SETS OF UNIQUENESS FOR THE GROUP OF INTEGERS OF A *p*-SERIES FIELD

WILLIAM R. WADE

§ 1. Introduction. Let G denote the group of integers of a p-series field, where p is a prime ≥ 2 . Thus, any element $\bar{x} \in G$ can be represented as a sequence $\{x_i\}_{i=0}^{\infty}$ with $0 \leq x_i < p$ for each $i \geq 0$. Moreover, the dual group $\{\Psi_m\}_{m=0}^{\infty}$ of G can be described by the following process. If m is a non-negative integer with $m = \sum_{k=0}^{\infty} \alpha_k p^k$, $0 \leq \alpha_k < p$ for each k, and if $\bar{x} \in G$ then

(1)
$$\Psi_m(\bar{x}) = \prod_{k=0}^{\infty} \phi_k^{\alpha_k}(\bar{x}),$$

where for each integer $k \ge 0$ and for each $x = \{x_i\} \in G$, the functions ϕ_k are defined by

(2)
$$\boldsymbol{\phi}_k(\bar{x}) = \exp(2\pi i x_k/p).$$

In the case that p = 2, the group G is the dyadic group introduced by Fine [1] and the functions $\{\Psi_m\}_{m=0}^{\infty}$ are the Walsh-Paley functions. A detailed account of these groups and basic properties can be found in [4].

One of these basic properties is that the group G can be identified with the unit interval [0, 1). This is accomplished by associating with each element $\bar{x} = \{x_i\} \in G, 0 \leq x_i < p$, the point $x = \sum_{i=0}^{\infty} x_i/p^{i+1}$. It is well-known that the map $\bar{x} \to x$ takes Haar measure on G to Lebesgue measure on [0, 1). Moreover, if we neglect the set D, of p-rationals, this map is one-to-one and onto. It becomes a group homomorphism if we define the p-sum of two real numbers $x, y \in [0, 1)$ by

$$x \dotplus y = \sum_{i=0}^{\infty} (x_i \oplus y_i)/p^{i+1}$$

where

$$x = \sum_{i=0}^{\infty} x_i / p^{i+1}, y = \sum_{i=0}^{\infty} y_i / p^{i+1},$$

and $x_i \oplus y_i$ represents the sum of x_i and y_i , modulo p. Abusing the notation slightly, we shall set $\Psi_m(x) = \Psi_m(\bar{x})$ for $x \in [0, 1)$ and $m = 0, 1, \ldots$. Since each Ψ_m is a character on G, we have that

(3) $\Psi_m(x + y) = \Psi_m(x)\Psi_m(y),$

for $x, y \in [0, 1)$ and m = 0, 1, ...

Define the *p*-sum of two non-negative integers n and l as follows. If m =

Received February 6, 1978.

$$\sum_{i=0}^{\infty} \alpha_i p^i \text{ and if } l = \sum_{i=0}^{\infty} \beta_i p^i, \text{ with } 0 \leq \alpha_i, \beta_i < p, \text{ then}$$
$$m \dotplus l = \sum_{i=0}^{\infty} (\alpha_i \oplus \beta_i) p^i.$$

It is clear from equation (1) that

(4)
$$\Psi_{m+l}(x) = \Psi_m(x)\Psi_l(x),$$

for $x \in [0, 1)$ and m, l = 0, 1, ... We shall denote the *p*-sum of an integer *l* with itself (p - 1) times by -l. Since addition of coordinates is modulo *p*, we observe that l - l = 0.

