# SETS OF UNIQUENESS FOR THE GROUP OF INTEGERS OF A p-SERIES FIELD 

WILLIAM R. WADE

§ 1. Introduction. Let $G$ denote the group of integers of a $p$-series field, where $p$ is a prime $\geqq 2$. Thus, any element $\bar{x} \in G$ can be represented as a sequence $\left\{x_{i}\right\}_{i=0}^{\infty}$ with $0 \leqq x_{i}<p$ for each $i \geqq 0$. Moreover, the dual group $\left\{\Psi_{m}\right\}_{m=0}^{\infty}$ of $G$ can be described by the following process. If $m$ is a non-negative integer with $m=\sum_{k=0}^{\infty} \alpha_{k} p^{k}, 0 \leqq \alpha_{k}<p$ for each $k$, and if $\bar{x} \in G$ then

$$
\begin{equation*}
\Psi_{m}(\bar{x})=\prod_{k=0}^{\infty} \phi_{k}{ }^{\alpha_{k}}(\bar{x}), \tag{1}
\end{equation*}
$$

where for each integer $k \geqq 0$ and for each $x=\left\{x_{i}\right\} \in G$, the functions $\phi_{k}$ are defined by

$$
\begin{equation*}
\phi_{k}(\bar{x})=\exp \left(2 \pi i x_{k} / p\right) . \tag{2}
\end{equation*}
$$

In the case that $p=2$, the group $G$ is the dyadic group introduced by Fine $[\mathbf{1}]$ and the functions $\left\{\Psi_{m}\right\}_{m=0}^{\infty}$ are the Walsh-Paley functions. A detailed account of these groups and basic properties can be found in [4].

One of these basic properties is that the group $G$ can be identified with the unit interval $[0,1)$. This is accomplished by associating with each element $\bar{x}=\left\{x_{i}\right\} \in G, 0 \leqq x_{i}<p$, the point $x=\sum_{i=0}^{\infty} x_{i} / p^{i+1}$. It is well-known that the map $\bar{x} \rightarrow x$ takes Haar measure on $G$ to Lebesgue measure on $[0,1)$. Moreover, if we neglect the set $D$, of $p$-rationals, this map is one-to-one and onto. It becomes a group homomorphism if we define the $p$-sum of two real numbers $x, y \in[0,1)$ by

$$
x \dot{+} y=\sum_{i=0}^{\infty}\left(x_{i} \oplus y_{i}\right) / p^{i+1}
$$

where

$$
x=\sum_{i=0}^{\infty} x_{i} / p^{i+1}, y=\sum_{i=0}^{\infty} y_{i} / p^{i+1}
$$

and $x_{i} \oplus y_{i}$ represents the sum of $x_{i}$ and $y_{i}$, modulo $p$. Abusing the notation slightly, we shall set $\Psi_{m}(x)=\Psi_{m}(\bar{x})$ for $x \in[0,1)$ and $m=0,1, \ldots$. Since each $\Psi_{m}$ is a character on $G$, we have that

$$
\begin{equation*}
\Psi_{m}(x \dot{+} y)=\Psi_{m}(x) \Psi_{m}(y), \tag{3}
\end{equation*}
$$

for $x, y \in[0,1)$ and $m=0,1, \ldots$.
Define the $p$-sum of two non-negative integers $n$ and $l$ as follows. If $m=$

Received February 6, 1978.
$\sum_{i=0}^{\infty} \alpha_{i} p^{i}$ and if $l=\sum_{i=0}^{\infty} \beta_{i} p^{i}$, with $0 \leqq \alpha_{i}, \beta_{i}<p$, then

$$
m \dot{+} l=\sum_{i=0}^{\infty}\left(\alpha_{i} \oplus \beta_{i}\right) p^{i} .
$$

It is clear from equation (1) that

$$
\begin{equation*}
\Psi_{m \dot{+}}(x)=\Psi_{m}(x) \Psi_{l}(x), \tag{4}
\end{equation*}
$$

for $x \in[0,1)$ and $m, l=0,1, \ldots$ We shall denote the $p$-sum of an integer $l$ with itself $(p-1)$ times by $-l$. Since addition of coordinates is modulo $p$, we observe that $l-l=0$.

