewartson [5] considered second class oscillations in a spherical shell in the presence
of a toroidal magnetic field. He followed Hide [2] and supposed the toroidal field to be uniform.

The aims of this paper are twofold: First, we wish to subject the ‘thin shell’ analysis of Stewart-
son to a more general toroidal field and in particular illustrate the “acceptability” of Malkus’ [4]
choice of a uniform current parallel to the axis of rotation as an alternative basic state. Second,
we show that for a thick shell the full magnetohydrodynamic equations of motion (for oscillations
of the second class) may be reduced to the same equations as govern the motion of an incompres-
sible, inviscid fluid in the absence of a magnetic field.

A formula connecting the magnetohydrodynamic planetary eigenvalues with the second class
inertial eigenvalues is obtained, and its usefulness discussed.

1. Introduction

Hide [2] has suggested that if the strength of the toroidal magnetic field
in the Earth’s core is 100 oersted, then many of the properties of the observed
secular changes, including the slow westward drift of the non-dipole components
of the Earth’s magnetic field, can be accounted for in terms of the interaction
of magnetic modes in the core with the Earth’s poloidal magnetic field. In order
to analyse this suggestion, Stewartson [5] considered second class oscillations
in a spherical shell in the presence of a toroidal field. He followed Hide and
supposed the toroidal field to be uniform. In his study of the hydromagnetic
oscillations in a rotating sphere, Malkus {4] chose a uniform current parallel
to the axis of rotation as a basic state.

The aims of this paper are twofold: first, we wish to subject the ‘thin shell’
analysis of Stewartson to a more general toroidal field (see next section) and
in particular to illustrate that Malkus’ choice of a uniform current parallel to
the axis of rotation as a basic state is as ‘‘acceptable’” as any other reasonably
simple basic state in the light of knowledge at present available. Second, in §3 we
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consider the full magnetohydrodynamic equations of motion (retaining the
dependence on the radial coordinate R) when the basic state is that of a uniform
current parallel to the axis of rotation. We show that, by means of suitable
transformations, the governing equations (for oscillations of the second class)
may be reduced to the equations of motion of an inviscid, incompressible fluid
in the absence of a magnetic field (see, e.g., Stewartson and Rickard [6]).

The second result (above) is both important and useful. If we accept that
a constant current parallel to the axis of rotation generates a suitable toroidal
field, then the result enables us to ‘‘disregard’’ the magnetic field completely
in our analysis. We shall derive a formula connecting the magnetohydrodynamic
planetary eigenmodes with the second class inertial eigenmodes calculated in
Stewartson and Rickard’s [6] paper.

2. Oscillations in a thin shell

Consider a thin shell of perfectly conducting incompressible inviscid fluid
bounded by two rigid concentric spheres and rotating with angular velocity
Q about an axis Oz where O is the common centre of the spheres. In addition a
toroidal magnetic field is imposed. Stewartson [5] considered a field in which
the lines of force were circles having Oz as axis, while the magnitude of the field
was constant and equal to H,. In this section we consider the more general case
in which

2.1 Ho = f(0),

0 being the angle between the position vector R of a representative point S in
the fluid and Oz, and f(0) an arbitrary function of 0. We shall follow Stewartson
and assume the current lines to be completed with current sheets along the inner
and outer boundaries; the conditions on the fluid are then self consistent in that
they satisfy the governing equations of motion and of the magnetic field. The
boundary conditions are also satisfied if the region external to the fluid is
non-conducting.

A small disturbance is now given to the steady motion and we wish to
determine the periods of free oscillation of the fluid. Take the radius of the shell
to be a, the permeability of the fluid to be unity and neglect radial motions.
Further measure the fluid velocity u relative to a set of axes rotating about Oz
with angular velocity € and denote its components (O, uy, u,) in spherical
polar co-ordinates (a, 6, ¢), where 0 is defined above and ¢ is the angle between
the planes OSz and a plane through Oz fixed relative to the rotating axes. From
the equation of continuity

2.2) divu =0,

it follows that
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(2.3) —gé(sin 0 ug) + %(ud,) = 0.

