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ABSTRACT

Objectives: Anorexia nervosa (AN) is associated with altered sensitivity to reward and punishment. Few studies have
investigated whether this results in aberrant learning. The ability to learn from rewarding and aversive experiences is
essential for flexibly adapting to changing environments, yet individuals with AN tend to demonstrate cognitive
inflexibility, difficulty set-shifting and altered decision-making. Deficient reinforcement learning may contribute to
repeated engagement in maladaptive behavior. Methods: This study investigated learning in AN using a probabilistic
associative learning task that separated learning of stimuli via reward from learning via punishment. Forty-two
individuals with Diagnostic and Statistical Manual of Mental Disorders (DSM)-5 restricting-type AN were compared to
38 healthy controls (HCs). We applied computational models of reinforcement learning to assess group differences in
learning, thought to be driven by violations in expectations, or prediction errors (PEs). Linear regression analyses
examined whether learning parameters predicted BMI at discharge. Results: AN had lower learning rates than HC
following both positive and negative PE (p < .02), and were less likely to exploit what they had learned. Negative PE
on punishment trials predicted lower discharge BMI (p < .001), suggesting individuals with more negative expectancies
about avoiding punishment had the poorest outcome. Conclusions: This is the first study to show lower rates of
learning in AN following both positive and negative outcomes, with worse punishment learning predicting less weight
gain. An inability to modify expectations about avoiding punishment might explain persistence of restricted eating
despite negative consequences, and suggests that treatments that modify negative expectancy might be effective in
reducing food avoidance in AN.

Keywords: Eating disorders, prediction error, operant learning, decision-making, cognition, probabilistic associative
learning

INTRODUCTION

Anorexia nervosa (AN) is a serious eating disorder character-
ized by severe food avoidance andweight loss, an intense fear
of gaining weight, and a distorted experience of one’s body
(American Psychiatric Association, 2000). It is well known
that individuals with AN tend to be cognitively inflexible
and have impaired set-shifting, which may contribute to
the high rates of chronicity and death (Papadopoulos,
Ekbom, Brandt, & Ekselius, 2009; Roberts, Tchanturia,
Stahl, Southgate, & Treasure, 2007; Roberts, Tchanturia, &
Treasure, 2010; Tchanturia et al., 2012; Wu et al., 2014).

Persistent dietary restriction despite negative consequences
and evidence of altered reward and punishment sensitivity
in AN (Bischoff-Grethe et al., 2013; Glashouwer, Bloot,
Veensra, Franken, & de Jong, 2014; Harrison, O’Brien,
Lopez, & Treasure, 2010; Harrison, Treasure, & Smillie,
2011; Jappe et al., 2011; Matton, Goossens, Braet, &
Vervaet, 2013) raise the question of whether impaired
learning from reward and loss might contribute to repeated
engagement in maladaptive behavior and illness maintenance.

Dysfunction of reward processing in AN is well docu-
mented, with reduced subjective reward sensitivity and
decreased limbic-striatal neural response to rewarding
stimuli such as food or money (Brooks, Rask-Andersen,
Benedict, & Schioth, 2012; Fladung, Schulze, Scholl,
Bauer, & Gron, 2013; Jappe et al., 2011; Keating, Tilbrook,
Rossell, Enticott, & Fitzgerald, 2012; O’Hara, Schmidt, &
Campbell, 2015; Oberndorfer et al., 2013; Wierenga et al.,
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2014; Wu et al., 2016). Emerging evidence suggests process-
ing of aversive stimuli may also be disrupted in AN; indi-
viduals with AN demonstrate elevated harm avoidance,
intolerance of uncertainty, anxiety, and oversensitivity to
punishment (Glashouwer et al., 2014; Harrison et al., 2010;
Harrison et al., 2011; Jappe et al., 2011; Matton et al., 2013),
which may contribute to an altered response to negative feed-
back or a bias to avoid outcomes perceived as aversive (Kaye
et al., 2015). Neuroimaging studies support a neural dysfunc-
tion to loss, with an exaggerated (Bischoff-Grethe et al.,
2013) or undifferentiated (Wagner et al., 2007) striatal
response to monetary losses compared to wins and decreased
response to aversive taste (Monteleone et al., 2017).
However, much of the existing work in AN has focused on
responsivity to reward and punishment, with less attention
to learning from both reward and punishment (Bernardoni
et al., 2018; Foerde & Steinglass, 2017).

The core idea of reinforcement learning is that the rate of
learning is driven by violations of expectations, or prediction
errors (PEs), which are operationalized as the received out-
come minus the expected outcome, and are markers of dopa-
mine activity (Pearce & Hall, 1980; Rescorla and Wagner
1972; Sutton&Barto, 2018). Learning from experience occurs
through updating expectations about the outcome in proportion
to PE, so that the expected outcome converges to the actual
outcome. The majority of studies of learning in AN have
focused on passive Pavlovian conditioning (Schaefer &
Steinglass, 2021), with evidence of elevated reward PE signals
in the ventral striatum and orbitofrontal cortex in ill and remit-
ted AN (GK Frank, Collier, Shott, & O’Reilly, 2016; GK
Frank et al., 2012). However, Pavlovian tasks have demon-
strated poor behavioral profiles (National Institute of Mental
Health, 2016). Given the importance of choice behavior and
decision-making in AN, instrumental response-outcome learn-
ing may be more relevant to psychopathology. Limited behav-
ioral data (i.e., Acquired Equivalence Task) suggest reduced
reward reinforcement learning in AN (Foerde & Steinglass,
2017; Shott et al., 2012).