Define the *p*-product of a non-negative integer $m = \sum_{k=0}^{\infty} \alpha_k p^k$ with a real number x (which either belongs to [0, 1) or to the set $\{1, 2, \ldots\}$) by

$$m \circ x = (\alpha_0 \circ x) \dotplus (\alpha_1 p \circ x) \dotplus (\alpha_2 p^2 \circ x) \dotplus \dots,$$

where the numbers $\alpha p^{i} \circ x$ are defined as follows. If $x = \sum_{i=0}^{\infty} x_{i}/p^{i+1}$ belongs to the interval [0, 1), then

$$\alpha p^{l} \circ x = \sum_{i=0}^{\infty} \alpha \otimes x_{i+l} / p^{i+1},$$

where $\alpha \otimes x_{i+l}$ represents the product of α with x_{i+l} , modulo p. If $x = \sum_{i=0}^{\infty} \beta_i p^i$ is a non-negative integer, then

 $\alpha p^{l} \circ x = \sum_{i=0}^{\infty} \alpha \otimes \beta_{i} p^{i+l}$

where $\alpha \otimes \beta_i$ represents the product of α with β_i , modulo p.

Let *n* be a fixed positive integer, and denote the set of *n*-dimensional vectors whose coordinates are non-negative integers by I^n . If $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$ belong to I^n , then define the *p*-dot product of A and B by

$$A \circ B = (a_1 \circ b_1) + (a_2 \circ b_2) + \ldots + (a_n \circ b_n);$$

for $x \in [0, 1)$ define the *p*-scalar product of x and A by

 $x \circ A = (a_1 \circ x, a_2 \circ x, \ldots, a_n \circ x).$

A sequence $\{V_j\}_{j=1}^{\infty} \subseteq I^n$ is said to be *p*-normal if given any non-zero vector $A \in I^n$, we have $A \circ V_j \to +\infty$, as $j \to \infty$.

Finally, let *E* be a subset of the interval [0, 1) and for any character series $S = \sum_{k=0}^{\infty} a_k \Psi_k$ set

$$S_N(x) = \sum_{k=0}^{N-1} a_k \Psi_k(x), x \in [0, 1), N = 1, 2, \dots$$

The set *E* is said to be a *p*-set of uniqueness if the only character series *S* which satisfies $S_N(x) \to 0$ as $N \to \infty$, for $x \in [0, 1) \sim E$, is the zero series. The set *E* is said to be a $pH^{(n)}$ -set if there exists an open, connected set $\Delta \subseteq R^n$ and a *p*-normal sequence $\{V_j\}$ of vectors in I^n such that for all $x \in E$ and for all integers $j \ge 1$, the point $x \circ V_j$ never belongs to Δ . For the trigonometric analogues of these concepts, see [6, p. 346].

In Section 2, we shall sketch proofs of the following two theorems.

THEOREM 1. Suppose that f is integrable on [0, 1), that Z is a countable subset of [0, 1), and that $S = \sum a_k \Psi_k$ is a character series which satisfies $p^{-m}S_{p^m}(x) \to 0$, as $m \to \infty$, for each $x \in [0, 1)$. If $S_pm(x)$ converges to f (x), as $m \to \infty$, for $x \in [0, 1) \sim Z$, then S is the G-Fourier series of f, i.e.,

$$a_k = \int_0^1 f(x) \Psi_k(x) dx$$
, for $k = 0, 1, ...$

THEOREM 2. Let E be a subset of [0, 1). A sufficient condition that E be a p-set of uniqueness is the existence of a sequence of polynomials on G, say

$$\lambda_j(x) = \sum_{k=0}^{n_j} c_k^{(j)} \Psi_k(x) \quad j = 1, 2, \dots$$

which vanish for $x \in E \sim Z_j$, where Z_j is a countable set (j = 1, 2, ...), and whose coefficients satisfy three properties:

- (3) $\sum_{k=0}^{n_j} |c_k^{(j)}| \leq C < \infty$ $j = 1, 2, \ldots$
- (4) $|c_0^{(j)}| \ge A > 0$ $j = 1, 2, \ldots$
- (5) $\lim_{j\to\infty} c_k^{(j)} = 0$ $k = 1, 2, \ldots$

In both cases, the proofs we outline follow closely those given earlier in the Walsh-Paley case. For Theorem 1, see [2]; for Theorem 2, see [3].

In Section 3, we shall apply these results to prove the following theorem.

