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Cognitive impairments reported across psychiatric conditions (ie, major depressive disorder, bipolar disorder,
schizophrenia, and posttraumatic stress disorder) strongly impair the quality of life of patients and the recovery of those
conditions. There is therefore a great need for consideration for cognitive dysfunction in the management of
psychiatric disorders. The redundant pattern of cognitive impairments across such conditions suggests possible shared
mechanisms potentially leading to their development. Here, we review for the first time the possible role of
inflammation in cognitive dysfunctions across psychiatric disorders. Raised inflammatory processes (microglia
activation and elevated cytokine levels) across diagnoses could therefore disrupt neurobiological mechanisms
regulating cognition, including Hebbian and homeostatic plasticity, neurogenesis, neurotrophic factor, the HPA axis,
and the kynurenine pathway. This redundant association between elevated inflammation and cognitive alterations
across psychiatric disorders hence suggests that a cross-disorder approach using pharmacological and
nonpharmacological (ie, physical activity and nutrition) anti-inflammatory/immunomodulatory strategies should be
considered in the management of cognition in psychiatry.
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Introduction

Cognition has been described as “a suite of interrelated
conscious (and unconscious) mental activities, includ-
ing: pre-attentional sensory gating; attention; learning
and memory; problem solving, planning, reasoning and
judgment; understanding, knowing and representing;
creativity, intuition and insight; ‘spontaneous’ thought;
introspection; as well as mental time travel, self-
awareness and meta-cognition (thinking and knowledge
about cognition).”1 The range of cognitive impairments
reported in psychiatric disorders is wide and redundant
across conditions.1 These alterations do not only
aggravate the course of the disorders but also strongly
compromise patients’ quality of life and recovery. For
example, cognitive symptoms (eg, working memory
impairments) in bipolar disorder (BD) or schizophrenia

(SCZ) predict the development and the severity of
psychotic symptoms, suggesting that they may partici-
pate in the development of the diseases.2 In addition,
symptom severity (ie, intrusive thoughts, nightmares,
and flashbacks) in patients with posttraumatic stress
disorder (PTSD) is significantly correlated with impair-
ments in attention, learning, memory, executive func-
tion, and visuospatial attention.3 Cognitive deficits in
attention, verbal learning, and verbal memory predict
poorer general and psychosocial functioning in BD
patients and impair recovery in later stages of the
disease.4,5 They also negatively affect employment status
and occupational functioning in adults with mood
disorders or SCZ.4,6–8 There is therefore a great need
for consideration for cognitive function in remission and
recovery processes in psychiatry, which is emphasized by
elevated rates of cognitive impairments after remis-
sion7,9,10 representing a risk factor for relapse.11

A better knowledge of the biological mechanisms
underlying cognitive dysfunctions in patients suffering
from psychiatric disorders is needed, as they would
represent potential therapeutic targets in the manage-
ment of cognition across psychiatric conditions. Numer-
ous studies have implicated inflammation in the
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development of psychiatric disorders. In particular, it has
been suggested that inflammation might underlie core
symptoms of the disorders, such as somatic symptoms
(eg, fatigue, sleep disturbances, appetite disturbances).12

However, there is less evidence linking elevated inflam-
mation to cognitive deficits across psychiatric disor-
ders.12 Thus, the purpose of this review is to summarize
evidence that supports a role for inflammatory processes
in the establishment of cognitive impairments across
major depressive disorder (MDD), BD, SCZ, and PTSD.