To probe the influence of rewarding and punishing out-
comes on instrumental reinforcement learning, we
employed a well-studied two-choice feedback-based prob-
abilistic associative learning task (PALT) that relies on the
contingency between a participant’s response and outcome
(i.e., whether or not they won or lost points) to facilitate
learning (i.e., to select the optimal reward-based stimuli
and avoid the nonoptimal punishment-based stimuli)
(Bodi et al., 2009; Herzallah et al., 2017; Herzallah
et al., 2013; Mattfeld, Gluck, & Stark, 2011; Myers
et al., 2013). The PALT is sensitive to dopaminergic medi-
cation effects on reward and punishment processing in
Parkinson’s disease (Bodi et al., 2009), has been applied
to several psychiatric disorders (i.e., substance use, post-
traumatic stress, depression (Beylergil et al., 2017;
Herzallah et al., 2017; Myers et al., 2013), and corresponds
to functional specialization within the striatum for reward
and punishment PE estimates (Mattfeld et al., 2011).
Moreover, research over the past two decades has shown

that the direction and magnitude of PE may be a marker
of altered dopaminergic activity in AN (Glimcher, 2011;
Schultz, Dayan, & Montague, 1997; Schultz, 2016;
Steinberg et al., 2013).

Given the link between PE and reinforcement learning, it
is tempting to infer group or individual differences in PE from
observable reinforcement learning scores. Such an inference
would be valid only if the observed scores were unidimen-
sional and reflected PE-based learning. However, if PALT
performance involved multiple processes, group or individ-
ual differences in the observed scores would be challenging
to interpret because the differences might be due to any of the
several processes that underlie the task (Sojitra, Lerner,
Petok, & Gluck, 2018; Strauss & Smith, 2009). Before com-
paring AN and healthy control (HC) participants, we inves-
tigated the multidimensionality of data derived from the
PALT by comparing the fits of three computational reinforce-
ment learning models.

All of these models assumed that when a stimulus is pre-
sented, participants choose between two alternatives based on
unobserved choice values that reflect the participant’s expect-
ancy of obtaining a favorable outcome (See Supplement).
Once a choice is made, the expectancy value associated with
the choice made is updated based on the PE and PE learning
rates, represented by the parameter η (Figure 1). In expect-
ancy value-based learning models of this type, the difference
between the expectancy values associated with the two-
choice alternatives is multiplied by a logistic regression
weight, represented by the parameter β, to turn the value dif-
ference into a probability of choosing a particular alternative
(Gershman, 2016); Supplement – Equation 1; Figure 1).
Although the logistic regression weight has been called
inverse temperature in some applications (Daw, 2011), it
has been described as an explore-exploit parameter in the psy-
chology literature and reflects how decisively participants
make choices based on small differences in the expectancy
values (Gershman, 2016; Moustafa, Gluck, Herzallah, &
Myers, 2015).

As shown by Shultz (Schultz, 2016), positive and negative
PEs differentially effect dopaminergic activity. Because dif-
ferential levels of dopaminergic activity influence amount
of PE learning (Steinberg et al., 2013), positive and negative
PE might be associated with different PE learning rates. All
models discussed in this paper assume that separate learning
parameters differentially update expectancy values depend-
ing on the positive or negative valence of the PE (Gershman,
2016). In particular, the No Bias model is composed of the
explore-exploit parameter, β, and two learning rate param-
eters, one to update expectancy values when PE is positive,
ηp, the other when it is negative, ηn.

The No Bias model assumes that the first choice made to a
stimulus is unbiased. However, global choice biases, the ten-
dency to choose one alternative over another regardless of
previous outcomes, and choice inertia bias, the tendency to
repeat choices, are commonly reported in the choice literature
(Fritsche, Mostert, & de Lange, 2017; Garcia-Perez &
Alcala-Quintana, 2013; Gold & Ding, 2013; Linares,
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Aguilar-Lleyda, & Lopez-Moliner, 2019;Morgan, Dillenburger,
Raphael, & Solomon, 2012). It is during experimental con-
ditions leading to uncertainty that choice biases are most
likely to be observed (Morgan et al., 2012; Urai, Braun,
& Donner, 2017). When a stimulus is first presented on
the PALT, participants are doubly uncertain, neither know-
ing whether the trial is a reward or punishment trial nor
knowing which category to choose. Given this uncertainty,
initial choice biases might be due to a global choice bias or
to a choice history bias – the latter occurring on the initial
presentation of subsequent stimuli after the first PALT
stimulus is presented. If choice biases occur on the
PALT, they would be unobserved processes that would
obscure the use of observed scores as markers of PE learn-
ing. In the First Choice Bias model, we modeled the impact
of choice biases on the expectancy value of a choice when a
stimulus is first presented, which is when uncertainty is
likely maximal. This model included a separately estimated
bias parameter, bias(sj), for each of the four stimuli, sj, pre-
sented on a trial set in addition to the explore-exploit param-
eter, β, and the two learning rate parameters, ηp and ηn. The
First Choice Bias (Singlet) model constrained estimates of
the four bias parameters to be equal to a single esti-
mated value.