THEOREM 3. Let E be a subset of [0, 1). If E is countable or if E is a $pH^{(n)}$ -set, then E is a p-set of uniqueness.

In Section 4 we shall discuss specific examples of $2H^{(1)}$ -sets, thereby providing the first new perfect sets of uniqueness for Walsh-Paley series since 1949 (see [3] and [5].)

§ 2. Uniqueness and Localization. For each $x \in [0, 1)$ and each non-negative integer *m*, we define $\alpha_m(x) = q/p^m$ by insisting that $q \leq p^m x < q + 1$. We also set $\beta_m(x) = \alpha_m(x) + p^{-m}$ and $\alpha_m'(x) = \alpha_m(x) - p^{-m}$.

Recall that D represents the set of p-rationals in the interval [0, 1). The following lemma is the key to the proof of Theorem 1. It was proved in the special case p = 2 in [2]. By replacing each occurrence of 2^m by p^m , and by subdividing each interval into p even subintervals instead of halves, the proof in [2] can also be used to establish this result:

LEMMA 1. Let G be a function defined on D which satisfies the following three properties:

$$\begin{split} &\lim \sup_{m \to \infty} G(\alpha_m'(x)) \geqq G(x) \qquad x \in D; \\ &\lim \inf_{m \to \infty} \left[G(\beta_m(x)) - G(\alpha_m(x)) \right] \leqq 0 \qquad x \in [0, 1); \\ &\lim \inf_{m \to \infty} p^m [G(\beta_m(x)) - G(\alpha_m(x))] \leqq 0 \qquad x \in [0, 1) \sim Z, \end{split}$$

for some countable set Z. Then G is monotone decreasing on D.

860

The proof of Theorem 1 proceeds as follows: Set

$$F(x) = \int_0^x f(t)dt$$

and, when it exists,

$$L(x) = \sum_{k=0}^{\infty} a_k \int_0^x \Psi_k(t) dt,$$

for $x \in [0, 1)$. Observe that L(x) is defined for each $x \in D$. In fact, since each character Ψ_k is constant on any interval of the form $J = [q/p^m, (q+1)/p^m)$ when $k < p^m$, and satisfies $\int_J \Psi_k(t) dt \equiv 0$ when $k \ge p^m$, it is the case that

(6)
$$L(\beta_m(x)) - L(\alpha_m(x)) = (\beta_m(x) - \alpha_m(x))S_{p^m}(x)$$

for m = 1, 2, ... and $x \in [0, 1)$.

Apply the Vitali-Caratheódory Theorem to F, to choose an absolutely continuous function ϕ which uniformly approximates F, and whose derivative is dominated by f. Verify, using (6) and the hypotheses of Theorem 1, that $\phi - L$ satisfies the three conditions in Lemma 1. Hence, $\phi - L$ is monotone decreasing on D. Since ϕ approximates F, it follows that F - L is monotone decreasing on D. By symmetry, L - F is also monotone decreasing on D.

Consequently, $L(x) = \int_0^x f(t) dt$ for all $x \in D$. Now, instead of showing that L is essentially absolutely continuous, [2], verify directly that S is the G-Fourier series of f. Indeed, fix an integer k and choose p-rationals α_m and β_m such that $\Psi_k(x) = \Psi_k(\alpha_m)$ for $x \in [\alpha_m, \beta_m)$, and so that $[0, 1) = \bigcup_{m=1}^M [\alpha_m, \beta_m)$. Then by what we just showed,

$$\int_{0}^{1} f(x)\Psi_{k}(x)dx \equiv \sum_{m=1}^{M} \int_{\alpha_{m}}^{\beta_{m}} f(x)\Psi_{k}(x)dx \equiv \sum_{m=1}^{M} \Psi_{k}(\alpha_{m})$$
$$\times [L(\beta_{m}) - L(\alpha_{m})].$$

However, we can choose n_0 so large (see (6)) that

$$L(\beta_m) - L(\alpha_m) = \int_{\alpha_m}^{\beta_m} S_{n_0}(t) dt.$$

Consequently,

$$\int_0^1 f(\mathbf{x}) \Psi_k(\mathbf{x}) d\mathbf{x} = \int_0^1 \Psi_k(t) S_{n_0}(t) dt.$$

Since the functions $\{\Psi_k\}$ are orthonormal, the right hand side reduces to a_k , as required.

