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Abstract
In this paper, the model of bisexual branching processes affected by viral infectivity and with random control
functions in independent and identically distributed (i.i.d.) random environments is established and the Markov
property is given firstly. Then the relations of the probability generating functions of this model are studied, and
some sufficient conditions for process extinction under common mating functions are presented. Finally, the limiting
behaviors of the considered model after proper normalization, such as the sufficient conditions for the convergence
in L1 and L2 and almost everywhere convergence, are investigated under the condition that the random control
functions are super additive.

1. Introduction

In order to accurately describe population models in physics, biology, and chemistry, Daley [2] intro-
duced the bisexual branching process model in 1968. Until now, a lot of scholars have focused on the
researches of this model and made intensive studies on it. Alsmeyer, R¥osler, González, and Molina dis-
cussed the extinction probability, limiting behavior, and statistical inference of the model [1]–[7]. The
reproduction of species is affected by many factors such as natural environment and social environment.
In order to describe a more complex gender population model, mathematical researchers have modified
the basic model established by Daley. The models of super additive bisexual branching processes in vary-
ing environments [11], bisexual branching processes in random environments [10], bisexual branching
processes with immigration in random environments [12, 16], and bisexual branching process in ran-
dom environments with random control [15] are introduced, and a lot of research results have been
obtained. Li et al. [8, 9] studied the limiting behaviors and moment convergence criteria of bisexual
branching processes in random environments. Song et al. [14] discussed the limiting behaviors of the
conditional mean growth rate for a kind of bisexual branching processes in random environments. Ren
et al. [13] investigated the Markov property, probability generating functions, and extinction probabil-
ity of bisexual branching processes affected by viral infectivity in random environments. In this paper,
a model of bisexual branching processes affected by viral infectivity and with random control func-
tions in a random environment is established, and the Markov property, the relation of the probability
generating functions, and extinction probability of the model are discussed. Meanwhile, the limiting
behaviors of the model after suitable normalization, such as sufficient conditions for almost everywhere
convergence and convergence in L1 and L2, are discussed when the random control functions are super
additive. There have been many achievements in the study of bisexual branching processes in random
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environments, but the effects of random control and viral infectivity will produce new properties and
require some new conditions and methods to study them. Thus, the theory of bisexual branching process
in random environment is generalized.

The remainder of this paper is organized as follows. In Section 2, some notations, definitions, and
conventions are introduced. Sections 3–6 are devoted to presenting the main results, including the
Markov property, probability generating functions, extinction probability, and the limiting behaviors.

2. Preliminaries

We present some notations, basic definitions, and conventions, which will be used in the remaining of
the paper.

Let (Ω,F, P) be a given probability space, (Θ,Σ) be a measurable space, and N = {0, 1, 2, . . .}, N+ =

{1, 2, . . .}. Let −→b = {bn(w), n ∈ N} be a sequence of random environment, mapping from (Ω,F, P)
to (Θ,Σ). Unless otherwise stated, we assume that −→b = {bn, n ∈ N} is a sequence of independent
and identically distributed (i.i.d.) random variables. For fixed n ∈ N , set {( fni, mni), i ∈ N+} be a
sequence of i.i.d. random variables mapping from (Ω,F, P) to N × N, representing that the ith mating
unit in nth generation of a species reproduces fni females and mni males. Let {Pj (bn), j ∈ N} denote the
probability of that the ith mating unit in nth generation will reproduce j offspring in environment bn.
Let {If ,ni, i ∈ N+, n ∈ N} and {Im,ni, i ∈ N+, n ∈ N} denote two clusters of random variables sequences
on N, representing the virus-infected-trial functions of female and male in the ith mating unit in nth
generation, respectively. Let {ax (\) (1 − a(\))1−x, x = 0 or 1} and {bx (\) (1 − b(\))1−x, x = 0 or 1} be
the probability distributions of {If ,ni, i ∈ N+, n ∈ N} and {Im,ni, i ∈ N+, n ∈ N}, respectively.

