SOME FINITENESS CONDITIONS FOR ORTHOMODULAR LATTICES

GÜNTER BRUNS AND RICHARD GREECHIE

Throughout this paper L will be an orthomodular lattice and $\mathfrak{H}(L)$ the set of all maximal Boolean subalgebras, also called blocks [4], of L. For every $x \in L, C(x)$ will be the set of all elements of L which commute with x. Let $n \geqq 1$ be a natural number. In this paper we consider the following conditions for L :
$A_{n}: L$ has at most n blocks,
B_{n} : there exists a covering of L by at most n blocks,
C_{n} : the set $\{C(x) \mid x \in L\}$ has at most n elements,
D_{n} : out of any $n+1$ elements of L at least two commute.
We also consider quantified versions of these statements, namely the statements A, B, C, D defined by: $A \Leftrightarrow \exists n A_{n}, B \Leftrightarrow \exists n B_{n}, C \Leftrightarrow \exists n C_{n}$ and $D \Leftrightarrow \exists n D_{n}$. Thus A is the statement that L has only finitely many blocks, B is the statement that L can be covered by finitely many blocks etc.

It is our conjecture that the conditions A, B, C, D are pairwise equivalent but we have not been able to prove this completely. We have, indeed, the stronger conjecture that they imply each other "uniformly" in the following sense: If X and Y stand for two of A, B, C, D then for every natural number n there exists a natural number m such that every L satisfying X_{n} also satisfies Y_{m}. We prove in this paper that the conditions A and C and the conditions B and D are uniformly equivalent in this sense. Since A_{n} trivially implies B_{n} the only question left open is whether B implies A, uniformly or not. The only things we have been able to prove regarding this question are the implications $B_{1} \Rightarrow A_{1}, B_{2} \Rightarrow A_{2}, B_{3} \Rightarrow A_{4}$, $B_{4} \Rightarrow A_{5}$.

For general background information regarding orthomodular lattices the reader is referred to [3] and [5]. Throughout the paper we abbreviate "orthomodular lattice" as OML.

1. The equivalence of A and C. If a is an element of L then it is well known (and easy to prove) that the blocks of the subalgebra $C(a)$ are exactly those blocks of L which contain a. It follows from this that

[^0]whenever an OML L satisfies A_{n} it also satisfies C_{m} with $m=2^{n}-1$. This value of m is the smallest possible for $n=1,2$. But it follows easily from Section 6 of [2] that A_{3} implies C_{6}. Thus for $n=3$ the value $m=$ $2^{n}-1$ is not the best possible. We suspect that for higher values of n the bound can be improved considerably, but we have not been able to prove this.

To prove the converse we define for a subset M of L as usual $C(M)$ to be the set of all elements of L which commute with every element of M. We furthermore define

$$
\sigma(L)=\{C(F) \mid \emptyset \neq F \subseteq L, F \text { finite }\}
$$

As a first step we show:
Proposition 1.1. If $|\sigma(L)| \leqq n$ then L satisfies A_{m} with $m=(n-1)$!.
Proof. We prove the cases $n=1,2$ first and the rest by induction. If $|\sigma(L)|=1$ then $C(x)=C(0)=L$ holds for every element x of L, hence every element of L is central, i.e., L is Boolean and satisfies A_{1}. If L has at least two blocks B_{1} and B_{2} and if $a \in B_{1}-B_{2}, b \in B_{2}-B_{1}$ then the sets $C(a), C(b)$ and $C(0)$ are all different, i.e., $|\sigma(L)| \geqq 3$. It follows that $|\sigma(L)|=2$ is impossible, which trivially proves the claim for $n=2$. Assume now $n \geqq 3$ and $|\sigma(L)| \leqq n$. Let $a_{1}, a_{2}, \ldots, a_{k}$ be non-central elements such that $C\left(a_{i}\right) \neq C\left(a_{j}\right)$ if $i \neq j$ and such that for every non-central element x of $L, C(x)$ equals one of the $C\left(a_{i}\right)$. Note that $C\left(a_{i}\right) \neq C(0)(i=1,2, \ldots, k)$ and hence that $k \leqq n-1$ holds. We show that for each of the subalgebras $C\left(a_{i}\right), \sigma\left(C\left(a_{i}\right)\right)$ is a proper subset of $\sigma(L)$. It clearly is a subset. But since $L=C(0) \in \sigma(L)$ and $L \notin \sigma\left(C\left(a_{i}\right)\right)$ it is a proper subset. By inductive hypothesis $C\left(a_{i}\right)$ has at most $(n-2)$! blocks. Now let B be an arbitrary block of L. Since we may assume that L is not Boolean the block B contains a non-central element x and hence is a block of one of the $C\left(a_{i}\right)$. It follows that L has at most $(n-1)$! blocks.

If L satisfies C_{n} then clearly $|\sigma(L)| \leqq 2^{n}-1$. From the proposition and the considerations above we thus obtain:

Theorem 1. A_{n} implies C_{m} with $m=2^{n}-1$ and C_{n} implies A_{m} with $m=\left(2^{n}-2\right)$!. In particular the conditions A and C are uniformly equivalent.

The question which is the smallest possible value of m in the implication is again open.

Since A_{n} trivially implies B_{n} we obtain from Theorem 1 in particular that C_{n} implies B_{m} with $m=\left(2^{n}-2\right)$!. The following proof, however, gives a much better bound.

Proposition 1.2. C_{1} implies B_{1} and C_{n} implies B_{n-1} but not B_{n-2} if $n \geqq 2$.