Considering the importance of biases in accounting for
choice performance, we predicted that the First Choice
Bias model would provide a better fit to the data than would
the Base model. Once the best fitting model was chosen, we
tested the hypothesis that individuals with ANwould demon-
strate deficient reinforcement learning as evidenced by worse

optimal response accuracy on reward and punishment trials
and/or poorer learning rates, ηp|n, associated with positive
and negative PEs compared to HCs. Moreover, within AN,
differences between accuracy on reward and punishment tri-
als or positive and negative PEs would indicate differential
sensitivity to learning from rewarding or disappointing out-
comes. Exploratory analyses examined associations between
learning rates, size of PEs and AN symptom severity and
clinical outcome.

METHOD

Participants

Forty-two individuals meeting criteria for DSM-5 restricting-
type AN (4 also endorsed purging; mean age= 22.8, range
= 16–60) were compared to 38 HC volunteers (mean age =
21.6, range= 15–32; Table 1). Individuals with AN were
recruited from the University of California, San Diego
Eating Disorders Treatment and Research outpatient Partial
Hospitalization Program (PHP). The PHP uses a blend of
family-based treatment and dialectical behavior therapy
adapted for intensive treatment settings. Patients received
treatment 6 to 10 h/day, 6 days/week, including individual,
family, group, and multi-family therapy, nutritional counsel-
ing, psychiatric care, and medical monitoring (Brown et al.,
2018; Reilly et al., 2020). AN diagnosis was determined by
semi-structured interview performed by program psychia-
trists at treatment admission according to 2010 draft criteria
for the DSM-5 (Hebebrand & Bulik, 2011) and included

Fig. 1. (A) Rather than setting all expectancy values, V, to zero on the first trial a stimulus, sj, is presented, as in the No Bias model, they are set
either to a bias value, bias(sj), or to zero in the First Choice Bias model. The bias(sj) values are sampled from a normal distribution with mean
zero, indicating no bias, and a precision= 10, where precision= 1/variance. If the sampled bias value for stimulus sj is positive, the choice that
would yield the optimal long-term outcome is favored and its expectancy value for trial 1, V1(cOpt|sj), is set to the sampled bias value, bias(sj),
whereas the expectancy value for the nonoptimal response, V1(cNonOpt|sj), is set to zero. If the sampled bias value is negative the nonoptimal
choice is favored and the expectancy value for the nonoptimal choice is set to the absolute value of the bias, whereas the expectancy value for
the optimal choice is set to zero. For the First Choice Bias (Singlet) model, the bias parameters for each stimulus is set to the same estimated
value bias(s.). (B) The expectancy value for trial tþ 1 associated with the choice ci made to stimulus sj on trial t, Vtþ1(ci|sj), is the expectancy
value on trial t updated by the product of a learning rate with the prediction error. Different learning rates, ηp|n, are estimated for positive or
negative prediction errors, PEp|n. Learning rates are sampled from a beta distribution using values of the α and β parameters listed in Table 2
(Also see Supplement). A logistic equation maps the differences between the expectancy value of the choice made on trial t, Vt(ci|sj), and the
value of the choice not made, VtðcijSjÞ, to the probability Pt(ci|sj) of making the chosen response ci given that stimulus sj was presented on
trial t. The logistic regression weight β is sampled from a gamma distribution using values of the shape and rate parameters presented in Table 2
(Also see Supplement).
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Table 1. Demographic and clinical characteristics of the sample

HC (n= 38) AN-R (n= 42)

Mean (SD)/n (%) Mean (SD)/n (%) t/χ2 statistic p Cohen’s d

Age (years) 21.61 (4.33) 22.81 (9.57) −.74 .46 .16
BMI at time of study (kg/m2) 21.65 (2.21) 18.27 (2.19) 6.85 <.001 1.54
Lowest BMIa 19.44 (1.64) 15.96 (1.91) 8.56 <.001 1.95
BMI at discharge 20.23 (1.95)
Education (years) 14.08 (2.72) 13.10 (2.60) 1.65 .10 .37
Female 38 (100) 40 (95) 1.86 .17
Race 7.07 .07
Caucasian 26 (68.4) 37 (88.1)
Asian 9 (23.7) 3 (7.1)
African American 2 (5.3) 0 (0)
Other 1 (2.6) 2 (4.8)

Ethnicity .04 .85
Hispanic 6 (15.8) 6 (14.3)
Non-Hispanic 32 (84.2) 36 (85.7)

EDE-Q Global Score (n= 40) 3.18 (1.80)
EDE-Q Restraint 2.64 (1.97)
EDE-Q Eating Concerns 2.75 (1.72)
EDE-Q Shape Concerns 3.89 (1.94)
EDE-Q Weight Concerns 3.52 (2.00)

STAI State (HC= 35, AN= 39) 25.43 (6.65) 57.25 (13.40) -13.15 <.001 3.01
STAI Trait (HC= 35) 29.46 (7.31) 56.20 (12.23) -11.85 <.001 2.65
BDI (n= 40) 27.04 (15.42)
TCI Harm Avoidance (n= 33) 22.33 (8.49)
TCI Novelty Seeking (n= 28) 18.07 (8.34)
BIS Punishment (n= 34) 25.03 (2.75)
BAS Reward (n= 34) 16.97 (2.15)
BAS Drive (n= 33) 11.12 (2.13)
BAS Fun (n= 32) 10.63 (3.05)
SPSRQ Punishment (n= 17) 21.65 (10.11)
SPSRQ Reward (n= 17) 21.11 (15.00)
Comorbid Diagnosesb