Define the $p$-product of a non-negative integer $m=\sum_{k=0}^{\infty} \alpha_{k} p^{k}$ with a real number $x$ (which either belongs to $[0,1)$ or to the set $\{1,2, \ldots\}$ ) by

$$
m \circ x=\left(\alpha_{0} \circ x\right) \dot{+}\left(\alpha_{1} p \circ x\right) \dot{+}\left(\alpha_{2} p^{2} \circ x\right) \dot{+} \ldots,
$$

where the numbers $\alpha p^{l} \circ x$ are defined as follows. If $x=\sum_{i=0}^{\infty} x_{i} / p^{i+1}$ belongs to the interval $[0,1)$, then

$$
\alpha p^{\prime} \circ x=\sum_{i=0}^{\infty} \alpha \otimes x_{i+l} / p^{i+1}
$$

where $\alpha \otimes x_{i+l}$ represents the product of $\alpha$ with $x_{i+l}$, modulo $p$. If $x=$ $\sum_{i=0}^{\infty} \beta_{i} p^{i}$ is a non-negative integer, then

$$
\alpha p^{l} \circ x=\sum_{i=0}^{\infty} \alpha \otimes \beta_{i} p^{i+l}
$$

where $\alpha \otimes \beta_{i}$ represents the product of $\alpha$ with $\beta_{i}$, modulo $p$.
Let $n$ be a fixed positive integer, and denote the set of $n$-dimensional vectors whose coordinates are non-negative integers by $I^{n}$. If $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$ belong to $I^{n}$, then define the $p$-dot product of $A$ and $B$ by

$$
A \circ B=\left(a_{1} \circ b_{1}\right) \dot{+}\left(a_{2} \circ b_{2}\right) \dot{+} \ldots \dot{+}\left(a_{n} \circ b_{n}\right) ;
$$

for $x \in[0,1)$ define the $p$-scalar product of $x$ and $A$ by

$$
x \circ A=\left(a_{1} \circ x, a_{2} \circ x, \ldots, a_{n} \circ x\right)
$$

A sequence $\left\{V_{j}\right\}_{j=1}^{\infty} \subseteq I^{n}$ is said to be $p$-normal if given any non-zero vector $A \in I^{n}$, we have $A \circ V_{j} \rightarrow+\infty$, as $j \rightarrow \infty$.

Finally, let $E$ be a subset of the interval $[0,1)$ and for any character series $S=\sum_{k=0}^{\infty} a_{k} \Psi_{k}$ set

$$
S_{N}(x)=\sum_{k=0}^{N-1} a_{k} \Psi_{k}(x), x \in[0,1), N=1,2, \ldots
$$

The set $E$ is said to be a $p$-set of uniqueness if the only character series $S$ which satisfies $S_{N}(x) \rightarrow 0$ as $N \rightarrow \infty$, for $x \in[0,1) \sim E$, is the zero series. The set $E$ is said to be a $p H^{(n)}$-set if there exists an open, connected set $\Delta \subseteq R^{n}$ and a $p$-normal sequence $\left\{V_{j}\right\}$ of vectors in $I^{n}$ such that for all $x \in E$ and for all integers $j \geqq 1$, the point $x \circ V_{j}$ never belongs to $\Delta$. For the trigonometric analogues of these concepts, see [6, p. 346].

In Section 2, we shall sketch proofs of the following two theorems.

Theorem 1. Suppose that $f$ is integrable on $\lfloor 0,1$ ), that $Z$ is a countable subset of $\lfloor 0,1)$, and that $S=\sum a_{k} \Psi_{k}$ is a character series which satisfies $p^{-m} S_{p^{m}}(x) \rightarrow 0$, as $m \rightarrow \infty$, for each $x \in[0,1)$. If $S_{p} m(x)$ converges to $f(x)$, as $m \rightarrow \infty$, for $x \in[0,1) \sim Z$, then $S$ is the $G$-Fourier series of $f$, i.e.,