Biological underpinnings of cognitive function

Various brain areas and mechanisms participate in the
regulation of cognitive function in physiological condi-
tions. In particular, these mechanisms have been
extensively described in the hippocampus for learning
and memory, whereas the mechanisms underlying other
cognitive processes remain understudied. Mechanisms
underlying learning and memory processes in the

hippocampus encompass changes in neurotransmission
at the synapse, namely Hebbian synaptic plasticity
(including long term potentiation [LTP] and long term
depression [LTD]).13 Hippocampal LTP inhibition
through blockade or knockout of N-methyl-D-aspartate
(NMDA) receptors impairs spatial learning and
memory,14 whereas enhancing LTP improves learning
and memory performances.15 In addition, mice exhibit-
ing impaired LTD display behavioral flexibility deficits.16

To compensate with prolonged activity changes driven by
Hebbian synaptic plasticity, homeostatic mechanisms
relying on post-synaptic α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors adjust average
synaptic strength to bring the level of post-synaptic
response into an appropriate range.17 It has been
suggested that homeostatic plasticity could be a funda-
mental mechanism for the dynamic process of memory,
providing a link between early and late memory forma-
tion processes.18 Hippocampal Hebbian plasticity is also
tightly interrelated with the formation of new neurons,

FIGURE 1. Role of neuroinflammation in the dysregulation of neurobiological processes underlying cognition. The activation of microglia within the brain
induces neuroinflammation through the secretion of local pro-inflammatory cytokines and the enhanced expression of chemokine receptors on microglia.
Neuroinflammation can then induce dysregulations of neurobiological mechanisms regulating cognitive processes by: (1) changing the expression and activity
of AMPAR, therefore impairing homeostatic plasticity; (2) inhibiting LTP and LTD processes and hence impairing Hebbian plasticity; (3) dysregulating the
tryptophan-kynurenine pathway, subsequently causing neurodegeneration; (4) impairing neurotrophin metabolism; and (5) dysregulating HPA axis, leading to
hypercortisolemia and subsequent neurotoxicity. In addition, the processes (3), (4), and (5) also participate to impairment of neurogenesis and Hebbian
plasticity processes.
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namely neurogenesis,19,20 which also contributes to
learning and memory. Indeed, the rate of neurogenesis
in rodents was found to be positively correlated to spatial
learning and memory performances.21,22 In the hippo-
campus, these key regulatory mechanisms are dependent
on the synthesis of neurotrophic factors such as brain-
derived neurotrophic factor (BDNF)23–26 and the activa-
tion of various pathways such as the HPA axis27–31 and
the kynurenine pathway, which are therefore able to
modulate learning and memory.32–36

Inflammation and cognitive function in physiological
conditions: mechanisms

The relationship between raised levels of inflammation
and cognitive changes across inflammation-associated
conditions (eg, obesity, rheumatoid arthritis, HIV infec-
tion)37–39 has suggested a role for inflammation in the
regulation of cognition in physiological conditions. The
role of peripheral and brain inflammatory mediators (ie,
cytokines) in influencing learning and memory was
previously reviewed under the name of “cytokine model
of cognitive function.”40 Microglia, the immune cells of
the brain, do not only play a role in brain immune function
but are also strong regulators of neurological function41

(see Figure 1) and cognition in physiological conditions.
Indeed, microglia depletion or inhibition in mice nega-
tively impairs learning andmemory.42 Althoughmicroglia
can directly modulate cognition, it is noteworthy that they
can also perform this role by secreting inflammatory
mediators such as cytokines. As previously reviewed,
inflammatory cytokines (ie, interleukin-1β [IL-1β], IL-6,
and tumor necrosis factor-α [TNF-α]) are required for the
physiological regulation of memory processes since
disrupting their signaling pathway leads to decreased
learning and memory.43–46 However, the regulatory role
of these cytokines on cognition is dose-dependent since
overexpression of IL-1β or TNF-α disrupts normal
learning and memory in rodents.47,48