Major Depressive Disorder 0 9 (21.4)
Generalized Anxiety Disorder 0 6 (14.3)
Panic Disorder 0 0 (0)
Social Phobia 0 4 (9.5)
Obsessive-Compulsive Disorder 0 2 (4.8)
Post-traumatic Stress Disorder 0 6 (14.3)
Substance Use Disorder 0 2 (4.8)

Medication classb,c

Antidepressant 0 21 (50)
Atypical antipsychotic 0 7 (16.7)
Mood stabilizer 0 3 (7.1)
Anxiolytic 0 4 (9.5)

Length of treatment at UCSD (days) 102.7 (46.8)

Note: Welch’s two sample t-tests were used to assess statistical significance for between-group differences in continuous variables. Cronbach’s alphas for all
self-report measures were strong (α = .84−.99). Self-report questionnaires were completed within 16.1 days of the PALT administration.
aTwo AN did not complete this assessment.
bOne AN did not complete this assessment.
cSeventeen AN were prescribed only one class of medication, 6 AN were prescribed two classes, and 2 AN were prescribed 3 classes of medication. All med-
ications with presumed dopaminergic action fell within the atypical antipsychotic classification.
BDI = Beck Depression Inventory-Second Edition (BDI-2) (Beck, Steer, & Brown, 1996); BIS/BAS = Behavioral Inhibition/Behavioral Activation Scale
(Carver & White, 1994); BMI = body mass index; EDE-Q = Eating Disorder Exam – Questionnaire (Fairburn & Beglin, 1994); SPSRQ = Sensitivity to
Punishment Sensitivity to Reward Questionnaire (Torrubia, Avila, Molto, & Caseras, 2001); STAI = Spielberger State-Trait Anxiety Inventory (Spielberger,
Gorsuch, & Lushene, 1970); TCI = Temperament and Character Inventory (TCI; (Cloninger, Przybeck, Svrakic, & Wetzel, 1994).
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atypical and partially remitted AN (BMI range: 14.5–23.8 kg/
m2). HCs were recruited from the San Diego community and
did not have any eating disorder symptomatology or Axis I
psychiatric disorder based on a modified version of the
Structured Clinical Interview for DSM-IV-TR Module H
(First, Spitzer, Gibbon, & Williams, 2002) and the Mini
International Neuropsychiatric Interview (Sheehan et al.,
1998). See Supplement for additional exclusion criteria.

Procedure

AN participants completed the PALT on average 19.8 days
(SD= 19.9) after treatment admission. Weight and height,
measured via digital scale and stadiometer, were obtained
at admission, within two days of PALT completion, and at
discharge for AN, and during the task visit for HC. Self-report
questionnaires to assess anxiety, depression and temperament
traits common in AN (e.g., reward/punishment sensitivity,
inhibition, harm avoidance) that might relate to learning
behavior (Table 1) were completed within 16.1 days
(SD= 18.9) of the PALT in AN (Harrison, Treasure, &
Smillie, 2011; Jappe et al., 2011; Wagner et al., 2006). The
study was approved by the Institutional Review Board of
the University of California, San Diego, research was com-
pleted in accordance with the Helsinki Declaration, and all
participants gave written informed consent and received a
stipend.

Probabilistic Associative Learning Task

The PALT (Figure 2) involves receiving 25 points when
choosing the optimal response on reward trials, but losing
25 points when choosing the nonoptimal response on punish-
ment trials (Bodi et al., 2009; Mattfeld et al., 2011; Myers
et al., 2013). On each trial, participants saw one of four stimu-
lus images and were prompted to decide whether it was asso-
ciated with one of two categories “A” or “B”, corresponding
to different response keys. Two images were randomly
assigned to be “reward” stimuli in that selection of the opti-
mal category typically produced feedback and a gain of 25
points, whereas selection of the nonoptimal category typi-
cally produced no gain of points. The remaining two images

were “punishment” stimuli in that selection of the nonoptimal
category typically produced feedback and a loss of 25 points,
whereas selection of the optimal category typically produced
no loss of points. Reward-learning trials and punishment
learning trials were intermixed within the task with a favor-
able outcome associated with a gain on reward trials and the
avoidance of loss on punishment trials. Unfavorable out-
comes led to no change in points on reward trials and a loss
of 25 points on punishment trials. The participant’s cumula-
tive point tally was shown at the bottom of the screen on each
trial and was initialized to 500 points at the start of the experi-
ment. As done in prior studies (Bodi et al., 2009; Mattfeld
et al., 2011), two task sets were administered, each with a dif-
ferent set of pictures to increase the number of trials during
which participants were actively learning new associations.
The order of stimulus sets was counterbalanced across partic-
ipants. Each set contained 160 trials, divided into four 40-trial
blocks. Within each block, each stimulus appeared 10 times;
8 times the optimal response was associated with the more
favorable outcome, whereas two times the nonoptimal
response was associated with the more favorable outcome.
For each participant, trial order was randomized within a
block. Trials lasted until the participant responded and were
separated by a 2s interval, during which time the screen was
blank. On each trial, the computer recorded whether the par-
ticipant made the optimal response, regardless of the actual
outcome on that trial. The task took about 30min to complete.
The experiment was administered on a MacBook Pro, pro-
grammed in MatLab version R2016B.