Proof. C_{1} implies A_{1} and hence B_{1} by Theorem 1. Assume now that L satisfies C_{n} with $n \geqq 2$. Define an equivalence relation \sim in L by

$$
x \sim y \Leftrightarrow C(x)=C(y)
$$

Since there are at most n sets $C(x)$ there are at most n equivalence classes. But $x \sim y$ implies that $x \in C(x)=C(y)$, hence that x commutes with y. It follows that every equivalence class is contained in a block and hence that L can be covered by n blocks. But $x \sim 0$ is equivalent with x being central. Thus the equivalence class of 0 is contained in every block. Since we may assume that there are at least two equivalence classes it follows that L can be covered by $n-1$ blocks. To see that this bound is best possible consider the OML consisting of $2 n-2$ pairwise incomparable elements and the bounds. It satisfies C_{n} but not B_{n-2}.
2. The equivalence of B and D. Clearly B_{n} implies D_{n}. To show that conversely D uniformly implies B we start out with a lemma which will turn out to be useful not only in the present context. In the proof of the following lemma and later on in this paper we will make use of the Boolean ring sum $a+b=\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right)$. This operation is, of course, not associative in an arbitrary orthomodular lattice. Whenever we use the associative law in the following we do so because the computations take place in a Boolean subalgebra of L.

Lemma 2.1. If L satisfies D_{n} and if $a_{1}, a_{2}, \ldots, a_{n}$ are pairwise not commuting elements of L then

$$
C\left(a_{1}, a_{2}, \ldots, a_{n}\right)=C(L)
$$

Proof. Clearly $C(L) \subseteq C\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. To show the inverse inclusion assume $x \in C\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Note first that, for distinct indices i and j, $a_{i}+x$ commutes with neither a_{j} nor $a_{j}+x$. In fact the relation $a_{i}+$ $x \mathrm{C} a_{j}$ would imply

$$
a_{i}=\left(a_{i}+x\right)+x \mathrm{C} a_{j},
$$

a contradiction. Similarly $a_{i}+x \mathrm{C} a_{j}+x$ would imply

$$
a_{i}+x C\left(a_{j}+x\right)+x=a_{j},
$$

which we have seen not to be the case. To show $x \in C(L)$ let y be an arbitrary element of L. We have to show that $x \mathrm{C} y$. Consider now the set $Z=\left\{z_{1}, z_{2}, \ldots, z_{n+1}\right\}$ defined by

$$
z_{i}=\left\{\begin{array}{cll}
a_{i}+x & \text { if } i \leqq n \text { and } & a_{i} C y \\
a_{i} & \text { if } i \leqq n \text { and } & a_{i} \phi_{0} y \\
y & \text { if } i=n+1 . &
\end{array}\right.
$$

Since L satisfies D_{n} at least two elements in Z commute. By what we have
shown it follows that there exists an index i with $a_{i} \mathrm{C} y$ and $a_{i}+x \mathrm{C} y$. It follows

$$
x=a_{i}+\left(a_{i}+x\right) \text { С } y,
$$

which was to be proved.
Proposition 2.2. D_{n} implies B_{n} if $1 \leqq n \leqq 3$.
Proof. D_{1} trivially implies that L is Boolean and hence satisfies B_{1}.
Assume now that L satisfies D_{2} and let a_{1}, a_{2} be non-commuting elements of L. Define

$$
A_{i}=\left\{x \in L \mid x \mathrm{C} a_{j}\right\} \quad \text { for } \quad\{i, j\}=\{1,2\} .
$$

Clearly A_{1} and A_{2} consist of pairwise commuting elements and hence the the subalgebras ΓA_{i} generated by them are Boolean. To show the claim it is obviously enough to show that every $x \in L$ belongs to one of the ΓA_{i}. This is trivially true if x commutes with exactly one of the a_{i}. Since L satisfies D_{2} the only other possibility is that x commutes with both a_{1} and a_{2}. But in this case $a_{1}+x \mathrm{C} a_{2}$ would imply

$$
a_{1}=\left(a_{1}+x\right)+x \mathrm{C} a_{2},
$$

a contradiction. We thus obtain

$$
a_{1}+x \in A_{1} \text { and } x=a_{1}+\left(a_{1}+x\right) \in \Gamma A_{1},
$$

proving the claim for $n=2$.
To prove the claim for $n=3$ is considerably more complicated. We again start out with three pairwise not commuting elements a_{1}, a_{2}, a_{3} and define

$$
A_{i}=\left\{x \in L \mid x \notin a_{j} \text { for all } j \neq i\right\} .
$$

As before, the sets A_{i} consist of pairwise commuting elements and hence the subalgebras ΓA_{i} generated by them are Boolean. We show first:

$$
\begin{equation*}
C\left(a_{1}, a_{2}, a_{3}\right) \subseteq \Gamma A_{1} \cap \Gamma A_{2} \cap \Gamma A_{3} \tag{1}
\end{equation*}
$$

By symmetry it is enough to show that $C\left(a_{1}, a_{2}, a_{3}\right) \subseteq \Gamma A_{1}$. But, as before, if $x \in C\left(a_{1}, a_{2}, a_{3}\right)$ we have $a_{1}+x \in A_{1}$ hence and $x=a_{1}+$ $\left(a_{1}+x\right) \in \Gamma A_{1}$.

To show the claim it is obviously enough to show that every $x \in L$ belongs to at least one of the ΓA_{i}. This is trivially true if x commutes with exactly one of the a_{i} and is true by (1) if it commutes with all the a_{i}. By symmetry it is thus enough to show that
(2) $C\left(a_{1}, a_{2}\right) \subseteq \Gamma A_{1} \cup \Gamma A_{2}$.