Recent evidence suggests that disruption of microglia
activation alters hippocampus-dependent neuronal plas-
ticity and learning and memory performance in adult-
hood.49,50 Microglial processes continuously interact
with synapses in a glutamate-dependent way,51 suggest-
ing a role in learning and memory through their impact
on synaptic plasticity. In addition, microglia indirectly
modulate synaptic plasticity through the production of
inflammatory cytokines.52 IL-1β and TNF-α are critical
in the establishment of synaptic plasticity since their
knockout induces impaired LTP53 and LTD,54 respec-
tively. Glial-derived TNF-α also strongly regulates
homeostatic plasticity by inducing exocytosis of AMPA
receptors and inhibiting astrocyte glutamatergic trans-
porters at the synapse.55–57 However, the effect of
inflammatory cytokines on synaptic plasticity often

follows an inverted U-shape since supra-physiological
doses of IL-1β, IL-6, and TNF-α disrupts normal
LTP,58–60 possibly linking raised inflammation to cogni-
tive impairments. Similarly to what has been reported for
pro-inflammatory cytokines, anti-inflammatory cyto-
kines, such as IL-10, also participate in the regulation
of hippocampal synaptic plasticity in a dose-dependent
manner.61–63 Microglia and pro- and anti-inflammatory
cytokines do not only regulate Hebbian and homeostatic
plasticity but can also influence brain function through
their effects on neurogenesis. During development,
microglia coordinate synaptic pruning, ie, the elimina-
tion of weak synapses in order to maintain and
strengthen functional synapses.64 During adulthood,
neurogenesis is then highly dependent on the crosstalk
between microglia and neurons through the CX3C
chemokine receptor 1/CX3C chemokine ligand 1
(CX3CR1/CX3CL1) pathway.65,66 Cytokines such as
IL-1β and IL-6 have a dual role on adult neurogenesis
in the hippocampus. On one hand, they exert a critical
role in the establishment of neurogenesis.67,68 On the
other hand, their overexpression in the brain negatively
affects adult neurogenesis.69,70 Similarly, TNF-α may
exert a dual role on adult neurogenesis, through a
differential effect of its receptors TNF-R1 and TNF-R2,71

although the underlying mechanisms remain under-
studied. Recently, IL-10 was also described as an
enhancer of postnatal neurogenesis.72

Microglia and inflammatory mediators may also have
an indirect effect on cognition-associated biological
mechanisms through modulation of neurotrophic factors
levels and signaling pathway activation. Although the
link between inflammation, cognition, and neurotrophic
factors needs further consideration, there is evidence
that cytokines can modulate BDNF levels and activity.73

In particular, immune stimulation decreases brain BDNF
expression and activity,74,75 therefore altering synaptic
plasticity in the hippocampus.75 In mice, BDNF removal
frommicroglia revealed that these cells regulate memory
by promoting synapse formation through BDNF signal-
ing.76 Along with altering neurotrophic factor activity,
cytokine signaling pathways can interact with GC
receptor signaling and therefore change GC action.77

Inflammatory cytokines can indeed influence the pro-
duction of all the hormones produced along the
hypothalamic–pituitary–adrenal (HPA) axis78 and mod-
ulate GR function at multiple levels, from expression to
translocation and associated signaling pathways.79 In
addition to their effects on neurotrophic factors and
the HPA axis, inflammatory processes can influence
kynurenine pathway activation. Pro-inflammatory cyto-
kines induce hippocampal activation of the kynurenine-
producing enzyme indoleamine 2,3-dioxygenase
(IDO),80,81 which participates in the regulation of
learning and memory.35,82
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Inflammation and Cognition Across Psychiatric
Conditions

The key role that inflammatory processes play in the
regulation of the neurobiological processes underlying
cognition in physiological conditions suggests that
dysregulations of the immune system could participate
in cognitive alterations reported across psychiatric
diseases. In agreement with this hypothesis, alterations
of neurobiological mechanisms regulating cognition are
redundant across disorders (see Table 1). Here, we
review the evidence suggesting that inflammatory
processes, in particular activated microglia and inflam-
matory cytokines, play a role in impaired cognitive
performance associated with psychiatric disorders
through the regulation of the neurobiological processes
underlying cognitive function (see Figure 1).