The proof of Theorem 2 in the Walsh-Paley case relies heavily on a formal product of polynomials with series.

WILLIAM R. WADE

LEMMA 2. Let $\lambda(x) = \sum_{k=0}^{N_0} c_k \Psi_k(x)$ be a polynomial on G, and let $S(x) = \sum_{k=0}^{\infty} a_k \Psi_k(x)$ be a character series on G. Define a series λS by

 $\lambda S(x) ~=~ \sum_{k=0}^\infty \widetilde{a}_k \Psi_k(x), \, x \in \, [0,\,1),$

where $\tilde{a}_k = \sum_{l=0}^{N_0} c_l a_{k+l}$ for $k = 0, 1, \dots$ If $a_k \to 0$, as $k \to \infty$, then $\tilde{a}_k \to 0$ and (7) $\lim_{m \to \infty} [\lambda S_m(x) - \lambda(x) S_m(x)] = 0$

uniformly on [0, 1).

To prove this lemma we begin with a simple observation. If $k = \sum_{j=0}^{\infty} \beta_j p^j$ is a non-negative integer, with $0 \leq \beta_j < p$, and if q and N are fixed natural numbers, then a necessary and sufficient condition that $(q-1)p^N \leq k < qp^N$ is that

$$\sum_{j=n}^{\infty}\beta_jp^j = (q-1)p^N.$$

It follows that if k and l are non-negative integers which satisfy $l < p^N$ and $(q-1) p^N \leq k < qp^N$, then

(8)
$$(q-1)p^N \leq k + l < qp^N.$$

In particular, since $\dot{l} = l + l + \dots + l$ ((p - 1) - terms), we see that $k - l \to \infty$ as $k \to \infty$, for each integer $l \ge 0$. Thus $\tilde{a}_k \to 0$ as $k \to \infty$ because $a_k \to 0$ as $k \to \infty$.

To show that (7) holds, fix N so large that $-l < p^N$ for all $l < N_0$, and fix $x \in [0, 1)$. By (8), if $l < N_0$ then

$$\sum_{k=0}^{qp^{N-1}} a_{k \div l} \Psi_{k \div l}(x) = \sum_{k=0}^{qp^{N-1}} a_k \Psi_k(x)$$

Since $\Psi_{k+l}(x)\Psi_l(x) = \Psi_k(x)$ for all integers $k, l \ge 0$, we therefore obtain the following identity:

$$\lambda S_{qpN}(x) = \lambda(x) S_{qpN}(x)$$

for q = 1, 2, ...

Let *m* be a positive integer. Choose a non-negative integer *q* which satisfies $qp^N \leq m < (q+1)p^N$. By the identity derived in the preceeding paragraph, we have

$$\lambda S_m(x) - \lambda(x) S_m(x) \equiv \sum_{k=qp^N}^{m-1} \tilde{a}_k \Psi_k(x) - \lambda(x) \sum_{qp^N}^{m-1} a_k \Psi_k(x).$$

In particular,

$$|\lambda S_m(x) - \lambda(x)S_m(x)| \leq p^N \{ \sup_{k \geq qp^N} |\tilde{a}_k| + \|\lambda\|_{\infty} \sup_{k \geq qp^N} |a_k| \}$$

Since both a_k and \tilde{a}_k tend to zero as $k \to \infty$, we have verified (7), and thus have completed the proof of Lemma 2.

