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SETS OF UNIQUENESS FOR THE GROUP OF INTEGERS 
OF A p-SERIES FIELD 

WILLIAM R. WADE 

§ 1. I n t r o d u c t i o n . Let G denote the group of integers of a ^-series field, 
where p is a prime ^ 2. Thus , any element x £ G can be represented as a 
sequence {xi}i=oœ with 0 ^ xt < p for each i ^ 0. Moreover, the dual group 
{ ^m}m=o°° of G can be described by the following process. If m is a non-negative 
integer with m = ]Q°=o ^ Pl,® ^ OLK < p for each &, and if x G G then 

(i) *n(x) = n*=o ****(*), 

where for each integer k ^ 0 and for each x = {xt} G G, the functions </>* are 

defined by 

(2) 4>h(x) = exp(2irixk/p). 

In the case tha t p = 2, the group G is the dyadic group introduced by Fine 
[1] and the functions {^m\m=o are the Walsh-Paley functions. A detailed 
account of these groups and basic properties can be found in [4]. 

One of these basic properties is t ha t the group G can be identified with the 
unit interval [0, 1). This is accomplished by associating with each element 
x — {%i} £ G, 0 ^ xt < p, the point x = ^Z°°=o ^ z / ^ + 1 - I t is well-known tha t 
the map x —> x takes Haar measure on G to Lebesgue measure on [0, 1). 
Moreover, if we neglect the set D, of ^-rat ionals, this map is one-to-one and 
onto. I t becomes a group homomorphism if we define the p-sum of two real 
numbers x, y Ç [0, 1) by 

x + y = XXo (x< © yi)/pi+l 

where 

x = X X o xt/p*+\ y = £ ? = o yjp^\ 

and xt © ji represents the sum of xt and y u modulo p. Abusing the notat ion 
slightly, we shall set ^m(x) = ^m(x) for x ( [0, 1) and m = 0, 1, . . . . Since 
each tym is a character on C7, we have t ha t 

(3) Vm(x + y) = *m(x)*m(y), 

for x, y G [0, 1) and m = 0, 1, . . . . 
Define the p-sum of two non-negative integers n and I as follows. If m = 
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X X o at pl and if / - X X o $iP\ with 0 g au pt < p, then 

m + I = Z?=o (a, 0 /?,)/>'. 

I t is clear from equation (1) t ha t 

(4) *m+i(x) = ^m(x)^l(x), 

for x G [0, 1) and m, / = 0, 1, . . . . We shall denote t h e p-sum of an integer / 
with itself (p — 1) times by —/. Since addition of coordinates is modulo p, we 
observe tha t 1 — 1 = 0. 

Define the p-product of a non-negative integer m = E^=o akp
k with a real 

number x (which either belongs to [0, 1) or to the set { 1 ,2 , . . .} ) by 

m o x = (a0 O x) + («ip O x) -j- (a;2^
2 o x ) + • • • , 

where the numbers apl o x are defined as follows. If x = ]F}ï=o xt/p
i+l 

belongs to the interval [0, 1), then 

where a ® x ? + ? represents the product of a with xi+i, modulo p. If x = 
E?=o /3*pz' is a non-negative integer, then 

a ^ o x - I > = o a ® / V * + ' 

where a ® @t represents the product of a with fiu modulo p. 
Let n be a fixed positive integer, and denote the set of ^-dimensional vectors 

whose coordinates are non-negative integers by In. If A = (#i, . . . , an) and 
Z> = (&i, . . . , b„) belong to V\ then define the p-dot product of A and B by 

A o B = (ai o 6i) + (^2 o 62) + . • • + (aw o bn) ; 

for x G [0, 1) define the p-scalar product of x and A by 

x o A = (a 1 o x, <72 o x, . . . , an o x) . 

A sequence { V j] j=i°° ÇZ j™ is said to be p-normal if given any non-zero vector 
A Ç /w, we have A o F ; —» + 00 , as j —> co . 

Finally, let E be a subset of the interval [0, 1) and for any character series 

5 = £ 2 . 0 a*** set 

£*(*) - E W Ï 1 <**¥*(*), x G [0, 1), TV = 1, 2, . . . . 