Inflammation and cognition in major depressive disorder

Levels of inflammatory markers have been found to be
associated with cognitive performance in MDD. In
patients with MDD, elevated serum levels of TNF-α,
TNF-R1, and TNF-R2 negatively correlate with perfor-
mance in executive functioning, attention, learning,
working, and declarative memories.83 Similarly, elevated
plasma levels of C-reactive protein (CRP) and IL-6 are
associated with impaired cognitive performance in the
domains of attention and executive function and of verbal
memory and psychomotor speed, respectively.84–86 It is
noteworthy that CRP and IL-6 levels are not only
associated with cognitive symptoms of depression at
baseline but also predict those symptoms at 12 years
follow-up, suggesting that inflammation contributes to
the progression of MDD rather than to the later stages of
the disease.87 This relationship appears to be unilateral
since cognitive symptoms of depression at baseline are
not predictive of inflammatory status at follow-up.
Although double-blind, randomized, placebo-controlled
trials with anti-inflammatory agents are necessary to
establish a causal link between inflammation and
cognition in MDD, acute treatment with the

cyclooxygenase (COX)-2 inhibitor Celecoxib has been
reported to improve cognitive function in an elderly
depressed woman with recurrent MDD.88

It is noteworthy that individuals with MDD display
dysregulations of the kynurenine (KYNA) pathway,
which could mediate the relationship between elevated
levels of inflammatory markers and cognitive function
through its effects on brain plasticity. Elevated levels of
inflammatory markers were found to be associated with
decreased urinary KYNA in MDD patients.89 Interest-
ingly, KYNA/3-hydroxykynurenine (3-HK) was also
reported to negatively correlate with hippocampal
activity during memory recall, and KYNA/quinolinic
acid (QA) correlated with negative specific memory
recall and with hippocampal and amygdala volume in
MDD patients.90,91 It might be hypothesized that the
kynurenine pathway could participate in the impairment
of cognitive functions observed in MDD by influencing
glutamatergic transmission in brain structures asso-
ciated with cognitive processes. Numerous alterations
in glutamatergic synaptic plasticity have indeed been
reported in animal models of depression.92 Inhibition of
microglia activation prevents impairments of both
spatial memory and hippocampal LTP in a rodent model
of depression. This effect is likely to involve a role of
GluR1 phosphorylation.93 BDNF is also likely to be a
mediator of inflammation-associated cognitive impair-
ments in MDD. In cancer patients with depression,
plasma IL-6 levels predict serum BDNF levels, which are
significantly associated with short-term memory perfor-
mance.94 In addition, inhibiting TNF-α in a rat model of
depression prevents stress-induced cognitive impair-
ments as well as the associated reduction of hippocampal
BDNF expression.95

Inflammation and cognition in bipolar disorder

Currently, few studies have reported associations
between inflammatory processes and cognitive perfor-
mances in BD.96 In individuals with BD, plasma CRP
levels are negatively correlated with immediate memory,
language, and attention.97 Similarly, elevated levels of

TABLE 1. Main biological mechanisms impairments across psychiatric conditions

MDD BD SKZ PTSD

Impaired Hebbian plasticity + (89) ? + + (148, 149) 0/ + (154–156)

Impaired homeostatic plasticity + (143) ? 0/ + (150) ?
Impaired neurogenesis + (144, 145) 0/+ (100) + (151) + (157–159)

Decreased peripheral BDNF levels + ++ (90, 91) + ++ (92) + ++ (152, 153) + + (160–162)

Impaired HPA axis activation + + + (146, 147) + + + (101, 102) + ++ (101, 146) + ++ (167, 168)

Increased KYNA levels + + (85–87) + ++ (103) + ++ (115) ?