$$
a_{k}=\int_{0}^{1} f(x) \Psi_{k}(x) d x, \quad \text { for } k=0,1, \ldots
$$

Theorem 2. Let $E$ be a subset of $[0,1$ ). A sufficient condition that $E$ be a $p$-set of uniqueness is the existence of a sequence of polynomials on $G$, say

$$
\lambda_{j}(x)=\sum_{k}^{n_{j}=0} c_{k}^{(j)} \Psi_{k}(x) \quad j=1,2, \ldots
$$

which vanish for $x \in E \sim Z_{j}$, where $Z_{j}$ is a countable set $(j=1,2, \ldots)$, and whose coefficients satisfy three properties:

$$
\begin{equation*}
\sum_{k=0}^{n_{j}^{j}}\left|c_{k}^{(j)}\right| \leqq C<\infty \quad j=1,2, \ldots \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left|{c_{0}}^{(j)}\right| \geqq A>0 \quad j=1,2, \ldots \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{j \rightarrow \infty} c_{k}^{(j)}=0 \quad k=1,2, \ldots \tag{5}
\end{equation*}
$$

In both cases, the proofs we outline follow closely those given earlier in the Walsh-Paley case. For Theorem 1, see [2]; for Theorem 2, see [3].

In Section 3, we shall apply these results to prove the following theorem.
Theorem 3. Let $E$ be a subset of $[0,1)$. If $E$ is countable or if $E$ is a $p H^{(n)}$-set, then $E$ is a $p$-set of uniqueness.

In Section 4 we shall discuss specific examples of $2 \mathrm{H}^{(1)}$-sets, thereby providing the first new perfect sets of uniqueness for Walsh-Paley series since 1949 (see [3] and [5].)
§ 2. Uniqueness and Localization. For each $x \in[0,1)$ and each non-negative integer $m$, we define $\alpha_{m}(x)=q / p^{m}$ by insisting that $q \leqq p^{m} x<q+1$. We also set $\beta_{m}(x)=\alpha_{m}(x)+p^{-m}$ and $\alpha_{m}{ }^{\prime}(x)=\alpha_{m}(x)-p^{-m}$.

Recall that $D$ represents the set of $p$-rationals in the interval $[0,1)$. The following lemma is the key to the proof of Theorem 1. It was proved in the special case $p=2$ in $[\mathbf{2}]$. By replacing each occurrence of $2^{m}$ by $p^{m}$, and by subdividing each interval into $p$ even subintervals instead of halves, the proof in $[2]$ can also be used to establish this result:

Lemma 1. Let $G$ be a function defined on $D$ which satisfies the following three properiies:

$$
\begin{aligned}
& \lim \sup _{m \rightarrow \infty} G\left(\alpha_{m}{ }^{\prime}(x)\right) \geqq G(x) \quad x \in D ; \\
& \lim \inf _{m \rightarrow \infty}\left[G\left(\beta_{m}(x)\right)-G\left(\alpha_{m}(x)\right)\right] \leqq 0 \quad x \in[0,1) ; \\
& \lim \inf _{m \rightarrow \infty} p^{m}\left[G\left(\beta_{m}(x)\right)-G\left(\alpha_{m}(x)\right)\right] \leqq 0 \quad x \in[0,1) \sim Z
\end{aligned}
$$

for some countable set $Z$. Then $G$ is monotone decreasing on $D$.

The proof of Theorem 1 proceeds as follows: Set

$$
F(x)=\int_{0}^{x} f(t) d t
$$

and, when it exists,

$$
L(x)=\sum_{k=0}^{\infty} a_{k} \int_{0}^{x} \Psi_{k}(t) d t
$$

for $x \in[0,1)$. Observe that $L(x)$ is defined for each $x \in D$. In fact, since each character $\Psi_{k}$ is constant on any interval of the form $J=\left[q / p^{m}\right.$, $\left.(q+1) / p^{m}\right)$ when $k<p^{m}$, and satisfies $\int_{J} \Psi_{k}(t) \mathrm{dt} \equiv 0$ when $k \geqq p^{m}$, it is the case that