Computational Reinforcement Learning Models

Like Confirmatory Factor Analysis, computational models of
cognitive processes embody assumptions about a model’s
architecture and parameters that determine how observed
data are related to latent processes. Whereas the assumptions
fix the architecture of a model, varying the model’s parame-
ters can fine-tune the model’s functioning (Farrell &
Lewandowsky, 2018). Parameters estimated for each of the
three models are listed in Table 2 and discussed in more detail
in the caption of Figure 1 and in Supplemental Materials. To
operationalize PE size, outcome was coded 1 for gains on

Table 2. Parameters estimated for each of the four models and their prior distributions

Model Explore-Exploit Learning Rate Initial Bias

No Bias ∼ gamma(124.4920, 35.2834) ηp, ηn ∼ beta(1.5,1.5)
Mode= 3.50, SD= 0.3162 Mode= 0.50, SD= 0.25 Fixed to 0.0

First Choice Bias ∼ gamma(124.4920, 35.2834) ηp, ηn ∼ beta(1.5,1.5) Biasr1, Biasr2, Biasp1, Biasp2 ∼ Norm(0, 10)
Mode= 3.50, SD= 0.3162 Mode= 0.50, SD= 0.25 Mode= 0.0, SD= 0.3162

First Choice Bias (Singlet) ∼ gamma(124.4920, 35.2834) ηp, ηn ∼ beta(1.5,1.5) Biasr1 = Biasr2 = Biasp1 = Biasp2 ∼ Norm(0, 10)
Mode= 3.50, SD= 0.3162 Mode= 0.50, SD= 0.25 Mode= 0.0, SD= 0.3162

Note. Parameters ηp and ηn represent the learning rates for positive and negative prediction errors respectively. Parameter Biasr1 is the bias weight for the first
reward stimulus; Biasr2 is the bias weight for the second reward stimulus; Biasp1 the bias weight for the first punishment stimulus; Biasp2 the bias weight for the
second punishment stimulus. ∼ signifies “distributed as.” The Gaussian distribution in rjags is parameterized as mean and precision, where precision= 1/
variance.
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reward trials, −1 for loss on punishment trials, and 0 for no
change in points. Successful learning drives the expectancy
values toward gains, coded 1, on reward trials and toward
avoidance of loss, coded 0, on punishment trials. The No
Bias model allowed positive and negative PE learning rate
parameters, ηp and ηn, and the explore-exploit parameter,
β, to vary and set initial expectancy values to zero. The First
Choice Bias model (Figure 1) allowed β, ηp and ηn to vary,
but also included four parameters that determined the initial
expectancy values of choices made to each of the four stimuli
in order to account for choice biases. Given how expectancy
values are updated, the impact of these biases propagates to
subsequent trials. The First Choice Bias (Singlet) model set
the four bias parameters to the same estimated value. The full
First Choice Bias model was selected as the best fitting model
as assessed by deviance information criterion weights (see
Supplement).

Parameter estimation

We used the R routine rjags to generate Bayesian estimates of
model parameters based on fits to trial by trial optimal
response data for each stimulus (Plummer, 2017). See
Supplement for details and model sensitivity analysis. The
predicted blockmeans for reward and punishment trials based
on parameter estimates for the best fitting model are presented
in Figure 3.

Statistical Analysis

Behavioral performance

Choice behavior was analyzed using a repeated measures
analysis of variance (rmANOVA) on optimal response accu-
racy with Group as a between subjects effect and Block and
Set as within subject effects, separately for reward trials and
punishment trials.

Model-generated parameters

Analyses were performed separately for reward and punish-
ment trials. To compare groups on learning rate parameters,
we performed a rmANOVA with Group as a between effect

and Set and PE learning rates (ηp, ηn) as within effects. We
also performed a Group x Set rmANOVA to investigate
group differences in the β parameter. To investigate the bias
parameters, we averaged the two bias values for reward
stimuli and the two bias values for punishment stimuli, then
performed a rmANOVA involving Group × Set. To more
completely examine group differences in level of learning
from a PE perspective, we averaged the size of PEs over trials
separating values by PE type (positive or negative) within
reward and punishment trials for each set (e.g., mean negative
PE for punishment trials on set 1) and submitted these means
to Group × Set × PE type rmANOVAs.

Exploratory clinical associations

To examine whether standard clinical assessments are asso-
ciated with learning in AN, Pearson correlational analyses
examined relationships between 14 reinforcement learning
model values (for each set: ηp, ηn, positive and negative
PEs for each trial type, and β) and 9 AN clinical measures
(age, admission BMI, EDE-Q Global score, TCI Harm
Avoidance, TCI Novelty Seeking, BIS/BAS, SPSRQ,
STAI, BDI) at time of study. To examine associations with
treatment outcome, reinforcement learning model values
were explored as predictors of BMI at discharge using hier-
archical linear regression analyses, controlling for BMI at
treatment admission, length of treatment, and medication sta-
tus. The hierarchical linear regression analysis was repeated
using each self-reported clinical measure as a predictor.
Bonferroni correction for multiple comparisons was used
to determine a family-wise p-value for the 14 learning model
values (.004) and the 9 clinical measures (.006) assuming
p = .05 for each test.

Sensitivity analyses

To examine the potential impact of low weight and medica-
tion status on our results, we compared AN participants with a
BMI below 18.5 kg/m2 (n = 25; 59.5% of sample) to AN par-
ticipants with a BMI above 18.5 kg/m2 (n= 17; 41.5% of
sample), and AN participants on medication (n= 25; 61%
of sample) to AN participants not on medication (n= 16;

Fig. 2. Probabilistic associative learning task (copied with permission from (Mattfeld et al., 2011)).
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39% of sample) on clinical measures usingWelch’s two sam-
ple t-tests and repeated the rmANOVAs described above for
each subsample. Small samples precluded analysis of medi-
cation class (Table 1).