0: essentially absent; 0/+ : anecdotal, poorly documented, ambiguous; + : preclinical; + + : clinical; + + + : clinical, consistent; ?: not clearly evaluated. Reference numbers
are in parentheses.
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IL-1ra and TNF-α are associated with worse memory
performances, even during euthymic states.98,99 Ele-
vated plasma levels of soluble TNF (sTNF)-RI were also
found to be associated with impaired declarative memory
in patients with BD.100 The only study assessing the
relationship between cerebrospinal fluid (CSF) inflam-
matory markers and cognition in BD reported a negative
association between CSF concentration of the inflam-
matory biomarker YLK-40 and executive function in
those patients.101 It is noteworthy that in addition to
elevated peripheral inflammation reported in BD
patients with cognitive impairments, increased micro-
glial activation was reported in the right hippocampus of
BD patients in comparison to healthy controls.102 Hence,
these studies provide evidence that elevated inflamma-
tory profile is negatively associated with cognitive
function in BD.

Various neurobiological systems have been reported
to potentially participate in inflammation-associated
cognitive impairments in BD. A recent study reported
that pro-inflammatory cytokines such as TNF-α decrease
white matter integrity in BD individuals,103 which could
be mediated by alterations in neurogenesis.104 Cytokines
may also alter cognition by influencing the activity of the
HPA axis, subsequently leading to impaired neuroplasti-
city. Indeed, HPA axis alterations are associated with
impaired cognition in individuals with BD. GR insensi-
tivity was reported in BD,105 and mifepristone (GR
antagonist) treatment for 1 week improves spatial work-
ing memory performance in BD.106 In addition, a very
recent study showed that adult males with BD display
elevated plasma 3-HK/KYNA ratio, which is significantly
associated with poorer declarative memory perfor-
mances.107 Given the role that inflammatory cytokines
play in the regulation of the IDO pathway, inflammation
may dysregulate this pathway, leading to an imbalance
between neuroprotective and neurotoxic metabolites and
to a subsequent cognitive impairment in BD patients.
Finally, it is worth mentioning that peripheral BDNF
levels, which can also be regulated by inflammation,
predict cognitive function in BD. Moreover, the BDNF
val66met polymorphism could be a risk factor for
cognitive impairment in this disease,96 further reinfor-
cing the possible role of BDNF in mediating the effects of
inflammation on cognition in BD.

Inflammation and cognition in schizophrenia

Inflammation has also been extensively reported to be a
potential player in the etiology and pathophysiology of
SCZ. Epidemiological studies have reported elevated risk
of schizophrenia following prenatal or childhood expo-
sure to infection. Infection then mediates peripheral and
central inflammatory responses which in turn alter brain
development (for a review, see Meyer108). Similarly to

what has been reported in other psychiatric conditions,
cognitive impairments associated with schizophrenia are
correlated with raised peripheral inflammation. A recent
systemic review conducted on SCZ patients reported an
association between plasma CRP levels and worse
cognitive performance including in the domains of
attention, memory, and learning abilities.109 Similarly,
significant negative associations have been reported
between general cognitive function and serum IL-6,
sTNF-R1, and IL-1ra levels,98,110 and elevated periph-
eral IL-1β mRNA levels are associated with both
impairments in verbal fluency and brain volume reduc-
tion in a subgroup of patients with SCZ.111 It is
noteworthy that an association has also been reported
between cognitive impairments and anti-inflammatory
cytokines in SCZ, since serum IL-10 levels negatively
correlate with cognitive factor (made up of 3 items of the
Positive and Negative Syndrome Scale).112,113 Particu-
larly, patients who carry the AA allele of the IL10-592
A/C polymorphism perform worse in attention, suggest-
ing that this IL-10 allele could contribute to cognitive
impairments in SCZ.112 Moreover, inflammatory path-
ways are enriched in mutations associated with cognitive
impairments in SCZ patients.114 In addition to these
studies showing association between inflammation and
cognition in SCZ, Müller et al115 reported that decreas-
ing inflammation through anti-inflammatory add-on to
risperidone treatment for 5 weeks trends to improve
cognition factor in SCZ patients (F1,47= 3.64; p=0.06).