We denote by {(Fn, Mn), n ∈ N+} a sequence of random variables mapping from (Ω,F, P) to N × N,
where Fn and Mn represents the number of females and males in the nth generation, respectively and
generate Zn = L(Fn, Mn) mating units. Here L(x, y) : N × N −→ N is called a mating function, which
is assumed to be nondecreasing in each argument and satisfy L(x, 0) = L(0, y) = 0, x ∈ N , y ∈ N .
We further assume that the reproduction of each mating unit is independent of the other units in the
same generation and other generations. Thus the {(Fn+1, Mn+1), n ∈ N} individuals are reproduced
independently by Zn mating units and generate Zn+1 = L(Fn+1, Mn+1) mating units. {qn(k) : n, k ≥ 0},
which is a cluster of i.i.d. random sequence with respect to n with distribution Q(bn; k, i) = P(qn(k) =
i | −→b ), i ∈ N , is defined as the control function. qn(k) = i means that the number of mating units that
can participate in the reproduction is i when there are k mating units in nth generation.

Definition 2.1. Let
−→
X = {Xn, n ∈ N} be a sequence of random variables and

−→
b = {bn, n ∈ N} be a

sequence of random environments. For any x, n ∈ N+, if

P(X0 = x | −→b ) = P(X0 = x | b0), P(Xn+1 = x | X0, X1, . . . , Xn,−→b ) = P(bn; Xn, x),

then
−→
X is called a Markov chain in the random environment

−→
b .

Definition 2.2. If {Zn, n ≥ 0} satisfies

(i) Z0 = 1, (Fn+1, Mn+1) =
qn (Zn )∑

i=1
( fniIf ,ni, mniIm,ni),

Zn+1 = L(Fn+1, Mn+1), n ∈ N;
(ii) P( fni + mni = j | −→b ) = Pj (bn), j ∈ N , i ∈ N+,

P(If ,ni = x | −→b ) = ax (bn) (1 − a(bn))1−x, x = 0 or 1, n ∈ N , i ∈ N+,
P(Im,ni = x | −→b ) = bx (bn) (1 − b(bn))1−x, x = 0 or 1, n ∈ N , i ∈ N+;
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(iii) for jni, kni ∈ N , 0 ≤ n ≤ l, 1 ≤ i ≤ s, l ∈ N , s ∈ N+,

P( fni = jni, mni = kni, 0 ≤ n ≤ l, 1 ≤ i ≤ s | −→b )

=

l∏
n=0

s∏
i=1

P( fni = jni, mni = kni |
−→
b );

(iv) for given
−→
b , {( fni, mni), n ∈ N , i ∈ N+}, {If ,ni, n ∈ N , i ∈ N+} and {Im,ni, n ∈ N , i ∈ N+} are

independent; furthermore, for given n, each of them is an identically distributed random variable
sequence. For given

−→
b , per mating unit in the nth generation produces a female with the proba-

bility V(bn); then {Zn, n ≥ 0} is called a bisexual branching process under the influence of viral
infectivity with random control function in the random environment

−→
b .

We further suppose Im,ni = 0 when the male in ith mating unit in nth generation died of a viral
infection, that is, the ith mating unit in nth generation lost the ability to reproduce; Im,ni = 1 when the
male in ith mating unit in nth generation didn’t have the virus or was cured of it, that is, the ith mating
unit in nth generation can reproduce normally. Likewise, we define If ,ni = 0 and If ,ni = 1 for the female
in ith mating unit in nth generation.

For ease of exposition, we present some notations.
Let Fn(

−→
b ) = f(Z0, Z1, . . . , Zn,−→b ), n ∈ N;

For any k, s ∈ N , B1 = {(rl, al, bl, jl) |
h∑

l=1
rl ≥ k + s,

h∑
l=1

(aljl, bl (rl − jl)) = (k, s), rl ≥ 0, al, bl =

0 or 1, 0 ≤ jl ≤ rl, l = 1, . . . , h};
For any k, l ∈ N+, B2 = {(rv, av, bv, jv) |

s∑
v=1

rv ≥ k + l,
s∑

v=1
(avjv, bv (rv − jv)) = (k, l), rv ≥ 0, av, bv =

0 or 1, 0 ≤ jv ≤ rv, v = 1, · · ·, s};
Pkj (bn) = P( fniIf ,ni = k, mniIm,ni = j | −→b ) represents the conditional probability of that k females

and j males in the offspring of ith mating unit in nth generation will survival under the influence of the
virus.