$$
\begin{equation*}
L\left(\beta_{m}(x)\right)-L\left(\alpha_{m}(x)\right)=\left(\beta_{m}(x)-\alpha_{m}(x)\right) S_{p^{m}}(x) \tag{6}
\end{equation*}
$$

for $m=1,2, \ldots$ and $x \in[0,1)$.
Apply the Vitali-Caratheódory Theorem to $F$, to choose an absolutely continuous function $\phi$ which uniformly approximates $F$, and whose derivative is dominated by $f$. Verify, using (6) and the hypotheses of Theorem 1, that $\phi-L$ satisfies the three conditions in Lemma 1 . Hence, $\phi-L$ is monotone decreasing on $D$. Since $\phi$ approximates $F$, it follows that $F-L$ is monotone decreasing on $D$. By symmetry, $L-F$ is also monotone decreasing on $D$.

Consequently, $L(x)=\int_{0}^{x} f(t) d t$ for all $x \in D$. Now, instead of showing that $L$ is essentially absolutely continuous, [2], verify directly that $S$ is the $G$ Fourier series of $f$. Indeed, fix an integer $k$ and choose $p$-rationals $\alpha_{m}$ and $\beta_{m}$ such that $\Psi_{k}(x)=\Psi_{k}\left(\alpha_{m}\right)$ for $x \in\left[\alpha_{m}, \beta_{m}\right)$, and so that $[0,1)=\bigcup_{m=1}^{M}\left[\alpha_{m}, \beta_{m}\right)$. Then by what we just showed,

$$
\begin{aligned}
\int_{0}^{1} f(x) \Psi_{k}(x) d x \equiv \sum_{m=1}^{M} \int_{\alpha_{m}}^{\beta_{m}} f(x) \Psi_{k}(x) d x \equiv \sum_{m=1}^{M} & \Psi_{k}\left(\alpha_{m}\right) \\
& \times\left[L\left(\beta_{m}\right)-L\left(\alpha_{m}\right)\right]
\end{aligned}
$$

However, we can choose $n_{0}$ so large (see (6)) that

$$
L\left(\beta_{m}\right)-L\left(\alpha_{m}\right)=\int_{\alpha_{m}}^{\beta_{m}} S_{n_{0}}(t) d t
$$

Consequently,

$$
\int_{0}^{1} f(x) \Psi_{k}(x) d x=\int_{0}^{1} \Psi_{k}(t) S_{n_{0}}(t) d t
$$

Since the functions $\left\{\Psi_{k}\right\}$ are orthonormal, the right hand side reduces to $a_{k}$, as required.

The proof of Theorem 2 in the Walsh-Paley case relies heavily on a formal product of polynomials with series.

Lemma 2. Let $\lambda(x)=\sum_{k=0}^{N} c_{k} \Psi_{k}(x)$ be a polynomial on $G$, and let $S(x)=\sum_{k=0}^{\infty} a_{k} \Psi_{k}(x)$ be a character series on $G$. Define a series $\lambda S$ by

$$
\lambda S(x)=\sum_{k=0}^{\infty} \widetilde{a}_{k} \Psi_{k}(x), x \in[0,1)
$$



$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left[\lambda S_{m}(x)-\lambda(x) S_{m}(x)\right]=0 \tag{7}
\end{equation*}
$$

uniformly on $[0,1)$.
To prove this lemma we begin with a simple observation. If $k=\sum_{j=0}^{\infty} \beta_{j} p^{j}$ is a non-negative integer, with $0 \leqq \beta_{j}<p$, and if $q$ and $N$ are fixed natural numbers, then a necessary and sufficient condition that $(q-1) p^{N} \leqq k<q p^{N}$ is that

$$
\sum_{j=n}^{\infty} \beta_{j} p^{j}=(q-1) p^{N}
$$

It follows that if $k$ and $l$ are non-negative integers which satisfy $l<p^{N}$ and $(q-1) p^{N} \leqq k<q p^{N}$, then

$$
\begin{equation*}
(q-1) p^{N} \leqq k+l<q p^{N} \tag{8}
\end{equation*}
$$

In particular, since $-l=l \dot{+} l \dot{+} \ldots \dot{+} l((p-1)-$ terms $)$, we see that $k \doteq l \rightarrow \infty$ as $k \rightarrow \infty$, for each integer $l \geqq 0$. Thus $\widetilde{a}_{k} \rightarrow 0$ as $k \rightarrow \infty$ because $a_{k} \rightarrow 0$ as $k \rightarrow \infty$.