A longitudinal, double-blind, randomized, placebo-
controlled study showed that minocycline add-on to
atypical antipsychotic treatment has a beneficial effect on
executive functioning (such as working memory, cogni-
tive shifting, and cognitive planning), suggesting that
inhibiting microglia activation in patients with SCZ
could be a strategy to decrease SCZ-associated cognitive
impairments.116 This is in agreement with the microglia
hypothesis of SCZ, which states that the neuropathology
of SCZ is closely associated with elevated microglia
activation.117,118 Indeed, inflammatory cytokines and
free radicals produced by activated microglia in animal
models of SCZ lead to decreased neurogenesis, white
matter abnormalities, and neuronal degeneration, which
may participate in the pathophysiology of the disease.

Similarly to what has been suggested for MDD and
BD, inflammation-mediated kynurenine pathway dys-
functions could also participate in cognitive alterations
in SCZ, since patients display raised levels of KYNA in
the CSF.119 This effect could be mediated by changes in
glutamatergic neurotransmission. Müller120 suggested
that elevated inflammation in SCZ may promote the
production of the NMDA antagonist KYNA, therefore
resulting in a glutamatergic imbalance. The glutamate
hypothesis of SCZ suggests that a deficit in glutamatergic
transmission in the brain of SCZ patients may lead to
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dopaminergic system dysfunction, which may in turn
exacerbate glutamatergic transmission impairments,
eventually leading to psychotic and cognitive symp-
toms.120 Decreased glutamatergic neurotransmission
may be associated with alterations in synaptic vesicles
transportation, which is linked to IL-10 levels in the
brain of SCZ patients.112

Inflammation and cognition in PTSD

Currently, the link between inflammatory processes and
cognitive impairments remains understudied in the
context of PTSD. However, a few recent studies reported
elevated levels of inflammatory markers (such as CRP,
TNF-α, IL-6, and IL-1β) in the plasma of individuals with
a diagnosis of PTSD.121–123 In a rat model of PTSD,
chronic consumption of curcumin, a component with
anti-inflammatory properties, impairs the consolidation
and reconsolidation of fear memories, suggesting a
possible role for inflammation in memory processes.124

Interestingly, plasma levels of sTNF-RII are associated
with reduced hippocampal volume in Gulf War veterans
with current and past PTSD.125 Hence, one can
hypothesize that inflammation could impair cognition
by reducing hippocampal volume via its deleterious

effect on neurogenesis or HPA axis activation.126 In
agreement with this last assumption, the GC receptor
antagonist mifepristone improves cognition in Gulf War
veterans with PTSD.127

Future Directions

Anti-inflammatory strategies to improve cognition across
psychiatric conditions

The redundant association between inflammatory altera-
tions and cognitive processes across psychiatric disor-
ders suggests that deconstructing psychiatric disorders
to account for the heterogeneity across individuals and
consider patients’ endophenotypes may be promising in
the development of novel strategies in the management
of cognitive alterations in psychiatry. A cross-disorder
approach is in agreement with the Research Domain
Criteria (RDoC) initiative led by the National Institute of
Mental Health (NIH), which is aimed at developing new
ways of classifying mental disorders based on dimensions
of both observable behavior and neurobiological mea-
sures, in order to develop new and individualized
treatments. The evidence reviewed here suggests that
the use of anti-inflammatory strategies as adjunctive

FIGURE 2. Role of neuroinflammation in the cognitive alterations and disease outcomes across psychiatric conditions. The detection of damage-associated
molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) by the immune system following psychological stress, infections or injury
induces a switch of the microglia phenotype from a quiescent M2 phenotype to an activated or reactive M1 phenotype. As described in Figure 1, this induces
neuroinflammation, therefore dysregulating neurobiological processes underlying cognition. The cognitive alterations resulting from this inflammatory state are
redundant across psychiatric conditions and encompass impaired episodic memory, processing speed, social cognition, fear-extinction learning, attention,
executive function, and declarative learning and memory. Importantly, this common pattern of cognitive alterations in psychiatric disorders increases the
severity of symptoms, decreases the quality of life and workplace and psychosocial functioning of patients, has a negative effect on remission and recovery
processes, and increases the risk of relapse.
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therapies across diagnoses could improve the manage-
ment of cognitive impairments in psychiatry.