Assume $x \in C\left(a_{1}, a_{2}\right)$. We have to show that $x \in \Gamma A_{1} \cup \Gamma A_{2}$. Since by an earlier argument $a_{1}+x \not \subset a_{2}$ and $a_{2}+x \not_{0} a_{1}$ the claim follows easily
if $a_{1}+x \notin a_{3}$ or $a_{2}+x \notin a_{3}$. We may thus assume without loss of generality that
(3) $\left\{\begin{array}{l}\left(a_{1} \vee x\right) \wedge\left(a_{1}{ }^{\prime} \vee x^{\prime}\right) \mathrm{C} a_{3} \\ \left(a_{1} \vee x^{\prime}\right) \wedge\left(a_{1}^{\prime} \vee x\right) \mathrm{C} a_{3} \\ \left(a_{2} \vee x\right) \wedge\left(a_{2}^{\prime} \vee x^{\prime}\right) \mathrm{C} a_{3} \\ \left(a_{2} \vee x^{\prime}\right) \wedge\left(a_{2}{ }^{\prime} \vee x\right) \mathrm{C} a_{3}\end{array}\right.$

From (3) and the orthomodular law we obtain:

$$
\left\{\begin{array}{l}
a_{1} \vee x \mathrm{C} a_{3} \Leftrightarrow a_{1}^{\prime} \vee x^{\prime} \mathrm{C} a_{3} \tag{4}\\
a_{1} \vee x^{\prime} \mathrm{C} a_{3} \Leftrightarrow a_{1}^{\prime} \vee x \mathrm{C} a_{3} \\
a_{2} \vee x \mathrm{C} a_{3} \Leftrightarrow a_{2}^{\prime} \vee x^{\prime} \mathrm{C} a_{3} \\
a_{2} \vee x^{\prime} \mathrm{C} a_{3} \Leftrightarrow a_{2}^{\prime} \vee x \mathrm{C} a_{3}
\end{array}\right.
$$

Assume now first that at least one of $a_{1} \vee x \mathrm{C} a_{3}$ or $a_{1} \vee x^{\prime} \mathrm{C} a_{3}$ and at least one of $a_{2} \vee x \mathrm{C} a_{3}$ or $a_{2} \vee x^{\prime} \mathrm{C} a_{3}$ hold. We assume that

$$
a_{1} \vee x \mathrm{C} a_{3} \quad \text { and } \quad a_{2} \vee x \mathrm{C} a_{3} .
$$

The remaining cases follow similarly. By (4) we have

$$
\left(a_{1} \wedge a_{2}\right) \vee x \mathrm{C} a_{3} \quad \text { and } \quad\left(a_{1}^{\prime} \wedge a_{2}^{\prime}\right) \vee x^{\prime} \mathrm{C} a_{3} .
$$

Since $\left(a_{1} \wedge a_{2}\right) \vee x$ and $\left(a_{1}^{\prime} \wedge a_{2}{ }^{\prime}\right) \vee x^{\prime}$ clearly commute with a_{1} and a_{2} we obtain from (1) that $\left(a_{1} \wedge a_{2}\right) \vee x$ and $\left(a_{1}{ }^{\prime} \wedge a_{2}{ }^{\prime}\right) \vee x^{\prime}$ belong to ΓA_{1}. It follows that

$$
\begin{aligned}
& a_{1}^{\prime} \wedge x=a_{1}^{\prime} \wedge\left(\left(a_{1} \wedge a_{2}\right) \vee x\right) \in \Gamma A_{1} \text { and } \\
& a_{1} \wedge x^{\prime}=a_{1} \wedge\left(\left(a_{1}^{\prime} \wedge a_{2}^{\prime}\right) \vee x^{\prime}\right) \in \Gamma A_{1}
\end{aligned}
$$

hence that

$$
\begin{aligned}
& a_{1}+x=\left(a_{1} \wedge x^{\prime}\right) \vee\left(a^{\prime} \wedge x\right) \in \Gamma A_{1} \text { and } \\
& x=a_{1}+\left(a_{1}+x\right) \in \Gamma A_{1}
\end{aligned}
$$

We may thus assume by symmetry that none of the elements $a_{1} \vee x$, $a_{1} \vee x^{\prime}, a_{1}^{\prime} \vee x, a_{1}^{\prime} \vee x^{\prime}$ commutes with a_{3}. If $a_{1} \vee x \notin a_{2}$ we also have $a_{1}{ }^{\prime} \vee x \not \subset a_{2}$ since $a_{1}{ }^{\prime} \vee x \mathrm{C} a_{2}$ would imply

$$
a_{1}^{\prime} \wedge x^{\prime}=x^{\prime} \wedge\left(a_{1}^{\prime} \vee x\right) \mathrm{C} a_{2}
$$

and hence $a_{1} \vee x \mathrm{C} a_{2}$. It follows that $a_{1} \vee x, a_{1}{ }^{\prime} \vee x \in A_{1}$ and hence that

$$
x=\left(a_{1} \vee x\right) \wedge\left(a_{1}^{\prime} \vee x\right) \in \Gamma A_{1} .
$$

We are thus left with the case that $a_{1} \vee x \mathrm{C} a_{2}$. Since

$$
a_{1}=\left(a_{1} \vee x\right) \wedge\left(a_{1} \vee x^{\prime}\right) \notin a_{2}
$$

we then have $a_{1} \vee x^{\prime} \notin a_{2}$ and, as before, $a_{1}{ }^{\prime} \vee x^{\prime} \phi a_{2}$. It follows that
$a_{1} \vee x^{\prime}, a_{1}{ }^{\prime} \vee x^{\prime} \in A_{1}$ and that

$$
x=\left(\left(a_{1} \vee x^{\prime}\right) \wedge\left(a_{1}^{\prime} \vee x^{\prime}\right)\right)^{\prime} \in \Gamma A_{1}
$$

completing the proof.
We suspect that Proposition 2.2 is true without any restriction on the number n, but we have not been able to prove this. We establish the uniform equivalence of B and D by proving:

Theorem 2. B_{n} implies D_{n} and D_{n} implies B_{m} with $m=\frac{1}{2} n$! for $n \geqq 3$. In particular the conditions B and D are uniformly equivalent.

Proof. The first claim is obvious and has already been mentioned. We prove the second claim by induction on n. For $n=3$ the claim is contained in Proposition 2.2. Assume that $n \geqq 4$ and that L satisfies D_{n} but does not satisfy D_{n-1}. Let $a_{1}, a_{2}, \ldots, a_{n}$ be pairwise non-commuting elements of L. We claim that each of the subalgebras $C\left(a_{i}\right)$ satisfies D_{n-1}. If this was not the case there would exist n pairwise non-commuting elements $x_{1}, x_{2}, \ldots, x_{n}$ in $C\left(a_{i}\right)$. By Lemma 2.1 it would follow that

$$
a_{i} \in C\left(x_{1}, x_{2}, \ldots, x_{n}\right)=C(L)
$$

which is impossible since any two of the a_{i} do not commute. It follows by inductive hypothesis that each of the subalgebras $C\left(a_{i}\right)$ can be covered by at most $\frac{1}{2}(n-1)$! blocks. Since $L=\bigcup_{i=1}^{n} C\left(a_{i}\right)$ it follows that L can be covered by at most $\frac{1}{2} n$! blocks, completing the proof.