To show that (7) holds, fix $N$ so large that $-l<p^{N}$ for all $l<N_{0}$, and fix $x \in[0,1)$. By (8), if $l<N_{0}$ then

$$
\sum_{k=0}^{q p^{N-1}} a_{k \dot{ }} \Psi_{k \dot{ }}(x)=\sum_{k=0}^{q p^{N-1}} a_{k} \Psi_{k}(x)
$$

Since $\Psi_{k \div l}(x) \Psi_{l}(x)=\Psi_{k}(x)$ for all integers $k, l \geqq 0$, we therefore obtain the following identity:

$$
\lambda S_{q p^{N}}(x)=\lambda(x) S_{q p^{N}}(x)
$$

for $q=1,2, \ldots$.
Let $m$ be a positive integer. Choose a non-negative integer $q$ which satisfies $q p^{N} \leqq m<(q-+1) p^{N}$. By the identity derived in the preceeding paragraph, we have

$$
\lambda S_{m}(x)-\lambda(x) S_{m}(x) \equiv \sum_{k=q p^{N}}^{m-1} \widetilde{a}_{k} \Psi_{k}(x)-\lambda(x) \sum_{q p^{N}}^{m-1} a_{k} \Psi_{k}(x) .
$$

In particular,

$$
\left|\lambda S_{m}(x)-\lambda(x) S_{m}(x)\right| \leqq p^{N}\left\{\sup _{k \geqq q p^{N}}\left|\widetilde{a}_{k}\right|+\|\lambda\|_{\infty} \sup _{k \geqq q p^{N}}\left|a_{k}\right|\right\} .
$$

Since both $a_{k}$ and $\widetilde{a}_{k}$ tend to zero as $k \rightarrow \infty$, we have verified (7), and thus have completed the proof of Lemma 2.

To prove Theorem 2, let $S=\sum a_{k} \Psi_{k}$ be a character series which converges to zero off $E$. Fix an integer $j$, and consider the product $\lambda_{j} S$. By Lemma 2, the assumption concerning $S$, and the hypothesis concerning the vanishing of $\lambda_{j}$, the Walsh series $\lambda_{j} S$ converges to zero off the countable set $Z_{j}$. Hence by Theorem 1, the coefficients of $\lambda_{j} S$ must vanish. By writing down the explicit formula for those coefficients, as given by Lemma 2, we are therefore lead to the equation

$$
a_{k}=\left(-1 / c_{0}{ }^{(j)}\right) \sum_{i=0}^{n_{j}} c_{l}{ }^{(j)} a_{k} \dot{ }
$$

for $k=0,1, \ldots$ By using (3), (4) and (5) to estimate this sum, for large $j$, one can easily show that $a_{k}=0$ for $k=0,1, \ldots$ In particular, $S$ is the zero series, as required.
§ 3. A proof of theorem 3. Suppose first that $E$ is countable. Observe, since every $p$-rational $x$ has a $p$-adic expansion which terminates in zeros, that

$$
S(x)=\sum_{k^{=0}}^{\infty} a_{k} \Psi_{k}(x)
$$

which converges at a $p$-rational, necessarily satisfies $a_{k} \rightarrow 0$ as $k \rightarrow \infty$. It follows that such a series also satisfies $p^{-m} S_{p^{m}}(x) \rightarrow 0$ as $m \rightarrow \infty$, for each $x \in[0,1)$. Consequently, Theorem 1 proves that $E$ is a $p$-set of uniqueness.

