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Two-point stress–strain-rate correlation structure
and non-local eddy viscosity in turbulent flows
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By analysing the Karman–Howarth equation for filtered-velocity fields in turbulent flows,
we show that the two-point correlation between the filtered strain-rate and subfilter stress
tensors plays a central role in the evolution of filtered-velocity correlation functions.
Two-point correlation-based statistical a priori tests thus enable rigorous and physically
meaningful studies of turbulence models. Using data from direct numerical simulations
of isotropic and channel flow turbulence, we show that local eddy-viscosity models fail to
exhibit the long tails observed in the real subfilter stress–strain-rate correlation functions.
Stronger non-local correlations may be achieved by defining the eddy-viscosity model
based on fractional gradients of order 0 < α < 1 (where α is the fractional gradient order)
rather than the classical gradient corresponding to α = 1. Analyses of such correlation
functions are presented for various orders of the fractional-gradient operators. It is found
that in isotropic turbulence fractional derivative order α ∼ 0.5 yields best results, while for
channel flow α ∼ 0.2 yields better results for the correlations in the streamwise direction,
even well into the core channel region. In the spanwise direction, channel flow results show
significantly more local interactions. The overall results confirm strong non-locality in the
interactions between subfilter stresses and resolved-scale fluid deformation rates, but with
non-trivial directional dependencies in non-isotropic flows. Hence, non-local operators
thus exhibit interesting modelling capabilities and potential for large-eddy simulations
although more developments are required, both on the theoretical and computational
implementation fronts.
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1. Introduction

Scale interactions in turbulent flows can be studied using the filtering approach, in which a
spatial filter separates large from small scales (Leonard 1975; Germano 1992; Pope 2000).
Such studies are of particular interest in the context of large-eddy simulations (LES) of
turbulent flows (Pope 2000; Sagaut 2001), where some but not all scales are solved for
explicitly. The effect of scales smaller than the filter size is modelled by modifying the
stress tensor in the equations. Most existing subfilter (or subgrid-scale (SGS)) models used
in practical LES today rely on the concept of eddy viscosity, which models the interaction
between small- and large-scale turbulent structures in analogy to molecular viscosity. The
subfilter-scale stress tensor is set to be proportional to the strain-rate tensor of the resolved
(filtered) motions at the same spatial position and time. While various models differ in how
the proportionality factor, the eddy viscosity, is specified (e.g. Smagorinsky (Smagorinsky
1963), dynamic Smagorinsky, (Germano et al. 1991), Vreman (Vreman, Geurts & Kuerten
1996), wall adapting local eddy-viscosity model (WALE, Nicoud & Ducros 1999)), the
approach is in essence a spatially and temporally local closure model.

In recent years, several approaches to including non-local effects for turbulent stresses
have been proposed. In the context of Reynolds averaged Navier–Stokes (RANS),
non-local models for the Reynolds stresses and scalar fluxes have been explored by
Hamba (1995, 2004, 2005), following the ideas of Kraichnan (1987), and by Nazarenko,
Kevlahan & Dubrulle (2000) in the context of rapid distortion theory. These works derived
explicit non-local in time and space expressions for the Reynolds stresses and scalar fluxes
using Green’s functions on the equations for the fluctuating velocity, then validated their
results based on a priori tests. More in general, closures with temporal memory arise
from the Mori–Zwanzig formalism (Zwanzig 2001; Li et al. 2017; Parish & Duraisamy
2017) for deriving evolution equations for the coarse-grained dynamics. Spatially non-local
expressions for the Reynolds stresses have also been obtained recently by the ‘macroscopic
forcing method’ (Shirian & Mani 2019) or by treating turbulence dissipation as caused by
singular spatio-temporal events interspersed in Euler equation evolution (Pomeau & Berre
2019).

Aiming to represent non-locality using compact representations has led to consideration
of fractional operators to represent fluxes and stress tensors. Fractional differential
operators can be roughly understood as operators that, when applied iteratively a certain
number of times, coincide with a given integer differential operator (Samko 1993; Lischke
et al. 2019). When their order is not an integer, they can be understood as an operation
lying somewhere in between differentiation and integration and they are thus inherently
non-local. Several definitions exist, each suited to different problems. Traditionally,
fractional derivatives have been used successfully to model anomalous diffusion and
complicated materials (Caputo 1967; Carpinteri & Mainardi 1997). In turbulence, the
application of non-local Levy walks to model intermittency (Shlesinger, West & Klafter
1987; Dubrulle & Laval 1998) has led to RANS models based on fractional Laplacians
(Chen 2006; Lischke et al. 2019). The RANS modelling can also be achieved via other
types of fractional operators (Egolf & Hutter 2017; Epps & Cushman-Roisin 2018). In
particular, recent developments of channel flow modelling using the Caputo derivative
(Song & Karniadakis 2018) to model the entire stress (viscous and Reynolds shear
stress) show universal behaviour of the fractional order as function of wall distance in
viscous units. For LES, a recent paper (Samiee, Akhavan-Safaei & Zayernouri 2019)
proposes to model the SGS stress tensor using fractional derivatives motivated by
considerations of non-Maxwellian (Levy-flight) equilibrium distributions of a Boltzmann
equation.
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Two-point stress–strain-rate correlation structure

Data-driven approaches have also been on the rise in many areas of science and in
turbulence in particular (Duraisamy, Iaccarino & Xiao 2019). Analysing and predicting
the performance of an SGS model a priori based on turbulence data requires careful
consideration of statistical measures of interest. It is possible to establish several statistical
necessary and sufficient conditions that a subfilter model for LES must satisfy (Meneveau
1994). These conditions arise from analysing balance equations for various statistical
properties of the flow and establishing how the subfilter stress tensor affects the statistical
property of interest. It is generally accepted that a most important statistical feature
of turbulent flow and LES is the mean kinetic energy in the resolved flow. Hence, a
particularly important necessary condition for a subfilter model states that the rate at which
a model extracts the kinetic energy from the large scales must be the same as the rate of
energy that is transferred from the large to the small scales in the exact equations. Already
Lilly (1967) proposed an energy dissipation balance condition to relate the Smagorinsky
coefficient to the Kolmogorov constant and, since then, satisfying the condition that a
subgrid model dissipate resolved kinetic energy at the correct rate lies at the heart of most
eddy-viscosity models. The rate of dissipation is a single-point statistical property.