It is clear that the inductive argument used in the proof of Theorem 2 yields the bound $m=n$! without the elaborate considerations in the proof of Proposition 2.2. But since we feel that the suspected bound $m=n$ might be obtainable by a refinement of the arguments used in the proof of Proposition 2.2 (which we could not find) we felt justified in giving this proof.
3. The implications of B, preliminaries. As we have mentioned before, we have not been able to settle the question whether B implies A, uniformly or not. We develop in this section some preliminary material which will be helpful in the next section to prove the known implications of B_{n}.

Proposition 3.1. If $B_{1}, B_{2}, \ldots, B_{n}$ are Boolean subalgebras of an OML L, if $L=B_{1} \cup B_{2} \cup \ldots \cup B_{n}$ and if $a \in\left(B_{1} \cap B_{2} \cap \ldots \cap B_{n-1}\right)-B_{n}$ then $C(a)=B_{1} \cup B_{2} \cup \ldots \cup B_{n-1}$, and in particular $B_{1} \cup B_{2} \cup \ldots$ $\cup B_{n-1}$ is a subalgebra of L.

Proof. Clearly $B_{1} \cup B_{2} \cup \ldots \cup B_{n-1} \subseteq C(a)$. To show the converse suppose that there is an element $x \in C(a), x \in B_{n}-\left(B_{1} \cup B_{2} \cup \ldots\right.$ $\cup B_{n-1}$). Then $a+x \in B_{i}$ for some $i \leqq n-1$ would imply $x=a+$
$(a+x) \in B_{i}$, and $a+x \in B_{n}$ would imply $a=(a+x)+x \in B_{n}$, both contradictions. It follows that no such element x exists and hence that $C(a) \subseteq B_{1} \cup B_{2} \cup \ldots \cup B_{n-1}$, completing the proof.

In Section 2 of $[\mathbf{1}]$ it was shown that if there exists a finite subset F of L such that $C(F)=C(L)$ then L is the direct product of a Boolean algebra and an OML without non-trivial Boolean factors. Since B_{n} trivially implies D_{n}, Lemma 2.1 gives:

Proposition 3.2. Every OML satisfying B is the direct product of a Boolean algebra and an OML without non-trivial Boolean factor.

It is well known that a Boolean algebra is never the union of two proper subalgebras. We need here some results about the way a Boolean algebra can be represented as the union of three or four subalgebras. We say that a Boolean algebra B is the irredundant union of n subalgebras B_{1}, B_{2}, \ldots, B_{n} if and only it if is the union of all the B_{i} but is not the union of $n-1$ of them. The following proposition is probably well known.

Proposition 3.3. If a Boolean algebra B is the irredundant union of three subalgebras B_{1}, B_{2}, B_{3} and if $B_{1} \cap B_{2} \cap B_{3}=\{0,1\}$ then B is an eightelement Boolean algebra and each B_{i} is a four-element Boolean algebra.

Proof. Let $\{i, j, k\}=\{1,2,3\}$. Since $B_{i} \cap B_{j} \nsubseteq B_{k}$ would by Proposition 3.1 imply that $B=B_{i} \cup B_{j}$, which is impossible, the assumptions of 3.3 imply that

$$
B_{1} \cap B_{2}=B_{1} \cap B_{3}=B_{2} \cap B_{3}=\{0,1\}
$$

and hence that

$$
B=\left(B_{1}-\left(B_{2} \cup B_{3}\right)\right) \cup\left(B_{2}-\left(B_{1} \cup B_{3}\right)\right)
$$

Pick $x_{i} \in B_{i}-\left(B_{j} \cup B_{k}\right)$. Then $x_{1}+x_{2} \in B_{1}$ would imply

$$
x_{2}=x_{1}+\left(x_{1}+x_{2}\right) \in B_{1},
$$

a contradiction. We thus have $x_{1}+x_{2} \notin B_{1}$ and, by symmetry, also $x_{1}+x_{2} \notin B_{2}$. It follows that $x_{1}+x_{2} \in B_{3}$ and hence that $x_{1}+x_{2}+x_{3} \in$ B_{3}. By symmetry we obtain

$$
x_{1}+x_{2}+x_{3} \in B_{1} \cap B_{2} \cap B_{3}=\{0,1\}
$$

which shows that for each of the x_{i} there are at most two choices and hence proves the proposition.

Assume now for the remainder of this section that a Boolean algebra B is the irredundant union of four subalgebras $B_{1}, B_{2}, B_{3}, B_{4}$ and that $B_{1} \cap B_{2} \cap B_{3} \cap B_{4}=\{0,1\}$. We say that the decomposition of B as the union is of
first $k i n d$ if and only if there exists a three-element subset I of $\{1,2,3,4\}$ such that $B_{i} \cap B_{j} \neq\{0,1\}$ if $i, j \in I$ and $B_{i} \cap B_{j}=\{0,1\}$ if $\{i, j\} \nsubseteq I$ and $i \neq j$,
second kind if and only if exactly one of the intersections $B_{i} \cap B_{j}$ is different from $\{0,1\}$.