A consistent formal solution of the entire problem can be found by separating
variables, i.e. by writing a typical dependent variable Q in the form

24 Q = R(q(6)e™* '),

where m is an integer, which may be either positive or negative, w is a constant
to be found, and ¢q(0) is a function of 6 only. From now on we shall omit the
exponential factors and it is understood that the real part is taken. It then follows
from (2.3) that there exists a function ¥ such that

(2.5) Uy = im ¥, Uy = — 6% (sin 0¥).
Further, on substituting (2.5) into Maxwell’s equations, but neglecting the

displacement current, i.e. into

(2.6) %g = curl(u x H),

where H is the total magnetic field, we obtain for the components of the perturbed
magnetic field

| _ im?¥f _ mdo6CeS)
@7 he =0, ho = awsinf’ hy = aw ’

squares and products of small terms being neglected.
The equation

(2.8) divH =0

is automatically satisfied by (2.7). Finally, we substitute into the equations of

momentum

(2.9) %+29 x u + (u.grad)u = — 1 rad +—1—(curlH) x H—-Q x (& x R)
ot 5 - pg 4 4rp ’

where Q is the vector angular velocity of the axes, p the pressure and p the

density of the fluid. If we retain linear terms only (2.9) reduces to

oy — 20, c0s0 = — L OF m [a/ao(wf)a/ae(sinef)

pa 90 ' 4npwa? sin @
(2.10) + f0/06(sinb 0/ 36(¥ f)) m?f2y
sin 0 sin? |’

for the # component and
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im P im2¥ f9/ 06(sin 6 f)
apsin6 4npwa’sin?0

(2.11) iouy + 2Qugcost = —
for the ¢ component, where

— _ 2p2.:..2 1 2 df
(2.12) P=p —%pQRsm9+Hf(fcot0+fa_0_ do,

is small, and of the form (2.4). There is also an equation of motion in the radial
direction but this leads to pressure changes which are either functions of R only
or of second order.

It is now possible to eliminate P from equations (2.10) and (2.11) to obtain
a second order ordinary differential equation for W from which the eigenvalues
of w leading to an acceptable solution for ¥ can be obtained. We are particularly
interested in these eigenvalues when

(HO max)2

2092
drp <@’y

(2.13)
where Hg ., denotes the maximum strength of the toroidal field H, (see (2.1)).
It can easily be seen from an examination of (2.9) that there are two kinds of
eigenvalues satisfying (2.13). First, w can be of the order of Q in which case the
magnetic terms may be neglected and the usual equations for inertial waves
in a rotating system obtained. As shown by Longuet-Higgins (1964) it may then
be established that
20m

(2.14) = m 5

where n is an integer. Suppose m = 1. In the case n = 1, the angular velocity
of the current-system is just Q, so the system is stationary relative to fixed axes.
However, when n > 1 the angular velocity in the rotating frame is always less
than Q, so that the system tends to be carried round with the rotating spheres. On
the other hand, if viewed by an observer on the rotating globe the current-system
tends to ‘follow the sun’, that is, to drift westward. Similar remarks apply when
m > 1. For m £ n these waves all have a period greater than one day (except
m = n = 1) and rotate westwards with respect to our axes.

The second type of waves have the property that w < Q and are found by
setting @ = 0 in the left hand sides of (2.10) and (2.11). These waves are the
‘planetary oscillations” or ‘oscillations of the second class’. Eliminating P from
(2.10) and (2.11), we find that for these oscillations

v a¥
d6? do

f(6)? (f(0)2(1 — m?) cosec?0

+16) (2‘1—01’%5‘D +£(6) cot 0)
(2.15)

+ a*sin?0)¥ = 0
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where

_ 8Qmpwa®

*® __
(2.16) a* = =

In the case of a constant toroidal field, f(0) = Hy, = constant, and (2.15)

reduces to
d d¥ 1—m?
2.17 — | - p?)— 20(1 — 2]‘P=O,
am o u)du]+[1_ﬂ2+aa( i)
where
8Qrpw
(2.18) p=cosf and a = — iz .