In this work we focus on basic two-point statistical features of turbulence. Our aim
is to study non-local properties in the physics of multiscale interactions in turbulence.
G.K. Batchelor’s influential treatise ‘The Theory of Homogeneous Turbulence’ (Batchelor
1953) provides all the requisite conceptual background regarding the evolution of
two-point statistics of velocity fluctuations in homogeneous turbulence and its various
mathematical representations. Correctly capturing two-point correlations is of the utmost
importance in turbulence modelling for LES, since these correlations and the concomitant
energy spectral density describe the relative amplitudes of velocity fluctuations in the
hierarchy of resolved structures in the flow simulated using LES. Motivated by the
importance of two-point correlations, in § 2 we formulate statistical conditions that SGS
models must satisfy regarding their two-point structure. In § 3, using direct numerical
simulation (DNS) data from isotropic and channel flow turbulence, we examine such a
two-point structure and compare it with results from a canonical eddy-viscosity closure.
Then, inspired by two-point statistically necessary conditions, we propose to include
non-local effects by relying on the compact expressivity of fractional derivative operators
in the definition of the eddy-viscosity closures in § 4. Using again DNS data from
isotropic and channel flow turbulence, we evaluate how well such non-local eddy-viscosity
closures can satisfy the two-point correlation statistical conditions mentioned above, as
compared to the classical local versions § 5. No a posteriori tests (i.e. implementation as
SGS models in actual LES) are included since the closure operators proposed here are
not yet sufficiently developed or efficient for numerical implementation in simulations.
Conclusions are provided in § 6.

2. Two-point correlations of filtered-velocity fields

As summarized above, certain statistical conditions that an LES subfilter model must
satisfy can be derived by analysing the evolution equations for the different order statistics
of the fields, such as single-point moments, multi-point moments, and so on (Meneveau
1994). We review conditions based on two-point statistics as developed by Meneveau
(1994) and rephrase the results more conveniently in terms of the filtered strain-rate tensor
as opposed to the filtered velocity, as was done in Meneveau (1994). We also generalize
the prior derivations to the case of non-homogeneous flow. Here, we briefly summarize the
derivation of the Karman–Howarth equations (the evolution equations for the two-point
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velocity correlations) for the case of filtered-velocity fields without assuming homogeneity
or isotropy, using the two-point method proposed by Hill (2002).

Starting from the Navier–Stokes equations for a divergence-free velocity field u with
viscosity ν, the LES equations for the filtered fields ũ = F(u), where F is a spatial
filtering operation, read as follows:

∂ ũi

∂t
+ ũk

∂ ũi

∂xk
= − ∂ p̃

∂xi
+ ν

∂2ũi

∂x2
k

− ∂τki

∂xk
, (2.1)

where

τij = ũiuj − ũiũj − 1
3

(
ũkuk − ũ2

k

)
δij, (2.2)

p̃ = F( p) + 1
3

(
ũkuk − ũ2

k

)
(2.3)

are the deviatoric part of the SGS stresses and the modified pressure (where p is the fluid
pressure divided by the density), respectively.

Defining velocities at two points, ũ(1)
i = ũi(x(1)), ũ(2)

i = ũ.(x(2)), and midpoint position
(Hill 2002) x(0) = (x(2) + x(1))/2, where x(2) = x(1) + r and r is the displacement vector
between the two points, one can multiply their corresponding evolution equations by
each other, sum them, rearrange and perform a statistical averaging operation (details
are provided in the supplementary material). The result is the evolution equation for the
velocity two-point correlation function Cuu(r, x(0)) = 〈ũ(1)

i ũ(2)
i 〉

∂Cuu

∂t
= −T

(
r, x(0)

)
+ P0

(
r, x(0)

)
+ V

(
r, x(0)

)
− ∂

∂x(0)
k

〈
ũ(2)

i τ
(1)
ki + ũ(1)

i τ
(2)
ki

〉
−

〈
τ

(1)
ki S̃(2)

ki + τ
(2)
ki S̃(1)

ki

〉
, (2.4)

where

S̃ik = 1
2

(
∂ ũi

∂xk
+ ∂ ũk

∂xi

)
(2.5)

is the filtered strain rate and

T(r, x(0)) = ∂

∂rk

(〈
ũ(1)

i ũ(2)
i ũ(2)

k

〉
−

〈
ũ(1)

i ũ(2)
i ũ(1)

k

〉)
−1

2
∂

∂x(0)
k

(〈
ũ(1)

i ũ(2)
i ũ(2)

k

〉
+

〈
ũ(1)

i ũ(2)
i ũ(1)

k

〉)
, (2.6)

P0(r, x(0)) = − ∂

∂x(0)
i

(〈
ũ(1)

i p̃(2)
〉
+

〈
ũ(2)

i p̃(1),
〉)

(2.7)

and

V(r, x(0)) = 2ν
∂2Cuu

∂rkrk
+ 1

2
ν

∂2Cuu

∂x(0)
k x(0)

k

. (2.8)

This equation holds for velocity fields ũi obtained from first solving the Navier–Stokes
equations and then filtering the results, and also for velocity fields ũLES

i arising from
solving LES equations in which the SGS stresses are replaced by a subgrid model,
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i.e. τLES
ij . For LES and filtered Navier–Stokes to yield the same two-point statistical

moment evolution of 〈ũ(1)
i ũ(2)

i 〉 as well as the two-point third-order moments 〈ũ(1)
i ũ(2)

i ũ(2)
k 〉

requires as a statistically necessary condition (Meneveau 1994) that〈
τ

(1),LES
ki S̃(2)

ki

〉
+

〈
τ

(2),LES
ki S̃(1)

ki

〉
=

〈
τ

(1)
ki S̃(2)

ki

〉
+

〈
τ

(2)
ki S̃(1)

ki

〉
, (2.9)

and

∂

∂x(0)
k

(〈
ũ(2),LES

i τ
(1),LES
ki

〉
+

〈
ũ(1),LES

i τ
(2),LES
ki

〉)
= ∂

∂x(0)
k

(〈
ũ(2)

i τ
(1)
ki

〉
+

〈
ũ(1)

i τ
(1)
ki

〉)
. (2.10)