862

To prove Theorem 2, let $S = \sum a_k \Psi_k$ be a character series which converges to zero off *E*. Fix an integer *j*, and consider the product $\lambda_j S$. By Lemma 2, the assumption concerning *S*, and the hypothesis concerning the vanishing of λ_j , the Walsh series $\lambda_j S$ converges to zero off the countable set Z_j . Hence by Theorem 1, the coefficients of $\lambda_j S$ must vanish. By writing down the explicit formula for those coefficients, as given by Lemma 2, we are therefore lead to the equation

$$a_k = (-1/c_0^{(j)}) \sum_{i=0}^{n_j} c_i^{(j)} a_{k+i}$$

for k = 0, 1, ..., By using (3), (4) and (5) to estimate this sum, for large j, one can easily show that $a_k = 0$ for k = 0, 1, ... In particular, S is the zero series, as required.

§ 3. A proof of theorem 3. Suppose first that E is countable. Observe, since every p-rational x has a p-adic expansion which terminates in zeros, that

$$S(x) = \sum_{k=0}^{\infty} a_k \Psi_k(x)$$

which converges at a *p*-rational, necessarily satisfies $a_k \to 0$ as $k \to \infty$. It follows that such a series also satisfies $p^{-m}S_{p^m}(x) \to 0$ as $m \to \infty$, for each $x \in [0, 1)$. Consequently, Theorem 1 proves that *E* is a *p*-set of uniqueness.

Suppose that E is a $pH^{(n)}$ -set. That is to say, suppose that there is an open, connected set $\Delta \subseteq \mathbb{R}^n$ and a p-normal sequence $\{V_j\}_{j=1}^{\infty} \subseteq I^n$ such that for all $x \in E$ and for all integers $j \ge 1$, the point $x \circ V_j$ never belongs to Δ . For simplicity, we suppose that n = 2, and set $V_j = (a_j, b_j)$ for $j = 1, 2, \ldots$. We may suppose that $\Delta = J_1 \times J_2$, where each J_i is a subinterval of [0, 1) with p-rational endpoints, say $J_i = [\alpha_i, \beta_i)$.

Denote, for i = 1 and 2, the characteristic function of the interval J_i by μ_i , and observe that μ_i is a polynomial on G, say

$$\mu_1(x) = \sum_{m=0}^M \gamma_m \Psi_m(x)$$

and

$$\mu_{2}(x) = \sum_{l=0}^{L} \delta_{l} \Psi_{l}(x).$$

We intend to show that the functions $\lambda_j(x) = \mu_1(a_j \circ x)\mu_2(b_j \circ x)$, $j = 1, 2, \ldots$, satisfy the hypotheses of Theorem 2 with respect to E, thereby showing that E is a p-set of uniqueness. Above all, we need to be sure that each λ_j is a polynomial.

LEMMA 3. Suppose that m and k are non-negative integers. Then $\Psi_k(m \circ x) = \Psi_{m \circ k}(x)$ for $x \in [0, 1)$.

To verify this lemma, we begin by observing that by (2), and the definition of $\alpha p^{l} \circ k$, the following formula subsists for $x = \sum_{i=0}^{\infty} x_{i}/p^{i+1}$ and for non-negative integers N, l, and α , with $0 \leq \alpha < p$:

$$\phi_N(\alpha p^{l} \circ x) = \exp (2\pi i \alpha \otimes x_{N+l}/p).$$

But $\exp(2\pi i) = 1$, so we can replace the product modulo p by αx_{N+l} . Hence by (1), and the definition of $\alpha p^l \circ p^N$, we obtain

 $\phi_N(\alpha p^l \circ x) = \Psi_{\alpha p} l_{\circ p^N}(x).$

Hence the lemma holds in the special case when $k = p^N$ and $m = \alpha p^i$. In the case when $k = \sum_{i=0}^{\infty} \beta_i p^i$ but $m = \alpha p^i$, we have by (1) that

$$\Psi_k(\alpha p^{l} \circ x) = \prod_{i=0}^{\infty} \phi_i^{\beta_i}(\alpha p^{l} \circ x).$$

By the previous case, then,

(9)
$$\Psi_k(\alpha p^l \circ x) = \prod_{i=0}^{\infty} \phi_{i+l}^{\alpha\beta_i}(x)$$