RESULTS

Sample Characteristics

AN andHC groups did not differ in age or education (Table 1).
AN had significantly lower current BMI (p < .001). In AN,
there was a significant increase in BMI from treatment admis-
sion to discharge (t(39)= 7.9, p < .001, Cohen’s d= 1.0).

Behavioral Performance

AGroup × Block × Set rmANOVA on optimal responses for
reward trials revealed a main effect of Block, indicating
increased accuracy over time across all participants, consis-
tent with learning, F(3,225) = 41.482, p < .001, η2p = .356
(Figure 3A). We detected a Group × Block interaction, cor-
responding to faster learning rates in the HC group compared
to AN, F(3,225) = 5.771, p= .001, η2p= .071. A Group × Set
interaction indicated AN were more accurate than HC on Set
1, but less accurate than HC on Set 2, F(1,75)= 5.556,
p = .021, η2p = .069.

For punishment trials, a Group × Block × Set rmANOVA
revealed a main effect of Block, indicating increased accu-
racy over time, F(3,225)= 3.711, p = .012, η2p = .047
(Figure 3B). A main effect of Group indicated AN performed
worse than HC, F(1,75)= 6.833, p = .011, η2p = .083. Taken
together, both groups demonstrated greater accuracy over
time (aka, learning) for reward and punishment trials; com-
pared to HC, AN had slower overall learning on reward trials,
with better overall accuracy on Set 1 and worse accuracy on
Set 2 (possibly suggesting greater difficulty set-shifting and
learning new associations, see (Filoteo et al., 2014)), and
were less accurate across punishment trials.

Model Generated Parameters

Prediction error learning rates (η)

AGroup × Set × PE learning rate type (ηp vs. ηn) rmANOVA
revealed a main effect of Group, indicating that AN learned
more slowly than HC following both positive PEs and negative
PEs, F(1,75)= 5.521, p= .021, η2p= .061 (Table 3; Figure 4A).
Amain effect of PE type revealed faster learning rates following
positive PEs compared to negative PEs across the entire sample,
F(1,75)= 78.792, p < .001, η2p = .512. That is, faster learning
occurred when the outcomes were better than expected relative
to when the outcomes were worse than expected.

Fig. 3. Plots of the observed and predicted mean probability of selecting the optimal choice for AN and HC groups across the four blocks by
trial type (reward, punishment) and picture set. We calculated for each participant the predicted block means for reward and punishment trials
based on the participant’s full First Choice Bias model parameter estimates and present the average of these means for AN and HC groups for
the two picture sets as black squares. As can be seen, in every instance the model derived means are within the 95% confidence interval of the
observed means, and most cover the data means, supporting the prediction model. (A) For observed data, on reward trials, results indicate
improved performance over time across all participants, consistent with learning, [main effect of Block, F(3,225)= 41.482, p < .001,
η2p = .356], and the HC group had a greater learning rate overall than the AN group [Group × Block interaction, F(3,225)= 5.771,
p = .001, η2p = .071]. However, AN performed better than HC on Set 1 and worse than HC on Set 2 [Group × Set interaction,
F(1,75)= 5.556, p = .021, η2p = .069]. No other main effects or interactions were significant for reward trials, ps > .3. No other main effects
or interactions were significant for reward trials, ps > .3. (B) On punishment trials, performance improved over time across all participants
[main effect of Block, F(3,225)= 3.711, p = .012, η2p = .047], and HC performed better than AN [main effect of Group, F(1,75)= 6.833,
p = .011, η2p = .083]. No other main effects or interactions were significant for punishment trials, ps > .1.
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Prediction error size

To directly examine whether groups might have differed in
accuracy as a result of better than or worse than expected out-
comes on reward and punishment trials, Group × Set × PE
type rmANOVAs for average PE size revealed no effects
involving Group for reward trials (all η2p < .025) or for pun-
ishment trials (all η2p < .045).

Explore-exploit strategy (β)

A Group × Set rmANOVA for the explore-exploit parameter,
β, revealed a main effect of Group, whereby AN had smaller β
values thanHC, F(1,75)= 6.366, p= .014, η2p= .078 (Table 3;
Figure 4B). Since smaller values imply individuals are

exploring more than exploiting stimulus-response-outcome
hypotheses, results indicate AN may less decisively make
choices.

Choice bias parameters

To assess whether groups differed in the degree to which
early reward and punishment reinforcement trials reflected
choice biases, the Group × Set interaction for bias values
was significant only for reward trials, indicating that HC
had a greater bias against making the optimal choice on
Set 1, whereas AN had a greater bias against making the opti-
mal choice on Set 2, F(1,75) = 10.651, p = .002, η2p = .124
(Table 3; Figure S10). This is consistent with the behavioral
response data indicating that AN outperformed HC on Set 1

Table 3. Reinforcement learning model generated parameters by group and set

HC (n= 38) AN-R (n= 42)

Mean (SD) Mean (SD)