The set E is said to be a p-se/ 0/ uniqueness if the only character series S which 
satisfies SN(x) —> 0 as TV —> 00 , for x G [0, 1) ^E, is the zero series. T h e set E 
is said to be a pH(n)-set if there exists an open, connected set A Ç Rn and a 
p-normal sequence { Vj) of vectors in 7W such tha t for all x G £ and for all 
integers j e 1, the point x o IA, never belongs to A. For the trigonometric 
analogues of these concepts, see [6, p. 346]. 

In Section 2, we shall sketch proofs of the following two theorems. 
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T H E O R E M 1. Suppose that f is integrable on [0, 1), that Z is a countable subset 
of [0, 1), and that S = J2 ch^k is a character series which satisfies p~rnSvm(x) —>0, 
as m —•» oo , for each x G i.0, 1). If Svm{x) converges to f (x), as m —> GO , /or 
x G [0, 1) ^ Z, //&e?z 5 is /fee G-Fourier series of f, i.e., 

<ik = I f(x)^k(x)dx, for k = 0 , 1 , . . . . 
•̂  o 

T H E O R E M 2. L ^ £ £><? a subset of [0, 1). 4̂ sufficient condition that E be a 
p-set of uniqueness is the existence of a sequence of polynomials on G, say 

M*) = D i o ct<'>¥t(x) j = 1, 2, . . . . 

which vanish for i f £ ~ Zj , where Z} is a countable set (j= 1 , 2 , . . . ) , and 
whose coefficients satisfy three properties: 

(3) £ k o k * < » | ^ C < o o j = 1 , 2 , . . . . 

(4) |c»<'>| ^ ^ > 0 j = 1, 2, 

(5) l i m ^ c ^ > = 0 * = 1, 2, 

In both cases, the proofs we outline follow closely those given earlier in the 
Walsh-Paley case. For Theorem 1, see [2] ; for Theorem 2, see [3]. 

In Section 3, we shall apply these results to prove the following theorem. 

T H E O R E M 3. Let E be a subset of [0, 1). If E is countable or if E is a pH{n)-set, 
then E is a p-set of uniqueness. 

In Section 4 we shall discuss specific examples of 2H ( 1 )-sets, thereby providing 
the first new perfect sets of uniqueness for Walsh-Paley series since 1949 (see 
[3] and [5].) 

§ 2. U n i q u e n e s s a n d L o c a l i z a t i o n . For each x G [0, 1) and each non-nega
tive integer m, we define am(x) = q/pm by insisting tha t q ^ pmx < q + 1. We 
also set (3m(x) = am(x) + p~m and aj(x) = am(x) — p~m. 

Recall t ha t D represents the set of £>-rationals in the interval [0, 1). The 
following lemma is the key to the proof of Theorem 1. I t was proved in the 
special case p = 2 in [2]. By replacing each occurrence of 2m by pm, and by 
subdividing each interval into p even subintervals instead of halves, the proof 
in [2] can also be used to establish this result: 

LEMMA 1. Let G be a function defined on D which satisfies the following three 
properties: 

lim sup w ^ œ G(am'(x)) ^ G(x) x G D\ 

lim i n f , ^ [G(0m(x)) - G(am(x))] ^ 0 x G [0, 1); 

lim infm^œ pm[G((3m(x)) - G(am(x))] ^ 0 x G [0, 1) ~ Z, 

for some countable set Z. Then G is monotone decreasing on D. 
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The proof of Theorem 1 proceeds as follows: Set 

F(x) = fXf(t)dt. 
0 

and, when it exists, 

J o 

for x Ç [0, 1). Observe tha t L(x) is defined for each x ^ D. In fact, since 
each character tyk is constant on any interval of the form / = [q/pm, 
(q + l)/pm) when k < pm, and satisfies JV^-( / )d t = 0 when k ^ pm, it is the 
case tha t 

(6) L(&„(*)) - £(«,*(*)) = ( M * ) " am(x))Spm(x) 

for m = 1 , 2 , . . . and x £ [0, 1). 
Apply the Vital i-Caratheôdory Theorem to F, to choose an absolutely 

continuous function </> which uniformly approximates F, and whose derivative 
is dominated b y / . Verify, using (6) and the hypotheses of Theorem 1, t ha t 
4> — L satisfies the three conditions in Lemma 1. Hence, <t> — L is monotone 
decreasing on D. Since </> approximates F, it follows tha t F — L is monotone 
decreasing on D. By symmetry, L — F is also monotone decreasing on D. 