According to (1) and the definition of $\alpha p^i \circ k$, the right hand side of (9) is identical to $\Psi_{\alpha p} l_{\circ k}(x)$, as required. Finally, if $m = \sum_{i=0}^{\infty} \alpha_i p^i$ then by definition of $m \circ x$ and (3), we have

$$\Psi_k(m \circ x) = \Psi_k(\alpha_0 \circ x) \Psi_k(\alpha_1 p \circ x) \dots$$

By the preceeding case, and equation (4), this leads directly to $\Psi_k(m \circ x) = \Psi_{m \circ k}(x)$, and thus establishes the lemma.

We are now prepared to verify that the functions λ_j satisfy the hypotheses of Theorem 2.

For the time being, let j be fixed. Since each μ_i is the characteristic function of J_i (i = 1, 2) and since $x \in E$ implies that $(a_j \circ x, b_j \circ x) \notin J_1 \times J_2$, it is clear that λ_j (x) = 0 for $x \in E$.

Next, by Lemma 3, we know that

$$\mu_1(a_j \circ x) = \sum_{m=0}^M \gamma_m \Psi_{a_j \circ m}(x)$$

and

$$\mu_2(b_j \circ x) = \sum_{l=0}^{L} \delta_l \Psi_{b_j \circ l}(x),$$

for $x \in [0, 1)$. Hence

$$\lambda_j(x) \equiv \sum_{m=0}^M \sum_{i=0}^L \gamma_m \delta_i \Psi_{a_j \circ m + b_j \circ i}(x)$$

is a polynomial on G. In fact, using the notation of Theorem 2, we see that

(10)
$$c_k^{(j)} = \sum \{\gamma_m \delta_l : k = a_j \circ m + b_j \circ l\}$$

for k = 0, 1, ...

Condition (3) is therefore satisfied since

$$\sum_{k=0}^{\infty} |c_k^{(j)}| \leq \sum_{m=0}^{M} |\gamma_m| \cdot \sum_{i=0}^{L} |\delta_i| < \infty.$$

To verify condition (4) for large j, which is all that is required, we set

$$T = \sum \{ \gamma_m \delta_l \colon 0 = a_j \circ m + b_j \circ l \text{ but } |m| + |n| \neq 0 \},$$

and observe that since (a_j, b_j) is *p*-normal, the sum T is empty for large j.

https://doi.org/10.4153/CJM-1979-081-7 Published online by Cambridge University Press

864

However, by (10), $c_0^{(j)} = \gamma_0 \delta_0 + T$. Since $\gamma_0 = m(J_1)$ and $\delta_0 = m(J_2)$ are both positive, we see that $c_0^{(j)} = \gamma_0 \delta_0 > 0$, for large j.

Condition (5) is similarly verified. Indeed, if $k = a_j \circ m + b_j \circ l$ is non-zero, then the vector (m, l) is necessarily non-zero. For such vectors (m, l), however, we have

 $a_j \circ m \stackrel{\cdot}{+} b_j \circ l \rightarrow \infty \text{ as } j \rightarrow \infty.$

It follows from (10) that $c^{(j)}$ is identically zero, for j large. This completes the proof that the functions λ_j satisfy the hypotheses of Theorem 2, and, therefore, that E is a p-set of uniqueness.

§ 4. Examples. It is clear (see Example 1 below) that the Cantor set C(1/p) is a $pH^{(1)}$ -set, and thus a p-set of uniqueness, for each prime $p \ge 2$. However, it seems difficult to decide whether C(1/q) is a $pH^{(1)}$ -set when $p \ne q$. In particular, a problem open since 1949 [3] is that of determining whether the usual Cantor set C(1/3) is a set of uniqueness for Walsh-Paley series.

We close with some examples for the case p = 2. We shall abbreviate " $2H^{(1)}$ -set" by " \dot{H} -set". Sneider [3] has shown that the set C(1/2) is a set of uniqueness for Walsh-Paley series. Our first example shows that this result follows from Theorem 3.