To simplify notation let us introduce some abbreviations. We define

$$
\begin{aligned}
& B_{i^{-}}=B_{i}-\left(B_{j} \cup B_{k} \cup B_{i}\right) \quad \text { and } \\
& B_{i j}{ }^{-}=\left(B_{i} \cap B_{j}\right)-\left(B_{k} \cup B_{i}\right) \quad \text { whenever }\{i, j, k, l\}=\{1,2,3,4\} .
\end{aligned}
$$

Proposition 3.4. Under the assumptions described the decomposition of B is either of first or of second kind. In both cases B has 2^{4} elements. In the first case each of the sets $B_{i}^{-}(1 \leqq i \leqq 4), B_{i j}^{-}(i, j \in I, i \neq j)$ has two elements. In the second case, if $B_{i} \cap B_{j} \neq\{0,1\}$ and k, l are the remaining indices, then each of the sets $B_{i j}{ }^{-}, B_{k^{-}}, B_{l^{-}}{ }^{-}$has two elements and each of the sets B_{i}^{-}, B_{j}^{-}has four elements.

Proof. Since every finitely generated Boolean algebra is finite, it is enough to prove the proposition under the assumption that B is finite. A simple counting argument then shows that not all the intersections $B_{i} \cap B_{j}$ can be equal $\{0,1\}$. It follows from Proposition 3.1 that the intersection of any three of the B_{i} equals $\{0,1\}$ and in particular that $B_{i} \cap B_{j}=\{0,1\}$ is equivalent with $B_{i j}{ }^{-}=\emptyset$. Assume now first that exactly one of the intersections $B_{i} \cap B_{j}$ is different from $\{0,1\}$, say that $B_{1} \cap B_{2} \neq\{0,1\}$ and $B_{i} \cap B_{j}=\{0,1\}$ whenever $\{i, j\} \neq\{1,2\}, i \neq j$. Pick $x \in B_{12^{-}}{ }^{-}, x_{i} \in B_{i}^{-}$. Then, as in the proof of Proposition 3.3,

$$
x+x_{3}+x_{4} \in B_{3} \cap B_{4}=\{0,1\} .
$$

It follows that for each of x, x_{3}, x_{4} there are exactly two choices and hence that

$$
\left|B_{12}-\left|=\left|B_{3}-\left|=\left|B_{4}-\right|=2 .\right.\right.\right.\right.
$$

Also, again by the same argument,

$$
x_{1}+x_{2}=\left(B_{3} \cup B_{4}\right)-\left(B_{1} \cup B_{2}\right) .
$$

It follows that B_{1}^{-}and B_{2}^{-}have at most four elements each. A simple counting argument shows that they have exactly four elements, i.e., that B has 2^{4} elements and the decomposition is of second kind.

Note next that if $B_{i} \cap B_{j} \neq\{0,1\}$ and if k, l are the remaining indices, then $B_{k} \cap B_{l}=\{0,1\}$. This follows from the fact that $B_{i} \cap B_{j} \neq\{0,1\}$ $\neq B_{k} \cap B_{l}$ would imply the existence of elements $x \in B_{i j^{-}}, y \in B_{k l^{-}}$. As in the proof of Proposition 3.1 it would follow that $x+y$ does not belong to any of the B_{i}. Using this remark and what we have already
proved we may assume by symmetry that

$$
B_{1} \cap B_{2} \neq\{0,1\} \neq B_{1} \cap B_{3}
$$

Pick $x \in B_{12^{-}}, x_{i} \in B_{i}^{-}$. Then, as before,

$$
x+x_{3}+x_{4} \in B_{3} \cap B_{4}=\{0,1\} .
$$

It follows that $\left|B_{12}-\left|=\left|B_{3}-\left|=\left|B_{4}^{-}\right|=2\right.\right.\right.\right.$ and, by symmetry, also that $\left|B_{13}-\left|=\left|B_{2}-\right|=2\right.\right.$. But

$$
2=\left|B_{3}-\left|=\left|B_{3}\right|-\left|B_{1} \cap B_{3}\right|-\left|B_{2} \cap B_{3}\right|+2\right.\right.
$$

implies because $\left|B_{1} \cap B_{3}\right|<B_{3}$ and $\left|B_{2} \cap B_{3}\right|<\left|B_{3}\right|$ that

$$
\left|B_{2} \cap B_{3}\right|=\left|B_{1} \cap B_{3}\right|=4 \quad \text { and } \quad\left|B_{23}-\right|=2
$$

This gives in particular that

$$
B_{1} \cap B_{4}=\{0,1\}
$$

But $x_{1}+x_{2} \in\left(B_{3} \cup B_{4}\right)-\left(B_{1} \cup B_{2}\right)$ implies as before that $\left|B_{1}-\right| \leqq 4$. A simple counting argument shows that $\left|B_{1}^{-}\right|=2$, that B has 2^{4} elements and that the decomposition is of first kind. This completes the proof.

It would be interesting to know whether a similar result holds for decompositions by more than four subalgebras.
4. The implications of B. The result of this section is:

Theorem 3. B_{1} implies A_{1}, B_{2} implies A_{2}, B_{3} implies A_{4} and B_{4} implies A_{5}

The first of these implications is, of course, obvious. The second implication is a consequence of the fact, mentioned in the last section, that no Boolean algebra is the union of two proper subalgebras.

Proof of $B_{3} \Rightarrow A_{4}$. By Proposition 3.2 we may assume that the OML L satisfying B_{3} has no non-trivial Boolean factor. Since, as is easily seen, the product of two OMLs with at least two blocks each can not be covered by three blocks, we may even assume that L is irreducible. Assume then that B_{1}, B_{2}, B_{3} are three blocks covering L. Since L is irreducible we have $B_{1} \cap B_{2} \cap B_{3}=\{0,1\}$. Assume now that A and B are further blocks of L. It follows from Proposition 3.3 that A and B are eight-element Boolean algebras. Clearly the atoms of A and B are also atoms of L since every element smaller than an atom of a block commutes with every element of that block. Let a_{i} be the atom of A belonging to $A \cap B_{i}$ and b_{i} be the atom of B belonging to $B \cap B_{i}$. Note that $a_{i}, b_{i} \notin B_{j}$ if $i \neq j$. The element $a_{1} \vee b_{2}$ commutes with $a_{1}, a_{2}, b_{1}, b_{2}$, hence belongs to $A \cap B$. Since
$a_{1}, b_{2}<a_{1} \vee b_{2}$ it follows that

$$
a_{1} \vee b_{2} \in\left\{a_{2}{ }^{\prime}, a_{3}^{\prime}, 1\right\} \cap\left\{b_{1}{ }^{\prime}, b_{3}{ }^{\prime}, 1\right\} \subseteq\left\{b_{3}{ }^{\prime}, 1\right\} .
$$

From this we obtain

$$
b_{1}=b_{1} \wedge\left(a_{1} \vee b_{2}\right)=a_{1} \wedge b_{1}
$$

hence, a_{1} and b_{1} being atoms, that $a_{1}=b_{1}$. By symmetry we obtain $a_{i}=$ b_{i} for all i and hence $A=B$, completing the proof.