Suppose that $E$ is a $p H^{(n)}$-set. That is to say, suppose that there is an open, connected set $\Delta \subseteq R^{n}$ and a $p$-normal sequence $\left\{V_{j}\right\}_{j=1}^{\infty} \subseteq I^{n}$ such that for all $x \in E$ and for all integers $j \geqq 1$, the point $x \circ V_{j}$ never belongs to $\Delta$. For simplicity, we suppose that $n=2$, and set $V_{j}=\left(a_{j}, b_{j}\right)$ for $j=1,2, \ldots$ We may suppose that $\Delta=J_{1} \times J_{2}$, where each $J_{i}$ is a subinterval of $[0,1)$ with $p$-rational endpoints, say $J_{i}=\left[\alpha_{i}, \beta_{i}\right)$.

Denote, for $i=1$ and 2 , the characteristic function of the interval $J_{i}$ by $\mu_{i}$, and observe that $\mu_{i}$ is a polynomial on $G$, say

$$
\mu_{1}(x)=\sum_{m=0}^{M} \gamma_{m} \Psi_{m}(x)
$$

and

$$
\mu_{2}(x)=\sum_{l=0}^{L} \delta_{l} \Psi_{l}(x)
$$

We intend to show that the functions $\lambda_{j}(x)=\mu_{1}\left(a_{j} \circ x\right) \mu_{2}\left(b_{j} \circ x\right)$, $j=1,2, \ldots$, satisfy the hypotheses of Theorem 2 with respect to $E$, thereby showing that $E$ is a $p$-set of uniqueness. Above all, we need to be sure that each $\lambda_{j}$ is a polynomial.

Lemma 3. Suppose that $m$ and $k$ are non-negative integers. Then $\Psi_{k}(m \circ x)=$ $\Psi_{m \circ k}(x)$ for $x \in[0,1)$.

To verify this lemma, we begin by observing that by (2), and the definition of $\alpha p^{l} \circ k$, the following formula subsists for $x=\sum_{i=0}^{\infty} x_{i} / p^{i+1}$ and for nonnegative integers $N, l$, and $\alpha$, with $0 \leqq \alpha<p$ :

$$
\phi_{N}\left(\alpha p^{l} \circ x\right)=\exp \left(2 \pi i \alpha \otimes x_{N+1} / p\right) .
$$

But $\exp (2 \pi i)=1$, so we can replace the product modulo $p$ by $\alpha x_{N+l}$. Hence by (1), and the definition of $\alpha p^{l} \circ p^{N}$, we obtain

$$
\phi_{N}\left(\alpha p^{l} \circ x\right)=\Psi_{\alpha p} l_{\circ p^{N}}(x)
$$

Hence the lemma holds in the special case when $k=p^{N}$ and $m=\alpha p^{l}$. In the case when $k=\sum_{i=0}^{\infty} \beta_{i} p^{i}$ but $m=\alpha p^{l}$, we have by (1) that

$$
\Psi_{k}\left(\alpha p^{\prime} \circ x\right)=\prod_{i=0}^{\infty} \phi_{i}^{\beta_{i}}\left(\alpha p^{l} \circ x\right)
$$

By the previous case, then,

$$
\begin{equation*}
\Psi_{k}\left(\alpha p^{l} \circ x\right)=\prod_{i=0}^{\infty} \phi_{i+l}^{\alpha \beta i}(x) \tag{9}
\end{equation*}
$$

According to (1) and the definition of $\alpha p^{l} \circ k$, the right hand side of (9) is identical to $\Psi_{\alpha p} l_{0 k}(x)$, as required. Finally, if $m=\sum_{i=0}^{\infty} \alpha_{i} p^{i}$ then by definition of $m \circ x$ and (3), we have

$$
\Psi_{k}(m \circ x)=\Psi_{k}\left(\alpha_{0} \circ x\right) \Psi_{k}\left(\alpha_{1} p \circ x\right) \ldots
$$

By the preceeding case, and equation (4), this leads directly to $\Psi_{k}(m \circ x)=$ $\Psi_{m \circ k}(x)$, and thus establishes the lemma.

We are now prepared to verify that the functions $\lambda_{j}$ satisfy the hypotheses of Theorem 2.

For the time being, let $j$ be fixed. Since each $\mu_{i}$ is the characteristic function of $J_{i}(i=1,2)$ and since $x \in E$ implies that $\left(a_{j} \circ x, b_{j} \circ x\right) \nexists J_{1} \times J_{2}$, it is clear that $\lambda_{j}(x)=0$ for $x \in E$.