The eigenvalues of (2.17) are discussed in detail in Stewartson’s [5] paper.

Suppose now that f(0) may be written in the form
(2.19) f(0) = K sin®0 cos6,
where K, b, ¢ are constants. On substituting (2.19) into (2.15) the latter reduces to

a*y ¥y
— 2 - 2_ ]2
u(l — p®) 2 2[(b+c+ Dp* — €] 7

(2.20)
a* b 1-20 , H(1l—m?)
— (1 — 2\1-b 1-2¢ 111:0
+ [ - M0
In considering the slow oscillations of fluid in a rotating sphere, Malkus
[4] assumed that the toroidal field was due to a uniform current parallel to the

axis of rotation. It is clear that, since
(2.21) H, = j, x R,

where j, is the uniform current, we must take K = aj;, b = 1, ¢ = 0in (2.19) in
this case, j, being the magnitude of the current. Equation (2.20) now reduces to

ay a¥ 1—-m?
22 1—u? —att 4 (& ———)\1'=0,
@2) (=) G G (2 4 0
where
80
(2.23) B= — k2
mj2

In order that the perturbed components of velocity and magnetic field be
finite everywhere we require that ¥ is bounded as sin § -0, or p— 11 (see
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equations (2.5) and (2.7)). From the theory of differential equations ¥ is bounded
as u— =+ 1 only for a discrete set of values of &, which are the eigenvalues we wish
to determine. To find the eigenvalues, proceed as follows:

Consider the Associated Legendre Equation

d*w dw

24 1—p? . Jjudia
(2.24) ( u)d#2 n

2
+[v(v+ 1) — i Tuzjw =0,

where v is an integer. 1If we write

(2.25) w = (1 — u?)to,
(2.24) becomes

d*® d® 2

1—m
"Mt

1 — pu?

2260 (1-u?

[(v+2)(v—1)+ ](D=0,

and it follows on comparing (2.26) and (2.22) that
(2.27) & = n(n + 3),

where n is an integer. It is of interest to observe that & is independent of the
azimuthal wavenumber m, resulting in there being only a single infinity of eigenval-
ues rather than the double infinity of such values one would expect.

From (2.27) we see that the lowest non-zero eigenmode is & = 4 (when
n = 1). In comparison, for the constant toroidal field case (see (2.17), (2.18) and
Stewartson, [5], p. 182), the lowest eigenmode is xa® = 4.62, with azimuthal
wave number m = 1. It follows from (2.18), that, in the constant toroidal field
case, the maximum value of the field strength, H,,,,, is proportional to the
reciprocal of the square root of (ma),, that is,

__4
J(ma),’

(ma), being the smallest value of (ma), and

(2.28) Homax

(2.29) A= — 8Qnpo.

As a consequence of the relationship between j, and H, in (2.21) essentially
the same remarks apply to (2.23) as (2.18). A knowledge of A and g would enable
us to evaluate the maximum value of the field strength in the two cases under
discussion, Q is approximately 7 x 10~ radians [second and for the Earth’s core
p is generally taken as 10 gms. /em.?. The mean radius of the core is approximately
3,500 km. (see Hide, [2]). However the precise value of w, the ‘westward drift’
rate of the spherical harmonic components, is uncertain (Hide, p. 640) and here
we shall be content to compute
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H ~H
10011 =2 01 max OZmaxJ
[ Hotmax + Hozmax

_ \/(ma)ls - \/(ma)ZS
100[1 2 Jma)es F o ] ’

where Hgima, and Hgoma, are the maximum field strengths’ predicted by the
‘constant field’ and ‘constant current’ cases respectively, and (ma),, (ma),, are
the associated values of (ma),. It will be recalled that Stewartson [5] has suggested
that Hide’s theory of hydromagnetic oscillations in the Earth’s core being
responsible for the westward drift of the geomagnetic secular variation is un-
tenable, and that instead the theory should be used to put an upper bound on the
possible strength of the toroidal field. In this latter respect H, is a measure of how
close theories based on ‘constant field” and ‘constant current’ are in agreement;
the factor 100 means that it is expressed as a ‘percentage’. It is easy to compute
H, from (2.30) and we find that it represents an agreement of slightly better
than 929.