Consequently, L(x) = J*f(t) dt for all x £ D. Now, instead of showing tha t 
L is essentially absolutely continuous, [2], verify directly t ha t 5 is the G-
Fourier series of/. Indeed, fix an integer k and choose ^-rationals am and /3m 

such tha t Vk(x) = ^ ( a w ) forx Ç [aw, /?„,), and so tha t [0, 1) = \Jm=i Wm, & J . 
Then by what we just showed, 

ri rfim 
I f(x)Vk(x)dx = S = i I f(x)^k(x)dx=. ^m=i^k(am) 

J 0 *' aO T 

X [i(/3m) - L ( o m ) ] -

However, we can choose w0 so large (see (6)) that 

L(fim) - L(am) = J S»0 (/)<*/. 

Consequently, 

I /(*)¥»(*)</* = I **(/)5»0(0^. 
•̂  o J o 

Since the functions j ^ } are orthonormal, the right hand side reduces to ak, as 
required. 

The proof of Theorem 2 in the Walsh-Paley case relies heavily on a formal 
product of polynomials with series. 
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LEMMA 2. Let \(x) = y ^ i o ck^k(x) be a polynomial on G, and let 

S(x) — XX=o ak^k(x) be a character series on G. Define a series \S by 

\S(x) = Tiï=oàk*k(x),x e [0, 1), 

whereak = y^Tio Ciak^tfor k = 0, 1, . . . . / / a k —> 0, as k—> oo , thenak —» 0 and 

(7) limm_,J\Sm(x) - X(x)Sm(x)] = 0 

uniformly on [0, 1). 

T o prove this lemma we begin with a simple observation. If k = X)7=o PjP3 

is a non-negative integer, with 0 S fij < p, and if q and TV are fixed natural 
numbers , then a necessary and sufficient condition tha t (q — \)pN ^ k < g/>A 

is t ha t 

£ ? _ £,/>> = ( 2 - DP"-

I t follows tha t if k and / are non-negative integers which satisfy / < pN and 
(q - 1) pN ^ k < qpN, then 

(8) {q - l)pN ^ k + I < qpN. 

In particular, since — I = I -\- I -j- . . . +1 ((p — 1) — te rms) , we see tha t 
k — I —> oo as k —> GO , for each integer / ^ 0. T h u s ak —> 0 as & —> oo because 
ak —> 0 as k —> oo . 

T o show tha t (7) holds, fix TV so large t ha t — / < pN for all / < No, and 
fix x e [0, 1). By (8), if / < 7V0 then 

QPN-1 qpN-l 

J2 a*-^*-z(*0 = J2 ak^k(x). 
k=0 Jc=0 

Since ^k^.i(x)^i(x) = ^k(x) for all integers k, I ^ 0, we therefore obtain the 
following ident i ty: 

\SQPN(X) = X(X)SQPN(X) 

for g = 1 , 2 , . . . . 
Let m be a positive integer. Choose a non-negative integer q which satisfies 

qpN :g m < (<?•>+ l )^ i V . By the identi ty derived in the preceeding paragraph, 
we have 

in—y m—y 

\Sm(x) - \(x)Sm(x) = XI 5 A ( x ) - X(x) X) ^ A ( x ) . 
k=qpN gpN 

In particular, 

|X5m(x) - X(x)5m(x) | g ^ { s u p t ^ ^ l S ^ I + HXlUsupfc^Arla*!}. 

Since both ak and ak tend to zero as k —> oo , we have verified (7), and thus 
have completed the proof of Lemma 2. 
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To prove Theorem 2, let S = Y, ak^k be a character series which converges 

to zero off E. Fix an integer j , and consider the product XjS. By Lemma 2, the 

assumption concerning S, and the hypothesis concerning the vanishing of X;, 

the Walsh series \jS converges to zero off the countable set Zjt Hence by 

Theorem 1, the coefficients of XjS must vanish. By writing down the explicit 

formula for those coefficients, as given by Lemma 2, we are therefore lead to 

the equation 

for k — 0, 1, . . . . By using (3), (4) and (5) to est imate this sum, for large j , 
one can easily show tha t ak = 0 for k = 0, 1, . . . . In particular, S is the zero 
series, as required. 