If the flow is spatially homogeneous and isotropic, all derivatives with respect to x(0)

vanish and (2.10) is irrelevant while the last term in (2.9) simply becomes 2〈τ (1)
ki S̃(2)

ki 〉.
In addition, in isotropic flow, terms only depend on |r| (also, tensor contractions may
be simplified in terms of single components, but these consequences will not be utilized
explicitly here since data from DNS will be used for which all components are available).
Equation (2.4) then becomes

1
2

∂Cuu(r)
∂t

= − ∂

∂rk

〈
ũ(1)

i ũ(2)
i ũ(2)

k

〉
+ ν

∂2Cuu(r)
∂rkrk

−
〈
τki(x)S̃ki(x + r)

〉
, (2.11)

so that a necessary condition for LES to correctly predict two-point moments of the
resolved field reduces to〈

τLES
ki (x)S̃LES

ki (x + r)
〉
=

〈
τki(x)S̃ki(x + r)

〉
. (2.12)

For the case of kinetic energy, i.e. for the single-point case r = 0, the familiar condition
is recovered where LES should correctly predict the SGS rate of dissipation, i.e.
〈τLES

ki S̃LES
ki 〉 = 〈τkiS̃ki〉. The Fourier transformed version of this expression (involving

〈τ̂ki(k)
ˆ̃S∗

ki(k)〉, where a hat denotes three-dimensional (3-D) Fourier transform and k is the
wavenumber vector) was used by Cerutti, Meneveau & Knio (2000) to measure spectral
eddy-viscosity distributions. In the present work we focus attention on physical space
descriptions to highlight the strength of spatial correlation at various distances.

The case of channel flow is statistically homogeneous in the two wall-parallel directions
but inhomogeneous in the wall-normal direction. And the presence of walls and a mean
pressure gradient breaks isotropy. Due to the special importance of mean shear to this
flow, it is convenient to separate the resolved flow also into its statistical mean and
fluctuating variables according to ũi = 〈ũi〉 + ũ′

i. In channel flow, taking the x1 direction
to be streamwise and x2 to be wall normal, the averaged flow variables do not depend
on x1, x3, and 〈ũ2〉 = 〈ũ3〉 = 0. Taking these facts into consideration and restricting the
displacement between the two points in the correlations to be in the horizontal direction
(i.e. r = (r1, 0, r3)), (2.4) becomes

∂
〈
ũ′(1)

i ũ′(2)
i

〉
∂t

= −T ′
(

r, x(0)
)

+ P′
0

(
r, x(0)

)
+ V ′

(
r, x(0)

)
+ P

(
r, x(0)

)
− ∂

∂x(0)
2

〈
ũ′(2)

i τ
′(1)
2i + ũ′(1)

i τ
′(2)
2i

〉
−

〈
τ

′(1)
ki S̃′(2)

ki + τ
′(2)
ki S̃′(1)

ki

〉
, (2.13)
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where

P
(

r, x(0)
)

=
〈
ũ′(2)

1 ũ′(1)
2

〉 ∂ 〈ũ′
1〉

∂x(0)
2

(2.14)

and the primed terms T ′, P′
0 and V ′ correspond to the previously defined T , P0 and V

but for the primed fields, respectively. We note that the last two terms in (2.13) may also
be combined and re-expressed in terms of the total variables (without decomposing into
fluctuating and mean quantities) if the displacement is taken in the horizontal plane, since
then 〈S̃ki〉 and 〈τki〉 are the same at locations 1 and 2. Therefore, again we can state that a
necessary condition for LES to generate each of the terms involving filtered velocities and
mean velocities in the above equation accurately requires that the equality in (2.12) must
hold.

3. Stress–strain-rate correlations in isotropic and channel flow data

Having established the relevance of the stress–strain-rate correlation function for
understanding interactions between scales in turbulence, we examine such correlations in
two canonical datasets and compare the results to the correlations arising from classic local
eddy-viscosity models. We first start by describing the datasets, then the way in which we
process the data and finally measure and report the aforementioned correlation functions.

The homogeneous and isotropic turbulence data come from a simulation of the
Navier–Stokes equations including a forcing term performed on a periodic grid of
10243 grid points using a pseudo-spectral parallel code (Li et al. 2008). The viscous
term was integrated analytically using an integrating factor, while all other terms were
integrated using a second-order Adams–Bashforth scheme. A combination of phase
shift and 2

√
2/3 truncation was used to de-alias the simulation. The forcing term is

such that kinetic energy in modes with wavenumber less than or equal to 2 was kept
constant. The Kolmogorov length η ∼ (ε3/ν)1/4, where ε is the mean energy transfer
rate and ν the molecular kinematic viscosity, was approximately half of the grid spacing.
The averaged Taylor-scale Reynolds number of the simulation is Reλ ∼ 433. The data
are available on the public Johns Hopkins Turbulence Database (JHTDB) server (for
more information, see Li et al. (2008)). For our analysis, we use data from eleven
independent snapshots distributed over approximately five large-eddy turnover times. All
two-point correlations were performed along a given Cartesian direction and correlation
functions were then averaged over the three Cartesian directions and over the 11 snapshots
in time.

The channel flow data come from two different friction Reynolds numbers, Reτ ∼ 1000
and Reτ ∼ 5200. Both simulations solve the Navier–Stokes equations in a domain with
periodic boundary conditions in two directions (the horizontal directions parallel to the
walls) and no-slip boundary conditions in the other direction (the vertical direction). The
data are also available at JHTDB. For more detailed information regarding both channel
flow datasets, see Graham et al. (2016) and Lee & Moser (2015), respectively.