Set 1 Set 2 Set 1 Set 2 comparison F p η2p

ηp .45 (.33) .46 (.30) .33 (.26) .44 (.34) HC > AN 5.52 .02 .061
ηn .16 (.20) .25 (.30) .12 (.21) .12 (.21) ηp > ηn 78.79 <.001 .512
Positive PE reward trials .32 (.25) .30 (.22) .33 (.22) .34 (.27) ns
Negative PE reward trials −.63 (.26) −.62 (.25) −.63 (.23) −.60 (.29)
Positive PE punishment trials .15 (.20) .14 (.14) .10 (.12) .10 (.14)
Negative PE punishment trials −.65 (.19) −.67 (.17) −.71 (.16) −.66 (.18)
β 3.64 (.24) 3.45 (.92) 3.26 (.79) 3.07 (1.12) HC > AN 6.366 .014 .078
Bias values reward trials −.13 (.17) −.04 (.15) −.04 (.17) −.12 (.14) Group × Set 10.651 .002 .124
Bias values punishment trials .09 (.20) .07 (.21) .04 (.21) .09 (.20) ns

Note: PE: predication error; ηp: learning rate for positive PE; ηn: learning rate for negative PE; β: “inverse temperature” parameter representing the balance
between exploring new choice rules and exploiting the rules learned. Two HC and one AN did not complete Set 2.

Fig. 4. (A) Plot of the mean learning rate by prediction error type and group collapsed across set demonstrating the main effect of Group
resulting from the Group × Set × PE type ANOVA. The main effect of Group indicated that AN learn more slowly than HC following both
positive PEs and negative PEs. Amain effect of PE type revealed faster learning rates following positive PEs compared to negative PEs across
the entire sample. Neither the main effect of Set nor any interactions were significant (all η2p < .039). (B) Plot of explore-exploit values by
group and set showing a main effect of Group. AN had lower β values than HC. Smaller values imply individuals are still exploring stimulus-
response-outcome hypotheses and are less certain about exploiting learned rules. The main effect of Set was not significant, nor was the
interaction of Group x Set (all η2p < .030). (C) Plot of the change in BMI from admission to discharge with size of negative PE on punishment
trials of Set 1. Error bars represent standard error of the mean; *p < .05, **p < .01, ***p < .001.
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and performed worse than HC on Set 2 on reward trials. No
significant effects of choice bias were detected for punish-
ment trials (all η2p < .018).

Exploratory Clinical Associations

No associations between reinforcement learning model
parameters and clinical variables were detected in AN (uncor-
rected p< .05). Separate hierarchical linear regressionmodels
indicated the size of positive PE and of negative PE on pun-
ishment trials in Set 1 significantly added to the prediction of
discharge BMI controlling for admission BMI, treatment
length, and medication status (positive PE: multiple
R2 = .62, F_change(1,34)= 9.528, p = .004; negative PE:
multiple R2 = .56, F_change(1,34) = 15.901, p < .001).
Both models remained significant after Bonferroni
correction.

To test whether both positive and negative PE predicted a
portion of the change in BMI with treatment, we entered
both into the regression model (multiple R2 = .64,
F_change(2,33) = 8.546, p = .001). Negative PE (Beta =
−.348, t = −2.475, p = .019) more potently predicted
discharge BMI than did positive PE (Beta = −.141,
t = −1.063, p = .296) (Figure 4C). In other words, AN with
smaller negative PE on punishment trials on Set 1, i.e., values
closer to −1.0, gained the most weight. Negative PE will
approach−1 on punishment trials when successful performers
learn to expect outcomes that are close to the favorable out-
come, coded 0, but instead receive an unfavorable outcome,
coded−1. The eightANparticipantswith negative PE between
−.85 and −1.0 in fact had an average expectancy of 0.013 on
punishment trials when negative PE occurred (range for entire
sample: −.467 to .545) (see Supplement). Moreover, on pun-
ishment trials where negative PE occurred, the regression of
expectancy values onto negative PE produced a significant
negative regression weight (b = −.419, p = .048), implying
thatANparticipants with larger negative PE (i.e. closer to zero)
had more negative expectancies about avoiding loss.

Sensitivity Analyses

As expected, the low weight group had lower BMI at admis-
sion, time of study, and discharge (all ps < .001, all Cohen’s
ds> 1.0), and showed greater change in BMI during treat-
ment (p = .01, Cohen’s d= 1.1), but weight status groups
did not differ on any other clinical measure.Medication status
groups did not differ on any clinical measure, including BMI,
change in BMI during treatment, length of treatment, or self-
report questionnaires. The rmANOVA results from the full
sample reported above were observed in the subsample con-
trasts. Regression results (PE on punishment trials predicting
discharge BMI) were observed only in the low weight sam-
ple. Overall, sensitivity analyses suggest weight and medica-
tion status did not appreciably contribute to the full sample
results.

DISCUSSION

This is the first study to apply computational models of
reinforcement learning to assess learning from both reward
and punishment in restricting-type AN using an instrumental
probabilistic associative learning task. A unique aspect to this
study is that we distinctly examined differences in instrumen-
tal reinforcement learning from better or worse than expected
outcomes by deriving trial-specific PE estimates for both
reward and punishment conditions. We then modeled and
compared learning based on positive and negative PEs sepa-
rately for reward and punishment trials to examine learning
rate when a positive PE occurs (unexpectedly favorable out-
come) and when a negative PE occurs (unexpectedly disap-
pointing outcome). Model-based results indicated that both
HC and AN learn better following positive PEs compared
to negative PEs. Consistent with our hypotheses, individuals
with AN have lower learning rates for positive and negative
PEs compared to HC. This indicates that AN learn less than
HCs from the same PE, slowing their learning of favorable
choices. This deficit in learning to predict the most favorable
choice was also evidenced in their optimal choice perfor-
mance by a flatter learning curve on reward trials and by
fewer optimal responses on punishment trials. These results
are consistent with previous work showing poorer learning
performance from reward-based feedback in ill AN
(Foerde & Steinglass, 2017) and extends these findings to
learning from loss-based feedback. Deficits in learning from
punishment could help explain the rigid persistence of disor-
dered eating behaviors despite negative consequences.