It was hoped to be able to compute the eigenvalues of (2.20) for other f(0), in
particular some simple functions of 6 of the form (2.19), (e.g. f(8) = K cos 6,
f(0) = K cos®0, f(8) = K sin 8 cos ). In all of these cases it is a simple matter
to substitute the appropriate values of K, b, ¢ and obtain a second order dif-
ferential equation analogous to (2.17) and (2.22). However, if on physical grounds
we require the perturbed components of velocity and magnetic field to be finite
everywhere (see (2.5) and (2.7)) then the results of a preliminary analysis suggest
that no other f(6) of the form (2.19) exist which allow the determination of a set
of eigenvalues consistent with this requirement. If we ease the condition on the
perturbed magnetic field and stipulate only that we desire the perturbed velocity
components to be finite everywhere the above remarks still apply. This is un-
fortunate because it would be helpful to compute the eigenvalues and maximum
field strengths’ (or a relative guide to such in the form of a parameter like H,) in
other cases. It may be that, except for the ‘constant field” and ‘constant current’
cases considered, (2.19) represents an unacceptable physical situation. It may be
possible to overcome this difficulty by considering f(8) to consist of a Fourier
Series in sin @ or cos 0 but this suggestion has not been examined in detail.

The purpose of this section will have been achieved if the reader agrees that
the basic state chosen by Malkus [4], that of a uniform current parallel to the axis
of rotation, is not unrepresentative, In view of the remarks made by Hide (see
Hide, [2], p. 627) it would appear to have some advantages over the choice of a
constant toroidal field.

B
I

(2.30)

i

3. The full magnetohydrodynamical equations

In this section we shall show that when the basic state is a constant current
parallel to the axis of rotation, the full magnetohydrodynamic equations (for
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planetary oscillations, i.e. when (2.13) holds and w < Q) can be reduced to the
usual equations of motion of a rotating fluid in the absence of a magnetic field
by suitable transformations.

We shall again choose a set of spherical polar coordinates (R, 8, ¢) and
suppose that they are rotating about the axis Oz with angular velocity Q. Let a
small disturbance be applied to the steady state and let the resulting components
(hg, hg, hy), (ug, ug, uy) of the perturbed magnetic and velocity fields be sufficiently
small that products may be neglected. Let also the boundaries of the shell be
surfaces of revolution with Oz as axis and let the media beyond the shell have
zero conductivity. Further let all small dependent variables be of the form

3.1 RL{q(R, )™+ "},
where m is an integer.

From (2.21) it follows that H, = (0,0, Rj, sin 8), and therefore
3.2 H = (hg, hg, hy + Rj, sin 0).

Hence from the equation of continuity
(3.3) 9 (R?sinfuy) + -2 (R sin 6uy) + imRu,, = 0
. 3R R 20 S1n Oy 1 Uy = 4,

and from Maxwell’s equation (2.6), together with (3.1) and (3.2) where necessary,

(3:4) b = (g, ho, hy) = "2,

so that div H is automatically zero. Further we observe that the perturbed magnetic
field b is parallel to the perturbed velocity field u in our set of rotating coordinates.
Finally, on substituting into (2.9) and writing

22 :2p2,:.2 : :

JoP _ | arp2aazp , JoR7sin®®  RsinBjoh,
3.5) =P 1pQ*R%sin“0 + o + e R
where P is of the form (3.1), we obtain
(3.6a) —g—;— = im%ug — m(& + 2) sin 6 u,,
(3.6b) % %)— = im*uy ~ m(@ + 2) cos 6 u,,

im P . 2 _ .