We filter the velocity using a top-hat box filter with different filter lengths. Results using
different types of filters (Gaussian and spectral) are also presented although the focus will
be on results from the most spatially local filter (box filter). For the case of the channel
flows, the filtering is performed only in the horizontal directions. The true SGS stresses
(their deviatoric part) are calculated using their usual definition

τij = ũiuj − ũiũj − 1
3(ũkuk − ũkũk)δij, (3.1)
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Figure 1. Two-point correlations between different subgrid stresses and the filtered strain rates in
(a) homogeneous isotropic turbulence and (b) channel flow at Reτ = 1000 at y+ = 90. Data are filtered using
a top-hat filter at two different filter sizes and in all three directions for the homogeneous isotropic case (a),
while only one filter size and horizontal filtering was used for the channel flow case (b), at Δ+ = 49 (or
Δ/h = 0.049).

while the filtered strain rates are calculated using (2.5) and where the derivatives are
calculated using a second-order centred finite difference scheme.

When considering predictions from eddy-viscosity models, in order to avoid
introducing model-dependent effects from various possible choices of eddy viscosity (e.g.
Smagorinsky (Smagorinsky 1963), dynamic Smagorinsky, (Germano et al. 1991), Vreman
(Vreman et al. 1996), WALE (Nicoud & Ducros 1999)), we focus on the simplest version,
namely a ‘constant eddy-viscosity’ model. Specifically,

τLES
ij = −2νLES S̃ij, (3.2)

with νLES a constant. Since all the two-point correlation functions to be shown below
are normalized by their value at zero displacement, the value of νLES does not affect the
results. We recall that models of the eddy viscosity are typically formulated to properly
reproduce the dissipation rate (i.e. the one-point correlations between the strain rate and
the stresses), while here we are focused on the non-local properties of the filtered strain
rate. The comparisons to be presented were also repeated for the traditional Smagorinsky
model (i.e. when νLES has spatial fluctuations given by |S̃|) but have led to essentially the
same results as when using a spatially constant νLES, and are thus not shown.

In order to evaluate two-point correlation functions from the data, the averaging
operation is performed in the three Cartesian spatial directions and over time snapshots
when analysing isotropic turbulence data, while for the case of channel flow no averaging
is performed in the vertical direction. Then, the two-point correlations between either the
true SGS stresses and the filtered strain rates, and the modelled subgrid stress and the
strain rates are obtained by averaging the product of the displaced fields and normalizing
to unity at r = 0. In other words, we normalize each correlation function by its own rate
of SGS dissipation rate so as to focus on the spatial correlation structure independent of
the mean dissipation rate (hence rendering the value of νLES irrelevant for our analysis).

In figure 1(a) we show the two-point correlations using both the true SGS stress tensor
and the modelled one extracted from the homogeneous isotropic turbulence data using two
different filter sizes Δ = 31η and Δ = 53η (the insets show the same plots but in semi-log
scale to better visualize the long-distance tails). While close to the origin both the real
and the local eddy-viscosity cases behave similarly, the correlation function for the real
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Figure 2. Contour plot of streamwise normal deviatoric SGS stress τ11 (filled colours, in simulation units)
superimposed with contour lines of −S̃11 on a horizontal plane of the channel flow at y+ = 90. The filtering
scale is Δ+ = 49 (Δ/h = 0.049). The maximum contour line of −S̃11 shown is at 4.8 (in simulation units), all
other have an equal spacing of 0.8, dashed lines indicate negative values.

subfilter stress sustains correlations with the strain rate for longer distances than the case
of the local eddy viscosity. A similar result is seen in figure 1(b) where such correlation
functions are shown for the Reτ = 1000 channel flow at some height in the logarithmic
region y+ = 1000, for two points separated along the streamwise direction.

As we have seen before, if one wishes an LES to provide realistic predictions of
filtered-velocity correlation functions (or spectra) down to distances as close as possible
to the filtering scale Δ, a model should be such that the two-point correlation between
subfilter stress and strain rate are correctly reproduced during a priori data analysis.
Present results demonstrate that local models cannot correctly capture the relatively
long tails in these two-point correlations. Correlations between distances r = Δ to
approximately 5Δ are underestimated by local models, yielding only approximately 50 %
of the real correlation. Interestingly, we recall that it was already observed that the
correlations between subgrid stresses and velocity increments also decay faster in LES
than in the true cases (Linkmann, Buzzicotti & Biferale 2018). It is important to emphasize
that, since we are normalizing the correlations by their value at the origin, the dependence
on any constant scalar prefactor is eliminated. We have tested that even if the scalar
prefactor is position dependent, as it is with various variants of the eddy-viscosity model
(e.g. classical Smagorinsky model), the normalized correlations remain very similar to our
present results and thus are not presented here.

Figure 2 shows a sample contour plot of τ11 (filled colours) superimposed with a
contour plot (lines) of −S̃11 on a horizontal plane at y+ = 90 of the channel flow data
at Reτ = 1000. The elongated features of the real stress are apparent, extending over
distances far exceeding the filter scale (Δ/h ∼ 0.05). The features of −S̃11 appear more
isotropic with less ‘non-locality’ in the x-direction compared to τ11. As is well known,
pointwise comparisons between instantaneous distributions of real and modelled SGS
stresses using variants of eddy-viscosity models typically lead to very low correlation
coefficients (typically less than 20 %). But such instantaneous a priori tests have little
prognostic power regarding the statistics resulting from LES. Hence, the main focus of this
work is on the two-point correlations (statistical a priori tests for which the interpretation
is clear, following the discussion in § 2). For the sake of completeness, we also perform
pointwise comparisons below, while recalling the known limitations of interpreting such
pointwise comparisons.
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Two-point stress–strain-rate correlation structure

4. Non-local eddy-viscosity modelling

4.1. Motivation for non-local eddy-viscosity modelling
It is instructive to begin by discussing kinetic energy dissipation. One possible motivation
for the classic local eddy-viscosity modelling in LES is provided directly by the condition
of matching SGS energy dissipation rates. Specifically, suppose we wish to ensure that
energy will be dissipated at some ‘true’ rate −〈τkiS̃ki〉. The LES will generate fluctuations
including fluctuating filtered strain rates. Thus, one can be sure that its variance, i.e.
the quantity 〈S̃LES

ki S̃LES
ki 〉, will be positive. Its magnitude will depend on the fluctuation

amplitudes of S̃LES
ki but will not involve any subtle cancellations of oppositely signed

values. Hence, if one sets the SGS stresses τLES
ki (where we are always working with the

traceless tensor) proportional to −S̃LES
ki , i.e. τLES

ki ∼ −S̃LES
ki , one will be guaranteed a mean

dissipation rate that will be proportional to the non-zero 〈S̃LES
ki S̃LES

ki 〉 value resulting in LES.
The actual value can be controlled by choices of SGS eddy viscosity, as in the standard
model τLES

ki = −2νLESS̃LES
ki .