Next, by Lemma 3, we know that

$$
\mu_{1}\left(a_{j} \circ x\right)=\sum_{m=0}^{M} \gamma_{m} \Psi_{a_{j} \circ m}(x)
$$

and

$$
\mu_{2}\left(b_{j} \circ x\right)=\sum_{l=0}^{L} \delta_{l} \Psi_{b_{j} \circ l}(x),
$$

for $x \in[0,1)$. Hence

$$
\lambda_{j}(x) \equiv \sum_{m=0}^{M} \sum_{i=0}^{L} \gamma_{m} \delta_{l} \Psi_{a_{j} \circ m+b_{j} \circ l}(x)
$$

is a polynomial on $G$. In fact, using the notation of Theorem 2, we see that

$$
\begin{equation*}
c_{k}^{(j)}=\sum\left\{\gamma_{m} \delta_{l}: k=a_{j} \circ m+b_{j} \circ l\right\} \tag{10}
\end{equation*}
$$

for $k=0,1, \ldots$.
Condition (3) is therefore satisfied since

$$
\sum_{k=0}^{\infty}\left|c_{k}^{(j)}\right| \leqq \sum_{m=0}^{M}\left|\gamma_{m}\right| \cdot \sum_{i=0}^{L}\left|\delta_{l}\right|<\infty .
$$

To verify condition (4) for large $j$, which is all that is required, we set

$$
T=\sum\left\{\gamma_{m} \delta_{l}: 0=a_{j} \circ m \dot{+} b_{j} \circ l \text { but }|m|+|n| \neq 0\right\},
$$

and observe that since $\left(a_{j}, b_{j}\right)$ is $p$-normal, the sum $T$ is empty for large $j$.

However, by (10), $c_{0}{ }^{(j)}=\gamma_{0} \delta_{0}+T$. Since $\gamma_{0}=m\left(J_{1}\right)$ and $\delta_{0}=m\left(J_{2}\right)$ are both positive, we see that $c_{0}{ }^{(j)}=\gamma_{0} \delta_{0}>0$, for large $j$.

Condition (5) is similarly verified. Indeed, if $k=a_{j} \circ m+b_{j} \circ l$ is nonzero, then the vector $(m, l)$ is necessarily non-zero. For such vectors $(m, l)$, however, we have

$$
a_{j} \circ m \dot{+} b_{j} \circ l \rightarrow \infty \text { as } j \rightarrow \infty .
$$

It follows from (10) that $c^{(j)}$ is identically zero, for $j$ large. This completes the proof that the functions $\lambda_{j}$ satisfy the hypotheses of Theorem 2, and, therefore, that $E$ is a $p$-set of uniqueness.
§ 4. Examples. It is clear (see Example 1 below) that the Cantor set $C(1 / p)$ is a $p H^{(1)}$-set, and thus a $p$-set of uniqueness, for each prime $p \geqq 2$. However, it seems difficult to decide whether $C(1 / q)$ is a $p H^{(1)}$-set when $p \neq q$. In particular, a problem open since 1949 [3] is that of determining whether the usual Cantor set $C(1 / 3)$ is a set of uniqueness for Walsh-Paley series.
We close with some examples for the case $p=2$. We shall abbreviate " $2 H^{(1)}$-set" by " $\dot{I}$-set". Sneider $[3]$ has shown that the set $C(1 / 2)$ is a set of uniqueness for Walsh-Paley series. Our first example shows that this result follows from Theorem 3.
(1) Let $C_{1}$ denote the set whose complement is given by the union of intervals of the form $(1 / 4,3 / 4) ;(1 / 16,3 / 16),(13 / 16,15 / 16) ;(1 / 64,3 / 64)$, $(13 / 64,15 / 64),(49 / 64,51 / 64) ;(61 / 64,63 / 64) ; \ldots$. It is clear that the dyadic expansion of a point in the complement of $C_{1}$ consists of $n$ pairs of 0 's of 1 's $(n \geqq 0)$ followed by a 01 or a 10 . It follows that a necessary and sufficient condition for a point $x=\sum_{i=0}^{\infty} x_{i} / 2^{i+1}$ to belong to $C_{1}$ is that $x_{2 j+1}=x_{2 j}$ for $j=1,2, \ldots$ Thus, if $n_{j}=2^{2 j}+2^{2 j+1}$ for $j=0,1, \ldots$, then $n_{j} \circ x \notin$ $(1 / 2,1)$ for $x \in C_{1}$ and $j \geqq 0$. In particular, $C_{1}$ is an $\dot{H}$-set.