Proof of $B_{4} \Rightarrow A_{5}$. By the same argument as in the last proof we may assume that the OML L satisfying B_{4} has no non-trivial Boolean factor. Assume now that L was the direct product of two non-Boolean OMLs L_{1} and L_{2}. If both of them have only two blocks then L has four blocks and there is nothing left to prove. Assume then that one of the factors, say L_{2}, has at least three blocks. Since $D_{2} \Rightarrow B_{2} \Rightarrow A_{2}$ it would follow that there exist three non-commuting elements b_{1}, b_{2}, b_{3} in L_{2}. Since L_{1} is not Boolean it contains two non-commuting elements a_{1}, a_{2}. But then no two of the six elements (a_{i}, b_{j}) commute, contradicting the assumption that L satisfies B_{4}. We may thus assume without loss of generality that L is irreducible.

Let $B_{1}, B_{2}, B_{3}, B_{4}$ be four blocks covering L. We then have by the irreducibility of L that $B_{1} \cap B_{2} \cap B_{3} \cap B_{4}=\{0,1\}$. Assume next that the union of three of the blocks is a subalgebra, say that $B_{1} \cup B_{2} \cup B_{3}$ is a subalgebra. Then, since no Boolean algebra is the union of two proper subalgebras, every further block of L would be contained in $B_{1} \cup B_{2} \cup$ B_{3}. Since we have already proved that B_{3} implies A_{4}, there is at most one such block and we obtain that L satisfies A_{5}. We may thus also assume that the union of no three of the blocks B_{i} is a subalgebra. By Proposition 3.1 this implies in particular that

$$
\begin{array}{r}
B_{1} \cap B_{2} \cap B_{3}=B_{1} \cap B_{2} \cap B_{4}=B_{1} \cap B_{3} \cap B_{4}=B_{2} \cap B_{3} \cap B_{4} \tag{1}\\
=\{0,1\}
\end{array}
$$

Now let B be a further block. We say that B is
of third kind if it is contained in the union of three of the B_{i},
of first kind if it is not of third kind and the decomposition $B=$ $\left(B \cap B_{1}\right) \cup\left(B \cap B_{2}\right) \cup\left(B \cap B_{3}\right) \cup\left(B \cap B_{4}\right)$ is of first kind,
of second kind if it is not of third kind and the above decomposition is of second kind.

It follows from Proposition 3.4 that every block B is of first or second or third kind. It furthermore follows that every block of first or second kind is a sixteen-element Boolean algebra and that every block of third kind is an eight-element Boolean algebra. We prove the claim now in several steps.
4.1. If B is of first kind, say $B \cap B_{1} \cap B_{2}, B \cap B_{1} \cap B_{3}$ and $B \cap B_{2} \cap$ B_{3} are different from $\{0,1\}$ and $B \cap B_{1} \cap B_{4}=B \cap B_{2} \cap B_{4}=B \cap$ $B_{3} \cap B_{4}=\{0,1\}$ then each of the unions $B \cup B_{i}(i=1,2,3)$ is a subalgebra of L.

To see this pick

$$
x_{i} \in\left(B \cap B_{j} \cap B_{k}\right)-\left(B_{i} \cup B_{4}\right),\{i, j, k\}=\{1,2,3\},
$$

and

$$
y_{i} \in\left(B \cap B_{i}\right)-\left(B_{j} \cup B_{k} \cup B_{l}\right),\{i, j, k, l\}=\{1,2,3,4\}
$$

It then follows from Proposition 3.4 that the elements x_{i}, y_{i}, their orthocomplements and 0,1 form the whole Boolean algebra B. By symmetry and duality it is enough to show that $x \in B_{1}-B$ and $y \in B-B_{1}$ imply $x \vee y \in B$; and, we may furthermore assume that y is one of the elements $x_{1}, y_{2}, y_{3}, y_{4}$. But, as is easily seen, $x \vee x_{1}$ commutes with $x_{1}, x_{2}, x_{3}, y_{1}$ and $x \vee y_{2}$ commutes with $x_{2}, x_{3}, y_{1}, y_{2}$. Since each of the subsets $\left\{x_{1}, x_{2}, x_{3}, y_{1}\right\}$, $\left\{x_{2}, x_{3}, y_{1}, y_{2}\right\}$ generates B we obtain that $x \vee x_{1}, x \vee y_{2} \in B$. By symmetry we obtain $x \vee y_{3} \in B$. Finally,

$$
x \vee y_{4} \mathrm{C} x_{2}, x_{3}, y_{1}, y_{4}
$$

which, by the same argument, gives $x \vee y_{4} \in B$, proving 4.1.
4.2. Under the assumptions of $4.1, B \cup B_{1} \cup B_{2} \cup B_{3}$ is a subalgebra of L.