Now, we wish to generalize this statement to the case of ensuring that two-point moment
between the subfilter stress and the filtered strain-rate tensor at some particular displaced
position r′ is predicted correctly. A possible way to guarantee that the two-point correlation
〈τLES

ki (x)S̃LES
ki (x + r′)〉 is non-zero with its magnitude set by some prefactor, is to select

τLES
ki (x) to be proportional not to the local value of the filtered strain rate, but to S̃LES

ki (x +
r′) at the desired point, i.e. τLES

ki (x) ∼ −S̃LES
ki (x + r′). In general we will want to enforce

such a condition for all possible r′, and so a weighted superposition of strain rates at
different locations can be envisioned

τLES
ki (x) = −

∫
K(r′) S̃LES

ki (x + r′) d3r′, (4.1)

where K(r′) represents an eddy viscosity appropriate for displacement r′.
Multiplying (4.1) by S̃LES

ki (x + r) and ensemble averaging yields the two-point
correlation relevant to correctly predicting two-point velocity correlations. The result, for
homogeneous turbulence, can be written as

−
〈
τLES

ki (x)S̃LES
ki (x + r)

〉
=

∫
K(r′)

〈
S̃LES

ki (x + r)S̃LES
ki (x + r − r′)

〉
d3r′, (4.2)

i.e. a convolution between a kernel and the strain-rate two-point correlation function.
Assuming that the latter decays as function of displacement differently than the
true correlation 〈τ d

ki(x)S̃ki(x + r)〉 (as figure 1 shows occurs in turbulence), then the
convolution with a kernel K(r′) enables one to generate a SGS model that may display
improved two-point correlations between stress and strain rate.

Many options for the kernel K(r′) could be envisioned, and many ways to optimally find
it from data can be developed. Here, we propose to explore the applications of fractional
calculus since such operators enable compact representations and we may express the
model without introducing length scales a priori into the problem (as we shall see later on,
effectively we will be introducing modelling length scales anyhow, but at a later stage). In
the next section, we set the stage for definitions of fractional gradients that can be applied
in three dimensions to gradient vector fields.
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4.2. Fractional-gradient-based non-local eddy viscosity
Most applications of fractional derivatives are essentially one-dimensional, e.g. in time
to represent memory effects, for spatially one-dimensional problems, or using fractional
Laplacians that do not discriminate between different directions. Recent efforts to
develop fractional vector calculus and directionally dependent gradient operators include
Meerschaert, Mortensen & Wheatcraft (2006) and Tarasov (2008). Here, we use a
multidimensional generalization of the Caputo fractional derivative (Caputo 1967; Samko
1993). In one dimension, the Caputo fractional derivative usually takes the form

CDα
0,x f (x) = 1

Γ (1 − α)

∫ x

0

df
dx

(x′)

(x − x′)α
dx′. (4.3)

While this non-symmetric definition, where the limits of integration go from 0 (or some
other finite limit) to the point of evaluation, is useful for many problems, and has been
used in non-local closures of channel flow RANS (Song & Karniadakis 2018), it is not
applicable to flows in three dimensions, where there may be various important directions.
The need to constrain the domain of integration also arises, as in practice integrating
over the whole physical domain would be prohibitively expensive. A symmetrized and
truncated version of the Caputo derivative may be written as

symCDα
R f (x) = 1

2Γ (1 − α)

∫ x+R

x−R

df
dx

(x′)

|x − x′|α dx′. (4.4)

Next, a definition of a vector gradient is required. Some definitions of fractional
gradients resort to just taking a one-dimensional fractional derivative along each
dimension (Meerschaert et al. 2006; Tarasov 2008). Such a definition would, however,
not be useful in general, as the gradient operation would not be invariant under arbitrary
rotations of the coordinate system. Instead, we keep the directionally sensitive derivative
inside the integral in one direction (as in the Caputo derivative), but integrate in all
directions over a ball of radius R Caputo & Fabrizio (2015), according to

Dα
i uj(r) = 1

ΩdΓ (1 − α)

∫
|r−r′|≤R

∂uj

∂xi
(r′)

|r − r′|α+d−1 ddr′, (4.5)

where Ωd is the d-D solid angle. In three dimensions, this definition becomes

Dα
i uj(r) = 1

4πΓ (1 − α)

∫
|r−r′|≤R

∂uj

∂xi
(r′)

|r − r′|α+2 d3r′. (4.6)

The result depends also on the radius R, which in practice will be chosen ‘large enough’
to capture non-locality and generate results that do not depend strongly on R.

It is possible to show by performing integration by parts (following Li & Deng 2007)
that, as long as the field u has a well-defined second derivative, this definition complies
with the following limiting behaviour at α approaching unity from below:

Dα
i uj(r) −−−−→

α→1−
∂uj

∂ri
(r). (4.7)

That is to say, traditional gradient operation corresponds to α = 1.
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Figure 3. Effects of α. Representative signal of two components of the fractional strain rate tensor S̃α
ij =

(Dα
i ũj + Dα

j ũi)/2 normalized by its respective standard deviation for different fractional orders. Data are from
DNS of isotropic turbulence at Reλ ∼ 433; (a) is for ij = 23 while (b) is for ij = 33. The curves correspond to
α = 1, 0.7, 0.5 and 0.2, from light to dark colour, respectively.

In the limit of α → 0+, we obtain

Dα
i uj(r) −−−−→

α→0+
1

4π

∫ π

0

∫ 2π

0

∫ R

0

∂uj

∂ri
(r − r̃) dr̃ sin θ dθ dφ (4.8)

(when expressed in spherical coordinate system). For example, for a spatially constant
velocity gradient within the sphere of radius R, the gradient in the limit α → 0+ becomes

Dα
i uj(r) −−−−→

α→0+
R

∂uj

∂ri
, (4.9)

similar to a velocity increment (structure function) over a distance R.
The units of the fractional gradient are velocity divided by (length)α . In a turbulent

flow with weak mean gradients, and as long as α > 0, the definition of the derivative is
expected to converge for sufficiently large R, as contributions from different directions will
mostly cancel. But possible dependencies on R will be examined quantitatively during the
analysis since a priori some dependence on R cannot be excluded.