Pharmacological approaches

Nonsteroidal anti-inflammatory drugs (NSAIDs) such as
celecoxib (COX-2 inhibitor) are widely used in the
treatment of inflammatory conditions (eg, arthritis,
multiple sclerosis). In the last decades, they have also
been used as effective additional therapies to antidepres-
sant and antipsychotic treatments across psychiatric
conditions.128–130 However, only a few preliminary data
suggest a possible enhancing effect of the anti-
inflammatory medication celecoxib on cognition in
psychiatric disorders.88,115 Interestingly, NSAIDs were
shown to improve memory in mouse models of neuro-
toxicity131 and Parkinson’s disease,132 suggesting that
their impact on cognition across psychiatric conditions
requires further examination.

Nutritional interventions

Numerous research efforts have reported a beneficial
effect of nutrients such as n-3 polyunsaturated fatty acids
(n-3 PUFAs) and flavonoids on inflammatory processes
underlying cognitive dysfunctions.133 Indeed, these
nutrients and their metabolites have been extensively
described to potently reduce microglia activation and
cytokine production in inflammatory conditions and
improve associated alterations in HPA axis activation,
synaptic plasticity, and BDNF production.133–136 It is
noteworthy that polyphenols (such as flavonoids) and n-3
PUFAs can alleviate cognitive impairments in
inflammation-associated conditions such as aging and
disorders such as Parkinson’s disease and Alzheimer’s
disease.133,137 There is also evidence that they have a
beneficial effect on psychiatric disorders,128 although it
is unclear whether those cognitive improvements are
mediated by inflammatory changes.

Physical activity

Physical activity has been reported to decrease inflam-
mation in both preclinical and clinical models of
psychiatric conditions such as MDD.138,139 In rodents,
exercise does not only enhance anti-inflammatory
processes at the cellular level, by changing microglial
phenotype, but also at the molecular level by increasing
the production of anti-inflammatory cytokines in the
brain.138 This anti-inflammatory effect of exercise
positively influences the activity of the HPA axis as well
as neuronal proliferation, neurotrophic factor levels, and
the activation of the kynurenine pathway,138 which
suggests that it could positively impact cognition across
psychiatric conditions. In agreement with this

hypothesis, moderate physical activity has a beneficial
effect on cognition in patients with psychiatric
conditions.140–142

Conclusion

The numerous cognitive impairments across major
psychiatric disorders highlight a strong need for con-
sideration since they not only affect the quality of life but
also the treatment and recovery of patients. However, the
mechanisms underlying these deficits are still under-
studied and must be addressed to allow a better manage-
ment of the disorders. The common pattern of cognitive
impairments across psychiatric conditions suggests
shared mechanisms potentially leading to their causa-
tion. As described in this review, inflammation could be a
shared mechanism underlying the development of
cognitive impairments in MDD, BD, SCZ, and PTSD.
Indeed, raised inflammatory processes (ie, activated
microglia and elevated levels of inflammatory cytokines)
can disrupt neurobiological mechanisms regulating
cognitive processes (see Figure 2). However, although
most studies report associations or correlations between
inflammatory biomarkers, cognitive-related biological
mechanisms, and cognitive performance, causal evi-
dence is still strongly lacking. Few studies have evaluated
the role of inflammation in cognitive alterations in other
psychiatric conditions such as autism or attention deficit
hyperactivity disorder, but one may hypothesize that the
underlying mechanisms could be similar given the shared
pattern of cognitive alteration across psychiatric
conditions.1
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