We show first that $x \in B_{1}-\left(B \cup B_{2} \cup B_{3}\right), y \in B_{2}-\left(B \cup B_{1} \cup B_{3}\right)$ and $x \vee y \in B_{4}-\left(B \cup B_{1} \cup B_{2} \cup B_{3}\right)$ is impossible. With x_{i}, y_{i} having the same meaning as in the proof of 4.1 it would imply $x_{3}, y_{4} \mathrm{C} x \vee y$ and there would exist a block A containing $x_{3}, y_{4}, x \vee y$. Since $x_{3}+y_{4}, x_{3}, y_{4}$, $x \vee y$ are different elements and none is the complement of another, the block A would have sixteen elements and hence would not be of third kind. But since

$$
\begin{aligned}
& \left|\left(A \cap B_{4}\right)-\left(B_{1} \cup B_{2} \cup B_{3}\right)\right| \geqq 4 \quad \text { and } \\
& \left|\left(A \cap B_{1} \cap B_{2}\right)-\left(B_{3} \cup B_{4}\right)\right| \geqq 2
\end{aligned}
$$

it can by Proposition 3.4 not be of first or second kind. The assumptions thus lead to a contradiction. By (4.1), symmetry and duality it is thus enough to show that $x \in B_{1}-\left(B \cup B_{2} \cup B_{3}\right)$ and $y \in\left(B_{2} \cap B_{3}\right)$ imply $x \vee y \in B \cup B_{1}$. But this is trivially so since $y \in B_{2} \cap B_{3}$ implies $y \mathrm{C} x_{1}, x_{2}, x_{3}, y_{2}$, hence $y \in B$. The result thus follows from (4.1).
4.3. If L has a block B of first kind then it has no further blocks.

By symmetry we may assume that B satisfies the assumptions of 4.1 . Since $B \cap B_{i} \cap B_{j} \nsubseteq B_{k}$ whenever $\{i, j, k\}=\{1,2,3\}$ it follows from 4.2 and Proposition 3.1 that the unions $B \cup B_{i} \cup B_{j}$ are also subalgebras of L. Assume now that A is an arbitrary block different from the B_{i}. Since
$B \cup B_{1} \cup B_{2} \cup B_{3}$ is a subalgebra and

$$
A=\left(A \cap\left(B \cup B_{1} \cup B_{2} \cup B_{3}\right)\right) \cup\left(A \cap B_{4}\right)
$$

it follows that $A \subseteq B \cup B_{1} \cup B_{2} \cup B_{3}$. Since $B \cup B_{1} \cup B_{2}$ is a subalgebra it follows by the same argument that

$$
A \subseteq B \cup B_{1} \cup B_{2}
$$

Repeating the same argument twice again we obtain $A \subseteq B$ and hence $A=B$.

4.4. L has at most one block of third kind.

Assume first that there were blocks A, B of third kind, both contained in the union of the same three B_{i}, say $A, B \subseteq B_{1} \cup B_{2} \cup B_{3}$. It follows by the same argument as in the proof that B_{3} implies A_{4} that $A=B$. By symmetry we may thus assume that

$$
A \subseteq B_{1} \cup B_{2} \cup B_{3} \quad \text { and } \quad B \subseteq B_{2} \cup B_{3} \cup B_{4}
$$

By what we have shown A and B are eight-element Boolean algebras and there exist atoms

$$
\begin{aligned}
& p_{i} \in\left(A \cap B_{i}\right)-\left(B_{j} \cup B_{k}\right),\{j, i, k\}=\{1,2,3\}, \quad \text { and } \\
& q_{i} \in\left(B \cap B_{i}\right)-\left(B_{j} \cup B_{k}\right),\{i, j, k\}=\{2,3,4\} .
\end{aligned}
$$

As before $p_{2} \vee q_{3}$ commutes with $p_{2}, p_{3}, q_{2}, q_{3}$, hence belongs to $A \cap B$. Since $p_{2}, q_{3}<p_{2} \vee q_{3}$ it follows that

$$
p_{2} \vee q_{3} \in\left\{p_{1}^{\prime}, p_{3}^{\prime}, 1\right\} \cap\left\{q_{2}^{\prime}, q_{4}^{\prime}, 1\right\} \subseteq\left\{p_{1}^{\prime}, 1\right\} .
$$

This implies that

$$
p_{3}=p_{3} \wedge\left(p_{2} \vee q_{3}\right)=p_{3} \wedge q_{3},
$$

hence $p_{3}=q_{3}$. By symmetry we obtain $p_{2}=q_{2}$ hence $A=B$.
4.5. If A, B are blocks of second kind and if $A \cap B_{1} \cap B_{2} \neq\{0,1\}$ $\neq B \cap B_{1} \cap B_{2}$, then $A=B$.
Choose

$$
\begin{aligned}
& x \in\left(B \cap B_{1} \cap B_{2}\right)-\left(B_{3} \cup B_{4}\right), \\
& y \in\left(A \cap B_{1} \cap B_{2}\right)-\left(B_{3} \cup B_{4}\right), \\
& x_{i} \in\left(B \cap B_{i}\right)-\left(B_{j} \cup B_{k} \cup B_{i}\right), \\
& y_{i} \in\left(A \cap B_{i}\right)-\left(B_{j} \cup B_{k} \cup B_{i}\right)
\end{aligned}
$$

for $\{i, j, k, l\}=\{1,2,3,4\}$. Since $x \mathrm{C} y, y_{1}, y_{2}$ it follows that $x \in A$ and hence that
$A \cap B_{1} \cap B_{2}=B \cap B_{1} \cap B_{2}$.

The element $x+x_{3}$ belongs to B_{4} and hence commutes with y_{4}. Since $x \in A, y_{4}$ also commutes with x and hence

$$
x_{3}=x+\left(x+x_{3}\right) \text { С } y_{4} .
$$

The element $x_{3}+y_{4}$ commutes with y_{4}, y_{3}, y (since $y \in B$) and y_{1} or y_{2} (since $x_{3}+y_{4} \in B_{1} \cup B_{2}$), hence belongs to A. It follows that

$$
x_{3}=\left(x_{3}+y_{4}\right)+y_{4} \in A
$$

and hence that

$$
A \cap B_{3}=B \cap B_{3}
$$

By symmetry we also have

$$
A \cap B_{4}=B \cap B_{4}
$$

The element $x_{2}+x_{3}+x_{4}$ commutes with y (since $y \in B$), y_{2} (since $x_{3}, x_{4} \in A$ and $x_{2}, y_{2} \in B_{2}$), y_{3} and y_{4} (since $y_{3}, y_{4} \in B$), hence belongs to A. Since also $x_{3}+x_{4} \in A$ we obtain $x_{2} \in A$ and hence

$$
A \cap B_{2}=B \cap B_{2}
$$

from which the claim follows easily.
4.6. L has at most one block of second kind.