The degree to which cognitive inflexibility and difficulty
set-shifting in AN contribute to altered reinforcement learn-
ing remains to be determined; assessing reversal learning
may inform this issue. The lower explore-exploit β values
observed in the AN group suggest that poor learning was
not due to perseverative responding, as lower β values indi-
cate that individuals with AN were less decisive about
exploiting what they had learned and continued to explore
stimulus-response outcomes rather than employing the same
strategy across all trials, regardless of whether they were
aware of the strategy employed. Clinically, AN is character-
ized by increased sensitivity to uncertainty (Kesby, Maguire,
Brownlow, & Grisham, 2017). It is possible that diminished
certainty in exploiting what they learned is secondary to
uncertainty in the task contingencies, although this was not
directly tested.

In addition to comparing groups on response accuracy and
rate of learning, we also examined the size of PE as a deter-
minant of learning level. Counter to our hypotheses, no
group differences in magnitude of positive and negative
PEs within reward or punishment trials were detected.
However, within the AN group, the magnitude of negative
PE when punishment was possible was most strongly asso-
ciated with treatment outcome. Moreover, larger negative
PEs were associated with more negative expectations on
punishment trials, suggesting that AN individuals who
gained the least amount of weight during the course of
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treatment held negative expectancies about avoiding loss
on punishment trials. This negative expectancy is consis-
tent with reports of elevated punishment sensitivity,
increased lose-shift behavior on a reversal learning task
(Geisler et al., 2017), negative interpretation bias for
ambiguous social stimuli that involve the risk of rejection,
and tendency to resolve ambiguity in a negative manner in
AN (Cardi, Di Matteo, Gilbert, & Treasure, 2014; Cardi, Di
Matteo, Corfield, & Treasure, 2012; Cardi et al., 2017). No
other learning parameter or clinical measure predicted BMI
change during treatment, and PEs were not associated with
self-report measures of sensitivity to reward or punishment,
suggesting that this learning metric may be a particularly sen-
sitive prognostic indicator.

Other studies have observed a relationship between reward
PE brain response and weight gain in AN (DeGuzman, Shott,
Yang, Riederer, & Frank, 2017; GKW Frank et al., 2018); for
example, elevated absolute PE (positive and negative PE com-
bined) response in the caudate, orbitofrontal cortex and insula
has been associated with less weight gain during inpatient
treatment. Taken together, our behavioral findings further
support the role of altered PE in the pathophysiology of
AN, extending prior findings to include operant learning in
response to both reward and punishment, and are consistent
with the hypothesis that a failure to appropriately modify
expectancies may contribute to poor outcome.

Strengths of this study include novel aspects and refine-
ments of the reinforcement learning model, that included
modeling segregating learning for each of the four stimuli
within a set, adding parameters to account for choice biases
rapidly acquired on early trials, performing Bayesian esti-
mates of model parameters for each subject, and modeling
separate positive and negative PE learning rate parameters.
However, reinforcement learning models are inherently lim-
ited by the parameters included in the model. While our mod-
els demonstrated good fit to the behavioral data, future work
may consider testing models with additional parameters, such
as a stickiness (or perseveration) parameter (Palminteri,
Khamassi, Joffily, & Coricelli, 2015). To increase generaliz-
ability, we did not exclude for medication use and co-morbid-
ities. Prior studies in major depressive disorder (MDD) report
worse learning to reward (Herzallah et al., 2017), and that
SSRI antidepressants impair learning from negative feedback
(Herzallah et al., 2013). Notably, 50% of our sample was pre-
scribed antidepressants, and 20% of our sample had a comor-
bid MDD diagnosis. Although our sensitivity analysis
suggests medication status did not contribute to overall
results, larger, controlled studies are needed to examine the
effects of these clinical variables on reinforcement learning.
We also do not have neuropsychological data to characterize
the general cognitive function of participants; however,
groups did not differ on reaction time on the PALT (see
Supplement), suggesting the AN group did not have slowed
processing speed indicative of cognitive impairment or medi-
cation effects. Thus, it is unlikely that differences in reward/
punishment learning in AN are reflective of broader cognitive
impairment. Lastly, change in BMI is just one metric of

treatment outcome; limited data on cognitive symptoms pre-
vented analysis of other outcome measures.

Conclusions

Results suggest that both AN and HC groups learned better
following unexpected favorable outcomes (positive PEs) than
unexpected disappointing outcomes, suggesting that maxi-
mizing positive PEs may potentiate learning in general.
Moreover, individuals with AN demonstrated slower learn-
ing from both positive and negative experience compared
to HC. Additionally, negative PEs on punishment trials were
associated with worse treatment outcome. Treatments that
modify negative expectations about avoiding loss, or the per-
ceived value of the outcomes themselves, either with medica-
tion or cognitive-behavioral strategies, may be effective in
promoting recovery. Overall, findings support the potential
of applying computational approaches to reinforcement
learning in AN to enhance mechanistic explanations of
behavior, identify new neurobehavioral constructs relevant
to psychopathology and advance treatment development
through target identification.

SUPPLEMENTARY MATERIAL
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