Now that we have defined a fractional-gradient operator, we can also define the
symmetric part, i.e. the fractional strain-rate tensor, according to

S̃α
ij = 1

2

(
Dα

i ũj + Dα
j ũi

)
. (4.10)

In order to provide qualitative insights regarding the fractional gradient, we apply the
gradient operator to filtered-velocity fields from the isotropic turbulence data from DNS
described before (at Δ = 31η). Details on the numerical calculation of the fractional strain
rate are presented in appendix A. Sample signals of transverse S̃α

23 and normal S̃α
33 velocity

gradient tensor elements across parts of the computational domain are shown in figure 3.
Each of the curves are normalized by their respective standard deviations σα . The standard
gradient tensor signals (α = 1) are shown as the light curve. The signals corresponding
to lower values of α display smaller excursions in general, consistent with the idea that
they are more non-local. It is interesting to note that even if subtle, the most non-local case
(α = 0.2) still retains significant small-scale structure in the signal (at the filter scale Δ)
even though it is the most non-local case considered.

In figure 4 we present plots of the same two components of S̃α
ij for a fixed value of

α = 0.2 but calculated using different cutoff radius R. As mentioned earlier, the fractional
derivative (4.6) is not independent of R, but we can expect results from turbulent flow with
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Figure 4. Effects of R. Two components of the fractional strain-rate tensor S̃α
ij = (Dα

i ũj + Dα
j ũi)/2 for the

same fractional order α = 0.2, but different cutoff radius R; (a) is for ij = 23 while (b) is for ij = 33. The
different curves correspond to R = 1Δ, 3Δ, 5Δ and 7Δ, from light to dark colour, respectively.
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Figure 5. (a) Contour plot of streamwise normal deviatoric SGS stress τ11 (filled colours, in simulation units)
superimposed with contour lines of −S̃α

11 on a horizontal plane of the channel flow at y+ = 90 for α = 0.2. The
filtering scale is Δ+ = 49 (Δ/h = 0.049). The maximum contour line of −S̃α

11 shown is at 0.36 (in simulation
units), all other have an equal spacing of 0.06, dashed lines indicate negative values. Zoomed in views of the
region marked with the red square are shown in panels (b,c,d). (b) Zoomed in view of τ11. (c) Zoomed in view
of −S̃11. (d) Zoomed in view of −S̃α

11.

weak mean gradients to vary less and less as R increases. The strain-rate signals shown
in figure 4 are consistent with such behaviour, with relatively small sensitivity to R for
R ≥ 5Δ in these examples. Note that these results are for a small value of α (0.2). For
larger values of α the sensitivity to R is less marked.

For completeness, we also provide a pointwise qualitative comparison in figure 5
showing a sample contour plot of τ11 (filled colours) superimposed with a contour plot
(lines) of −S̃α

11 on a horizontal plane at y+ = 90 of the channel flow data at Reτ = 1000
for α = 0.2. Similar to the local case shown in figure 2, the non-local filtered strain rate
does not match the true subgrid stresses. In quantitative terms, the one-point correlations
for both cases are approximately 12 %.

Based on the fractional strain-rate tensor, we may now define a fractional eddy-viscosity
closure for the deviatoric part of the SGS stress, according to

τα
ij = −2να S̃α

ij , (4.11)

where να is the α-dependent SGS eddy viscosity, having units of velocity times (length)α .
The form based on the fractional gradient defined as in (4.6) has the following desirable
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Figure 6. Two-point correlations between different subgrid stresses and the fractional filtered strain rates of
different orders in homogeneous isotropic turbulence. Results are for a top-hat filter at Δ = 31η (a), and Δ =
53η (b). In both we use R = 5Δ.

properties: it is Galilean invariant, it is rotationally invariant and the stress enters as a
divergence in the momentum equation so that it obeys a traditional Gauss theorem (i.e. its
volume integral only leaves surface fluxes).

For the purposes of data analysis in this paper, similarly to what we showed in the
previous section for local models, we will take να to be constant. Practical applications
of such models will of course require specification of να , which would indirectly involve
specification of a length scale (e.g. setting να ∼ Δ2α|S̃α|). Notice that non-local models
allow for backwards energy transfer even if να is always positive, since S̃α

ij S̃ij is not strictly
positive. Backwards energy transfer should not be expected if α is close to unity since the
non-local strain rate will be very similar to the local one. However, some negative energy
transfer (backscatter) could occur for lower values of α. Therefore, we also perform an
analysis of the energy transfer rate in the section below.

5. Results

In this section, we test the effectiveness of fractional-gradient-based eddy-viscosity
modelling to reproduce the desired two-point correlation structure of subgrid stresses and
filtered strain-rate tensors in isotropic and channel flow turbulence.

5.1. Homogeneous and isotropic turbulence
Figure 6 shows the two-point correlation between the filtered strain rates and the
different SGS stresses: the true one coming from the DNS (dashed line), the one
modelled by the traditional local eddy-viscosity model (α = 1) and three cases using
the fractional-gradient-based model at different fractional orders (but same cutoff radius
R = 5Δ) for two different filter sizes in the inertial range of turbulence. As can be seen, the
fractional models generate longer correlations than the local model. The fractional order
of α = 0.5 reproduces the degree of non-locality found in the DNS case well, for both
filter scales analysed. As was observed in figure 1, the decay of correlations seems to scale
with r/Δ also for the fractional models.