Assume first that there were blocks A, B of second kind such that

$$
A \cap B_{1} \cap B_{2} \neq\{0,1\} \neq B \cap B_{2} \cap B_{3}
$$

Then every element $x \in A \cap B_{1} \cap B_{2}$ would commute with every element of the set $B \cap\left(B_{1} \cup B_{2}\right)$, hence would belong to B. It would follow that $A \cap B_{2} \cap B_{3} \neq\{0,1\}$, contradicting the assumption that A is of second kind. By 4.5 and symmetry it is thus enough to show that there are no blocks A, B of second kind satisfying

$$
A \cap B_{1} \cap B_{2} \neq\{0,1\} \neq B \cap B_{3} \cap B_{4}
$$

If there were such blocks pick

$$
\begin{aligned}
& x \in\left(A \cap B_{1} \cap B_{2}\right)-\left(B_{3} \cup B_{4}\right) \\
& y_{i} \in\left(B \cap B_{i}\right)-\left(B_{j} \cup B_{k} \cup B_{l}\right),\{i, j, k, l\}=\{1,2,3,4\}
\end{aligned}
$$

and

$$
y \in\left(B \cap B_{3} \cap B_{4}\right)-\left(B_{1} \cup B_{2}\right)
$$

Then x would commute with y_{1} and y_{2} and hence with $y_{1}+y_{2}$. As before $y_{1}+y_{2}+y$ equals 0 or 1 , hence

$$
y=y_{1}+y_{2} \quad \text { or } \quad y=\left(y_{1}+y_{2}\right)^{\prime} .
$$

In any case x commutes with y and there would exist a block C containing
x and y and hence satisfying

$$
C \cap B_{1} \cap B_{2} \neq\{0,1\} \neq C \cap B_{3} \cap B_{4}
$$

which, by an argument used earlier (see (1) of Section 3), is impossible. This proves 4.6.

By what we have proved so far, L can have at most six blocks and if it has six blocks it must have a block of second kind and a block of third kind. We assume for the remainder of the proof that A is a block of third kind and that B is a block of second kind. By symmetry we may assume that $A \subseteq B_{1} \cup B_{2} \cup B_{3}$ and that $p_{i} \in A \cap B_{i}(i=1,2,3)$ are the atoms of A.
4.7. It is impossible that there exist distinct indices $i, j \in\{1,2,3\}$ and distinct atoms $q_{i} \in B \cap B_{i}$ and $q_{j} \in B \cap B_{j}$.

By symmetry we may assume that $i=1$ and $j=2$. Since $p_{1}=q_{1}$ and $p_{2}=q_{2}$ would imply $A \subseteq B$ we may assume that $p_{2} \neq q_{2}$. The element $p_{1} \vee q_{2}$ commutes with p_{1} and p_{2} and hence belongs to A. If also $p_{1} \neq q_{1}$ we have

$$
p_{1}<p_{1} \vee q_{2} \leqq p_{2}^{\prime}, q_{1}{ }^{\prime},
$$

hence, since $p_{1} \vee q_{2} \in A, p_{2}{ }^{\prime}=p_{1} \vee q_{2} \leqq q_{1}{ }^{\prime}$, i.e., $p_{2}=q_{1}$, which is impossible since $p_{2} \notin B_{1}$. We may thus assume that $p_{1}=q_{1}$. Then there exists an atom $q \neq q_{1}, q_{2}$ of B such that $p_{1}, q_{2} \leqq q^{\prime}$. By the same argument as before we obtain $p_{2}{ }^{\prime}=p_{1} \vee q_{2} \leqq q^{\prime}$, hence $p_{2}=q \in B$. But $p_{1}, p_{2} \in B$ imply $A \subseteq B$, which is impossible.

No three of the atoms of B belong to the same B_{i} since this would imply that $B \subseteq B_{i}$. In view of 4.7 we may thus assume without loss of generality that two atoms of B belong to $B_{3}-\left(B_{1} \cup B_{2} \cup B_{4}\right)$ and that the remaining two atoms of B belong to $B_{4}-\left(B_{1} \cup B_{2} \cup B_{3}\right)$. It follows from Proposition 3.4 that there exists an element $x \in\left(B \cap B_{2}\right)-\left(B_{1} \cup B_{3} \cup\right.$ B_{4}). Replacing, if necessary, x by x^{\prime}, we may assume that $p_{2}<x$. Since x is neither an atom nor a co-atom there exists a co-atom $q>x$ in B and this belongs to either B_{3} or B_{4}. The chain $\left\{p_{2}, x, q\right\}$ belongs to some block C. Since $p_{2} \notin B_{1} \cup B_{3}, x \notin B_{4}$ and $q \notin B_{2}$ this block can not be one of the B_{i}. Since $x \notin A$ and $p_{2} \notin B$ it can not be A or B. We would thus obtain a seventh block of L which, as we already know, does not exist. The theorem is thus completely proved.

References

1. G. Bruns, A finiteness criterion for orthomodular lattices, Can. J. Math. 30 (1978), 315-320.
2. -_Block-finite orthomodular lattices, Can. J. Math. 31 (1979), 961-985.
3. D. J. Foulis, A note on orthomodular lattices, Portugal Math. 21 (1962), 65-72.
4. R. J. Greechie, On the structure of orthomodular lattices satisfying the chain condition, J. Combinatorial Theory 4 (1968), 210-218.
5. S. S. Holland, A Radon-Nikodym theorem for dimension lattices, Trans. AMS 108 (1963), 66-87.

McMaster University, Hamilton, Ontario;
Kansas State University, Manhattan, Kansas

[^0]: Received February 4, 1980. Both authors gratefully acknowledge financial support of this work by the Natural Sciences and Engineering Research Council of Canada. The first author also expresses thanks to the Deutsche Forschungsgemeinschaft for support while visiting at the Technische Hochschule Darmstadt.