Minor variations on this technique can be used to show that each of the following sets is an $\dot{I}$-set. Note that $C_{2}$ contains $C_{1}$, and that $C_{3}$ and $C_{4}$ are unsymmetric.
(2) $C_{2}=\left\{x=\sum_{i=0}^{\infty} x_{i} / 2^{j+1}\right.$ : for each $j=0,1, \ldots$, the set $\left\{x_{4_{j}+1}\right.$, $\left.x_{4_{j}+2}\right\}$ contains an even (possibly 0 ) number of 1 's $\}$. The complement of $C_{2}$ is the union of intervals $(1 / 4,3 / 4) ;(1 / 64,3 / 64)$, $(5 / 64,7 / 64),(9 / 64,11 / 64)$, $(13 / 64,15 / 64), \quad(49 / 64,51 / 64), \quad(53 / 64,55 / 64), \quad(57 / 64,59 / 64), \quad(61 / 64$, $63 / 64)$; (1/1024, 3/1024), . . .
(3) $C_{3}=\left\{x=\sum_{i=1}^{\infty} x_{i} / 2^{i+1}\right.$ : for each integer $j \geqq 0$, the set $\left\{x_{3_{j}+1}\right.$, $\left.x_{3_{j}+2}, x_{3_{j}+3}\right\}$ contains an even (possibly zero) number of 1 's $\}$. The complement of $C_{3}$ is the union of intervals $(1 / 8,3 / 8),(4 / 8,5 / 8),(7 / 8,1) ;(1 / 64,3 / 64)$, $(4 / 64,5 / 64), \quad(7 / 64,8 / 64),(25 / 64,27 / 64),(28 / 64,29 / 64),(31 / 64,32 / 64)$, $(41 / 64,43 / 64), \quad(44 / 64,45 / 64), \quad(47 / 64,48 / 64), \quad(49 / 64,51 / 64), \quad(52 / 64$, 53/64), (55/64, 56/64) ; . . .
(4) $C_{4}=\left\{\sum_{i=0}^{\infty} x_{i} / 2^{i+1}\right.$ : for each integer $j \geqq 0$, the set $\left\{x_{i_{j}+1}, x_{i_{j}+2}\right.$, $\left.x_{4_{j}+3}, x_{4_{j}+4}\right\}$ always contains an odd number of 1 's $\}$. The complement of $C_{4}$ is the union of intervals $(0,1 / 16),(3 / 16,4 / 16),(5 / 16,7 / 16),(9 / 16,10 / 16)$, $(11 / 16,13 / 16), \quad(15 / 16,1) ;(16 / 256,17 / 256), \quad(19 / 256,20 / 256),(21 / 256$, 23/256),

## References

1. N. J. Fine, On the I'alsh functions, Trans, A. M. S. 65 (1949), 372-414.
2. R. J. Lindahl, A differentiation theorem for functions defined on the dyadic rationals, Proc. A. M. S. 30 (1971), 349-352.
3. A. Šneider, On uniqueness of expansions in Walsh functions, Mat. Sbornik N. S. 24 (1949), 379-400.
4. M. H. Taibleson, Fourier analysis on local fields (Mathematical Notes, Princeton University Press, Princeton, 1975).
5. W. R. Wade, Uniqueness and $\alpha$-capacity on the group 2 ${ }^{\omega}$, Trans. A. M. S. 208 (1975), 309-315.
6. A. Zygmund, Trigonometric series (2nd ed. Vol. I, Cambridge University Press, New York. 1959).

## The University of Tennessee, Knoxville, Tennessee