(3.6¢) Rsind — M Ur + m(& + 2) (sin Oug + cos Ouy).

In deriving the above equations it has been assumed that

https://doi.org/10.1017/51446788700019935 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700019935

[9] Magnetohydrodynamic eigenmodes 213

Jo_

<Q? and @ <€Q,
4np

that is, we are focusing our attention on the planetary waves.
If we now write

P = —iRsin0P -
= — iR sin 6P, o = G
3.7 .
u = ———2ﬂ7 u = cud
Y om@+2)° T om@+2)/0 —p?)
and
)
(3.8) R
the governing equations (3.6a)~(3.6¢) reduce to
oW _ " OP _)
- = — ~— 4+ P),
(3.92) o ( =
_ _ oP _
(3.9¢) oV —2uU —2W = — mP.

These equations are identical with the equations of motion of an incompres-
sible inviscid fluid in the absence of a magnetic field (see, e.g., Stewartson and
Rickard, [6], p. 762). The ‘magnetohydrodynamic planetary eigenmodes’ of this
paper are related to the inertial eigenmodes of Stewartson and Rickard’s paper by
equation (3.8). The relationships (3.4), (3.8) were also obtained independently by
Malkus [4] in his study of hydromagnetic oscillations in a rotating fluid sphere.

4. Summary

In this section we summarize the results of this paper, clarifying the underlying
assumptions and explaining the full significance of (3.8). The magnetohydro-
dynamic equations appropriate to our problem are (2.2), (2.6), (2.8) and (2.9).
In deriving these equations it was assumed that

(i) the displacement current is negligible, a legitimate procedure when the
speeds involved are much less than the speed of light;

(ii) the fluid is incompressible, a valid assumption since the speed of flow
u is much less than the speed of sound in the Earth’s core;

(iii) the fluid is perfectly conducting;

(iv) the fluid may be taken as inviscid,
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The reader is referred to Hide [1] for a justification of (iii), (iv) and a more
complete discussion of (i), (ii).
For reference purposes let us recall below the appropriate equations

4.1) oH _ curl (u x H),
ot
4.2) V-H= 0,
(4.3) V-u =0,
Ou 1
7+2ﬂxu+(u grad)u = ——gradp+——(curl H)x H

“4.4

- O x (2 x R).
The principal result of this paper may be described as follows. Consider the
following separate problems:

(a) The basic state is that of a uniform current j, parallel to the axis of
rotation. The dominant toroidal field is given in terms of j, by (2.21) and the
total field H is given in terms of u by (3.2), (3.4). Further, consider the second
class oscillations, for which

4.5) jo < 4mpQ?,
and
w <Q.

(b) There is no magnetic field (H = 0) and the fluid is no longer conducting.

It has been demonstrated in §3 that by means of the transformation (3.7),
(3.8) problem (a) can be reduced to the solution of (3.9a)—(3.9¢). In Stewartson
and Rickard [6] it is shown that (b) reduces to the solution of the same set of
equations. §2 was included primarily to give some justification for the choice
of a uniform current parallel to the axis of rotation as basic state.

Appendix A
Explicit expression for a*

We may rewrite (2.15) as follows:

1

A.l
(A sin30 do

(f(O)Zsm ] d—) + (f(0)*(1 — m*)cosec*d + a*) ¥ = 0.
On multiplying (A.1) by ¥ it follows that

(f(G) sde ) + (f(0)*(1 — m®)cosecd + a*sin0)¥? = 0,
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which may be written in the form

d_‘i) (‘P%\z—’f(())z sinB) + (f(0)*(1 — m*)cosec B + a*sin*0)¥?

- (-‘%)2 f(6)*sin = 0.

(A.2)

We may obtain an explicit expression for o* by integrating (A.2) w.r.t. 6 between
the limits O and = /2; thus

f :/2 ( (%)Zf(e)zsine RO mz)w)do

(A3) e sinf ,
nf2
f sin® 0¥?2 4o
1]
since
n/2
(A4) w2 osin 0| =o.
do 0
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