Figure 7 presents the two-point correlations functions for the true case and for the
fractional case using the fractional order α = 0.5 and same filter size and type, but using
different cutoff radii R. As expected from the results shown in figure 4, the behaviour
of the fractional models does depend slightly on R. When using a smaller cutoff radius,
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Figure 7. Two-point correlations between different subgrid stresses and the filtered strain rates in
homogeneous isotropic turbulence. The modelled stresses were all calculated using α = 0.5 but different values
of R.
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Figure 8. Two-point correlation functions between stresses and fractional filtered strain of different orders in
homogeneous and isotropic turbulence using two filter types, namely a Gaussian filter (a) and a spectral cutoff
filter (b).

the models behave moderately more ‘locally’ for the same fractional order, as less
non-local information is used. This indicates that when fine-tuning practical applications
of fractional models, both the order and the domain of integration will have to be
considered. Differences in the correlations produced by the different parameters do appear
to get smaller the larger the cutoff radius, again suggesting that although the fractional
derivatives do not formally converge for any arbitrary field, they might do so in a turbulent
flow.

In figure 8(a,b) we study the dependence of the two-point correlations on the filter
type. The results using a Gaussian filter are essentially the same as those for a box filter
(we use the usual definition of Δ as summarized in Pope (2000)). Remarkably, when
using a spectral cutoff filtering (with cutoff filter equal to kΔ = π/Δ Pope (2000)), the
spatial correlations with the true SGS stresses decay much more rapidly than for the
Gaussian and top-hat box filters. This is somewhat surprising since the spatial non-locality
associated with a spectral filtering operation is more than for the box or Gaussian filters (in
physical space the spectral cutoff filter’s decay is slow, according to 1/r). The oscillatory
behaviour is as expected. As a consequence, for the spectral cutoff filter the traditional
local modelling appears the most appropriate. Still, as discussed in Meneveau & Katz
(2000), Eyink & Aluie (2009) and Aluie & Eyink (2009), the spectral cutoff filter kernel
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Figure 9. Probability density functions (PDF) of the true and modelled subgrid dissipation Π = −τijS̃ij for
the isotropic turbulence flow using a box filter and Δ = 31η. The bottom x-axis and left y-axis (labelled ‘α’)
correspond to the modelled cases using the fractional-gradient eddy-viscosity models, while the top x-axis and
the right y-axis (labelled ‘True’) correspond to the subgrid dissipation rate evaluated using the measured SGS
stress.

has some undesirable features (e.g. non-positiveness in physical space kernel) and hence
for the reminder we continue to focus on the physical space local box filter. We have
checked that results with the Gaussian filter lead to very similar results.

Figure 9 shows the probability density functions of the true and modelled local
instantaneous SGS dissipation Π = −τijS̃ij, for the isotropic turbulence flow using a box
filter and Δ = 31η. As is well known (Cerutti & Meneveau 1998), the true distribution
exhibits very long tails to both sides while the eddy-viscosity model with α = 1 is, by
definition, purely dissipative (i.e. has only positive values and much shorter tails). The
results for non-local fractional eddy viscosity with α < 1 are almost the same as the
α = 1 case but for very small probability events where Π < 0 visible especially for the
α = 0.2 case. As mentioned before, occurrences of backscatter are expected for small
values of α. However, as can be seen in figure 9, the probability of such occurrences
remains quite small and does not appear likely to be associated with the changes in the
two-point correlations observed in figure 6. We note too that in an actual implementation of
a non-local LES model, backscatter events may lead to numerical instabilities and should
be treated carefully.

5.2. Channel flow
For analysis of channel flow, we first focus on two-point correlations in the streamwise
and spanwise directions. We use a top-hat filter at a scale of Δ+ = 49 and the filtering is
performed only in the x − z horizontal directions. Data are analysed in the logarithmic and
outer regions y+ = 90, 260 and at the centreline (y+ = 1000 for the Reτ = 1000 dataset).
Figure 10 shows the different two-point correlations along the streamwise direction at these
three different locations from the wall. Compared to the homogeneous and isotropic case,
the true correlations between the stresses and the strains along the streamwise direction
first decay rapidly and then carry on for very long distances. For distances r > Δ the
local eddy-viscosity model again fails to capture these long lasting correlations, while the
introduction of non-locality via α < 1 can remedy the situation. However, there appear
variations in the optimal fractional order at different heights with α = 0.2 appearing to
provide more realistic correlations at y+ = 260 while at y+ = 90 even lower values of

914 A6-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

97
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.977


P. Clark Di Leoni, T.A. Zaki, G. Karniadakis and C. Meneveau

(b)(a) (c)

10–2

0 2 4 6 8 10

10–1

100
〈τ i

j(x
)S

ij(
x 

+ 
r x

ê x
)〉/

〈τ i
jS

ij〉

rx /Δ

10–2

0 2 4 6 8 10

10–1

100

rx /Δ

10–2

0 2 4 6 8 10

10–1

100

rx /Δ

True
α = 1

α = 0.7
α = 0.5
α = 0.2

Figure 10. Streamwise two-point correlations between different subgrid stresses and the filtered strain rates
calculated from the channel flow at Reτ = 1000; data at different distances from the wall. Results are for top-hat
filtering at Δ+ = 49 various α values as indicated and R = 5Δ; (a) y+ = 90, (b) y+ = 260, (c) y+ = 1000.
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Figure 11. Spanwise two-point correlations between different subgrid stresses and the filtered strain rates
calculated from the channel flow at Reτ = 1000 data. Results are for top-hat filtering at Δ+ = 49, various
α values as indicated and R = 5Δ; (a) y+ = 90, (b) y+ = 260 and (c) y+ = 1000.

α would appear to be needed. At the centreline the true correlation function has a faster
initial decay and it appears that no single fractional order has the appropriate trends.

The correlations on the spanwise direction, shown in figure 11, are quite different than
the ones in the streamwise direction. While a first guess would suggest that spanwise
correlations should look more similar to the homogeneous and isotropic case, this is not
the case. The behaviour of the exact correlations is not correctly captured by neither the
local nor the non-local models. At the centreline, interestingly, the results for the true
stress–strain rate correlations are very similar to the streamwise correlations.

Finally, we present the two-point stress–strain-rate correlation functions calculated using
the channel flow data at Reτ = 5200. Results are shown in figure 12 at two different
heights. The results at y+ = 1000 are similar to the results at y+ = 260 for the Reτ = 1000
dataset. We note that in outer units these two datasets are at similar heights y/h ∼ 0.2
and 0.26 respectively. Also at y+ = 5200 (the centre of the channel in this case), results
are similar to the centreline results at Reτ = 1000, with the true stress–strain correlation
decaying much faster at small distances and then breaking onto a very long tail. Again,
none of the fractional models reproduce these trends since their decay appears to be more
gradual throughout.