(1) Let C_1 denote the set whose complement is given by the union of intervals of the form (1/4, 3/4); (1/16, 3/16), (13/16, 15/16); (1/64, 3/64), (13/64, 15/64), (49/64, 51/64); (61/64, 63/64); It is clear that the dyadic expansion of a point in the complement of C_1 consists of n pairs of 0's of 1's $(n \ge 0)$ followed by a 01 or a 10. It follows that a necessary and sufficient condition for a point $x = \sum_{i=0}^{\infty} x_i/2^{i+1}$ to belong to C_1 is that $x_{2j+1} = x_{2j}$ for $j = 1, 2, \ldots$. Thus, if $n_j = 2^{2j} + 2^{2j+1}$ for $j = 0, 1, \ldots$, then $n_j \circ x \notin (1/2, 1)$ for $x \in C_1$ and $j \ge 0$. In particular, C_1 is an \dot{H} -set.

Minor variations on this technique can be used to show that each of the following sets is an \dot{H} -set. Note that C_2 contains C_1 , and that C_3 and C_4 are unsymmetric.

(2) $C_2 = \{x = \sum_{i=0}^{\infty} x_i/2^{j+1}: \text{ for each } j = 0, 1, \ldots, \text{ the set } \{x_{4_j+1}, x_{4_j+2}\}$ contains an even (possibly 0) number of 1's}. The complement of C_2 is the union of intervals $(1/4, 3/4); (1/64, 3/64), (5/64, 7/64), (9/64, 11/64), (13/64, 15/64), (49/64, 51/64), (53/64, 55/64), (57/64, 59/64), (61/64, 63/64); (1/1024, 3/1024), \ldots$

(3) $C_3 = \{x = \sum_{i=1}^{\infty} x_i/2^{i+1}: \text{ for each integer } j \ge 0, \text{ the set } \{x_{3_j+1}, x_{3_j+2}, x_{3_j+3}\}$ contains an even (possibly zero) number of 1's}. The complement of C_3 is the union of intervals $(1/8, 3/8), (4/8, 5/8), (7/8, 1); (1/64, 3/64), (4/64, 5/64), (7/64, 8/64), (25/64, 27/64), (28/64, 29/64), (31/64, 32/64), (41/64, 43/64), (44/64, 45/64), (47/64, 48/64), (49/64, 51/64), (52/64, 53/64), (55/64, 56/64); \ldots$

WILLIAM R. WADE

(4) $C_4 = \{ \sum_{i=0}^{\infty} x_i/2^{i+1} : \text{ for each integer } j \ge 0, \text{ the set } \{x_{4_j+1}, x_{4_j+2}, x_{4_j+3}, x_{4_j+4}\} \text{ always contains an odd number of 1's}. The complement of <math>C_4$ is the union of intervals $(0, 1/16), (3/16, 4/16), (5/16, 7/16), (9/16, 10/16), (11/16, 13/16), (15/16, 1); (16/256, 17/256), (19/256, 20/256), (21/256, 23/256), \dots; \dots$

References

- 1. N. J. Fine, On the Walsh functions, Trans, A. M. S. 65 (1949), 372-414.
- R. J. Lindahl, A differentiation theorem for functions defined on the dyadic rationals, Proc. A. M. S. 30 (1971), 349–352.
- 3. A. Šneider, On uniqueness of expansions in Walsh functions, Mat. Sbornik N. S. 24 (1949), 379-400.
- 4. M. H. Taibleson, *Fourier analysis on local fields* (Mathematical Notes, Princeton University Press, Princeton, 1975).
- 5. W. R. Wade, Uniqueness and α -capacity on the group 2^{ω} , Trans. A. M. S. 208 (1975), 309–315.
- 6. A. Zygmund, *Trigonometric series* (2nd ed. Vol. I, Cambridge University Press, New York, 1959).

The University of Tennessee, Knoxville, Tennessee