§ 3. A proof of t h e o r e m 3. Suppose first t ha t E is countable. Observe, since 
every ^-rational x has a p-adic expansion which terminates in zeros, t ha t 

which converges a t a ^-rational, necessarily satisfies ak —> 0 as k —> oo. I t 
follows tha t such a series also satisfies p~mSvm(x) —> 0 as m —•» oo , for each 
x £ [0, 1). Consequently, Theorem 1 proves tha t E is a p-set of uniqueness. 

Suppose tha t E is a pH{n)-set. T h a t is to say, suppose tha t there is an open, 
connected set A ÇZ Rn and a ^-normal sequence { V3\ j=iœ C In such tha t for all 
x G E and for all integers 7 ^ 1, the point x o Vj never belongs to A. For 
simplicity, we suppose tha t n = 2, and set Vj = (ajy bj) for j = 1 , 2 , . . . . We 
may suppose tha t A = Jx X J2, where each Jt is a subinterval of [0, 1) with 
p-rational endpoints, say Jt = [ah f$t). 

Denote, for i = 1 and 2, the characteristic function of the interval Jt by /x*, 
and observe tha t ^^ is a polynomial on G, say 

and 

We intend to show tha t the functions \j(x) = in(aj> ° %)v>2(bj o x), 
j = 1 , 2 , . . . , satisfy the hypotheses of Theorem 2 with respect to E, thereby 
showing tha t E is a £-set of uniqueness. Above all, we need to be sure tha t each 
\j is a polynomial. 

LEMMA 3. Suppose that m and k are non-negative integers. Then ^k(m o x) = 
*mok(x)forx Ç [0, 1). 

To verify this lemma, we begin by observing tha t by (2), and the definition 
of apl o k, the following formula subsists for x = T^Lo Xi/pi+l and for non-
negative integers N, /, and a, with 0 ^ a < p: 

4>N(apl o x) = exp (27rz'a 0 xN+1/p). 
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But exp(27ri) = 1, so we can replace the product modulo p by axN+l. Hence by 
(1), and the definition of apl o pN, we obtain 

<t>N(aplox) = tyapi0p*(x). 

Hence the lemma holds in the special case when k = pN and m = apl. In the 
case whenfe = ET-n /3^ ' 

but m = ap\ we have by (1) that 

*k{aplox) = Ylœ
i=,ct>^(apl ox). 

By the previous case, then, 
(9) *k(aplox) = n?=o *<+!"*(*). 

According to (1) and the definition of apl o &, the right hand side of (9) is 
identical to tyap

Jok(%), as required. Finally, if m = ^^oup1 then by defini
tion o f w o x and (3), we have 

^k{m ox) = tyk(a0 o x)^k(a1p o x ) . . . 

By the preceeding case, and equation (4), this leads directly to ^k{m o x) = 
^mok(x), and thus establishes the lemma. 

We are now prepared to verify that the functions \j satisfy the hypotheses 
of Theorem 2. 

For the time being, let j be fixed. Since each jx* is the characteristic function 
of J i (i = 1, 2) and since x G E implies that {cij o x, b j ox) (f J\ X J2, it is 
clear that X;- (x) = 0 for x Ç E. 

Next, by Lemma 3, we know that 

HiidjOx) = ^m^ym^ajomix) 

and 

^(bjOx) = X)t=oô^&j.oï(x), 

for x G [0, 1). Hence 

is a polynomial on G. In fact, using the notation of Theorem 2, we see that 

(10) ck<» = Zhmai: k = a, om + bjol} 

for k = 0, 1, . . . . 
Condition (3) is therefore satisfied since 

Ef -o |ct<*| ^ ££_„ |7m | • £ t „ |5,| < 00. 

To verify condition (4) for large j , which is all that is required, we set 

T = ^2{ymôt: 0 = cij o m + bû o I but \m\ + |w| ^ 0}, 

and observe that since (aj} bj) is ^-normal, the sum T is empty for large j . 
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However, by (10), c{)
U) = 7o<50 + T. Since 70 = m(J\) and <50 = w(/2) are 

both positive, we see that c{)
{j) = 7050 > 0, for large j . 