6. Conclusions

In this paper we show that for a LES to be able to reproduce the two-point correlations of
filtered-velocity fields in turbulence, the subgrid stress tensor should correctly capture the
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Figure 12. Streamwise two-point correlations between different subgrid stresses and the filtered strain rates
calculated from the channel flow at Reτ = 5200; data at different distances from the wall. Results are for
top-hat filtering at Δ+ = 49, various α values as indicated and R = 5Δ; (a) y+ = 1000, (b) y+ = 5200.

two-point correlations between the filtered strain-rate tensor and the SGS stress tensor.
This necessary statistical condition comes from the analysis of the Karman–Howarth
equation for filtered-velocity fields. We also generalize the derivation of Meneveau (1994)
from homogeneous to non-homogeneous turbulence. In either case, the special importance
of the correlation function 〈τki(x)S̃ki(x + r)〉 becomes apparent.

Using data from DNS of homogeneous isotropic turbulence and channel flows, we show
that the correlations developed by local eddy viscosity, such as the Smagorinsky model
(strictly speaking with constant eddy viscosity), decay faster than those observed in the
analysis of the true SGS stress. In order to include non-local dependencies in the model,
it is argued that a convolution of the strain-rate tensor with a non-local eddy-viscosity
kernel can be invoked. A mathematically compact special case of non-locality is provided
by fractional differentiation. We first propose a generalization of the Caputo fractional
derivative applicable to 3-D problems that is amenable to vector calculus.

As a first step exploring the properties of such a modelling approach, we perform
statistical a priori testing based on DNS data from isotropic and channel flow turbulence.
The analysis focuses on the behaviour of predicted strain rate–stress correlation functions
that had been identified as necessary condition for LES to generate accurate predictions
of two-point statistics (correlations, spectra) of filtered velocities. Different parameters are
considered, such as filter size, type, wall distance (in the channel flow case) and integration
radius R.

The main conclusion is that for many of the cases tested (filter size, type, flow), the
fractional model provides more realistic predictions of the long tails in the observed
two-point correlations compared to the local eddy-viscosity approach. In isotropic
turbulence, a value of α ∼ 0.5 appears to provide good predictions, although we do not
have a theoretical explanation for such a value. We note that this conclusion applies to
the spatially local filters such as top-hat and Gaussian filters. For the spectral filter, it was
found that the local modelling appeared appropriate. In channel flow, strong directional
dependence was observed, with very strong non-locality in the streamwise direction, which
is not surprising given the existence of elongated streamwise structures in this flow. The
behaviour in the longitudinal direction was much more local. Interestingly, at the channel
centreline while the streamwise and spanwise behaviours became more similar, they differ
markedly from the behaviour of isotropic turbulence. While the results show promise for
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non-local LES modelling, our aim in this paper has been to focus on the physics of scale
interactions and not to present such models as ready yet for applications in LES.

Clearly much more work is required before these findings can be channelled into a
working subgrid model for practical applications in LES. Also, present results suggest
that the fractional order α should be direction dependent in anisotropic flow, as well as
depend on position (e.g. distance to the wall) in non-homogeneous flow. How to prescribe
such dependencies in prognostic, general-purpose LES where one typically wishes to avoid
having to use non-local information unless it arises from prognostic transport equations,
is an open question. Since no unique clear value for the parameter α, valid across various
regimes, has emerged from the present a priori analysis, options such as prescribing α as
function of wall distance (as is done when using wall damping functions), or exploring
dynamic approaches based on the Germano identity (Germano et al. 1991) are worth
exploring.

In terms of numerical implementation, we point out that without special treatments and
accelerations, the numerical evaluation of non-local gradients has high operations count,
proportional to R3 which can be quite expensive even if R is restricted to R ∼ 5Δ. New
tools based on neural networks (Lu, Jin & Karniadakis 2020) or the sum-of-exponentials
approximation (Jiang et al. 2017) that are currently being developed show great potential
to accelerate the costly calculations required by non-local operators. Further efforts
should be directed at accelerating the evaluation of non-local operators to enable practical
applications of non-local modelling.
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Appendix A. Numerical technique for non-local operators

We adapted an L-scheme technique Yang, Liu & Turner (2010) to our definition of the
fractional gradient. The idea behind the method is to perform the radial integration very
accurately in small discrete intervals. In that way the singularity in the integral and in
the gamma function can be taken care of simultaneously. The method is as follows: let
r̃ = r − r′, g(r̃) = (∂u/∂ri)(r̃), d = 3, and use spherical coordinates in r̃

Dα,R
i u(r) = 1

4πΓ (1 − α)

∫
Ω

∫ R

0
g(r̃)r̃−α dr̃ dΩ,

= 1
4πΓ (1 − α)

∫
Ω

[N−1∑
i=0

∫ (i+1)h

ih
g(r̃)r̃−α dr̃

]
dΩ,
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≈ 1
4πΓ (1 − α)

∫
Ω

[N−1∑
i=0

g(ih, θ, φ)

∫ (i+1)h

ih
r̃−α dr̃

]
dΩ,

= h1−α

4πΓ (2 − α)

N−1∑
i=0

[∫
Ω

g(ih, θ, φ) dΩ

]
((i + 1)1−α − i1−α). (A1)

Doing this deals with both the singularity coming from the Γ function and from the
integration kernel.

The last ingredient needed for the method is to calculate the integral over the solid angle.
To do this, we first discretize the area (sphere) over where the integration takes place
following the algorithm proposed by Saff & Kuijlaars (1997), which generates equally
spaced points on the sphere by following a spiral connecting one pole to the other. The
number of integration points over each sphere, Ni, is chosen so that Nih2 ≈ 4π(ih)2, where
h is the desired spatial resolution. The values of the field required at all the different
locations (in our case the filtered-velocity gradient tensor) are obtained via trilinear
spatial interpolation. The integration step h is approximately equal to the grid size of the
simulations from which the data were gathered, in our case comparable to the filter size δ.
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