Condition (5) is similarly verified. Indeed, if k = a ; o m -\- bjOl is non

zero, then the vector (w, /) is necessarily non-zero. For such vectors (w, /), 

however, we have 

cij o m -j- ft; o / —> GO as j —> 00 . 

It follows from (10) tha t c 0 ) is identically zero, for j large. This completes the 
proof t ha t the functions \;- satisfy the hypotheses of Theorem 2, and, therefore, 
t ha t £ is a p-set of uniqueness. 

§ 4. E x a m p l e s . I t is clear (see Example 1 below) tha t the Cantor set C(l/p) 
is a pH{l)-set, and thus a p-set of uniqueness, for each prime p ^ 2. However, 
it seems difficult to decide whether C(l/q) is a pH{l)-set when p ^ q. In par
ticular, a problem open since 1949 [3] is tha t of determining whether the usual 
Cantor set C ( l / 3 ) is a set of uniqueness for Walsh-Paley series. 

We close with some examples for the case p = 2. We shall abbreviate 
"2 i / ( 1 ) - se t " by " / / - se t " . Sneider [3] has shown tha t the set C ( l / 2 ) is a set of 
uniqueness for Walsh-Paley series. Our first example shows tha t this result 
follows from Theorem 3. 

(1) Let Ci denote the set whose complement is given by the union of inter
vals of the form ( 1 / 4 , 3 / 4 ) ; ( 1 / 1 6 , 3 / 1 6 ) , ( 13 /16 ,15 /16 ) ; ( 1 / 6 4 , 3 / 6 4 ) , 
(13 /64 ,15 /64 ) , ( 49 /64 ,51 /64 ) ; ( 61 /64 ,63 /64 ) ; . . . . I t is clear tha t the 
dyadic expansion of a point in the complement of C\ consists of n pairs of O's 
of l ' s (n ^ 0) followed by a 01 or a 10. It follows tha t a necessary and sufficient 
condition for a point x = J ^ L o Xf/2i+l to belong to C\ is t ha t x2j+i = x2j 

for j = 1 , 2 , . . . . Thus , if Uj = 22i + 22i+1 for j = 0, 1, . . . , then n3 o x # 
(1/2, 1) for x G Ci and j ^ 0. In particular, C\ is an H-set. 

Minor variat ions on this technique can be used to show tha t each of the 
following sets is an / / -set . Note tha t C2 contains £\, and tha t C?, and C4 are 
unsymmetric . 

(2) C2 = {x = J2CU xt/2
j+1: for each j = 0, 1, . . . , the set {s4y+i, 

^4.4-2} contains an even (possibly 0) number of l ' s} . The complement of C2 is 
the union of intervals (1/4, 3 /4 ) ; (1/64, 3/64) , (5/64, 7 /64) , (9/64, 11/64), 
(13/64, 15/64), (49/64, 51/64) , (53/64, 55/64) , (57/64, 59/64) , (61/64, 
63 /64) ; (1/1024, 3/1024), 

(3) Cz = {x = 22^=1 Xi /2 i + 1 : for each integer j ^ 0, the set (x3.+i, 
X3.4-2, X3.+3} contains an even (possibly zero) number of l ' s} . The complement 
o f ' c 3 i s ' the union of intervals (1/8, 3 /8) , (4 /8 , 5 /8) , (7 /8 , 1); (1/64, 3 /64) , 
( 4 / 6 4 , 5 / 6 4 ) , ( 7 / 6 4 , 8 / 6 4 ) , (25 /64 ,27 /64) , (28 /64 ,29 /64) , (31 /64 ,32 /64 ) , 
(41 /64 ,43 /64) , (44/64, 45/64) , (47 /64 ,48 /64) , (49/64, 51/64) , (52/64, 
53/64) , (55/64, 5 6 / 6 4 ) ; . . . . 
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(4) CA = { 5̂ T=o xt/2
i+1: for each integer 7 ^ 0, the set {x4.+i, #4-+2, 

X4.+3, X4..+.1} always contains an odd number of l 's}. The complement of C\ is 
the union of intervals (0,1/16), (3/16,4/16), (5/16,7/16), (9/16,10/16), 
(11/16,13/16), (15/16,1); (16/256,17/256), (19/256, 20/256), (21/256, 
23/256), . . . ; 
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