We further introduce some conventions, which will be used in the proofs of some theorems.
(A1) To avoid triviality, for any \ ∈ Θ, assume that V(\), a(\), b(\) ∈ (0, 1), 0 < P0(\) + P1(\) <

1, a.s.
(A2) There exists a constant c ∈ (0, 1) such that P(cj ≤ qn(j) ≤ j | −→b ) = 1.
(A3) For any n, x, y ∈ N , it holds that L(x, y) andFn(

−→
b ) are independent and L(x, y) is super additive.

(A4) When −→
b is given, {qn(k), n, k ∈ N}, {( fni, mni), i ≥ 1}n≥0 and {If ,ni, i ∈ N+, n ∈ N} are

conditional independent.

3. Markov property

Theorem 3.1. {Zn, n ≥ 0} is a Markov chain in the random environment
−→
b , and the one-step transition

probabilities are

P(bn; i, j) =
∞∑

k=0

∞∑
s=0

∞∑
h=0

Q(bn; i, h)P(L(k, s) = j)


∑
(rl ,al ,bl ,jl ) ∈B1

[
h∏

l=1
Prl (bn)

· aal (bn) (1 − a(bn))1−al bbl (bn) (1 − b(bn))1−bl Cjl
rl V

jl (bn) (1 − V(bn))rl−jl ]
 .
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Proof. By the definition of {Zn, n ≥ 0}, we have

P(Z0 = 1 | −→b ) = P(Z0 = 1 | b0).

From conventions (A3) and (A4), and the fact that {( fniIf ,ni, mniIm,ni), i ≥ 1} are i.i.d., for any
i1, i2, . . . in−1, i, j ∈ N+, one can derive that

P(Zn+1 = j | Z1 = i1, Z2 = i2, · · ·, Zn−1 = in−1, Zn = i,−→b )

=
P(Zn+1 = j, Z1 = i1, Z2 = i2, · · ·, Zn−1 = in−1, Zn = i | −→b )

P(Z1 = i1, Z2 = i2, · · ·, Zn−1 = in−1, Zn = i | −→b )

=

P(L(
qn (Zn )∑

l=1
( fnlIf ,nl, mnlIm,nl)) = j, Z1 = i1, · · ·, Zn−1 = in−1, Zn = i | −→b )

P(Z1 = i1, · · ·, Zn−1 = in−1, Zn = i | −→b )

=

∞∑
h=0

P(L(
h∑

l=1
( fnlIf ,nl, mnlIm,nl)) = j, qn(i) = h, Z1 = i1, · · ·, Zn = i | −→b )

P(Z1 = i1, · · ·, Zn−1 = in−1, Zn = i | −→b )

=

∞∑
k=0

∞∑
s=0

∞∑
h=0

P(L(k, s) = j,
h∑

l=1
( fnlIf ,nl, mnlIm,nl) = (k, s), qn(i) = h | −→b )

=

∞∑
k=0

∞∑
s=0

∞∑
h=0

Q(bn; i, h)P(L(k, s) = j)


∑
(rl ,al ,bl ,jl ) ∈B1

[
h∏

l=1
Prl (bn)(1 − a(bn))1−al

· aal (bn)bbl (bn) (1 − b(bn))1−bl Cjl
rl V

jl (bn) (1 − V(bn))rl−jl ]
 .

�

By Definition 2.1, we have that {Zn, n ≥ 0} is a Markov chain in the random environment −→b with
the desired one-step transition probabilities.

Theorem 3.2. {(Fn, Mn), n ≥ 1} is a Markov chain in random environment
−→
b , and the one-step

transition probabilities are

P(bn; (i, j), (k, l)) =
∞∑

s=0

∞∑
h=0

P(L(i, j) = h)Q(bn; h, s)


∑
(rv,av,bv,jv ) ∈B2

[
s∏

v=1
Prv (bn)

·aav (bn) (1 − a(bn))1−avbbv (bn)(1 − b(bn))1−bvCjv
rv V

jv (bn) (1 − V(bn))rv−jv
]}

.

Proof. By (F1, M1) = ( f01If ,01, m01Im,01), for any (i, j) ∈ N+ × N+, we have

P((F1, M1) = (i, j) | −→b ) =
∑

r1≥i+j,a1,b1=0 or1,
(a1 j1,b1 (r1−j1 ) )=(i,j)

{Pr1 (b0)aa1 (b0) (1 − a(b0))1−a1

· bb1 (b0) (1 − b(b0))1−b1Cj1
r1 V

j1 (b0)) (1 − V(b0))r1−j1 }
= P((F1, M1) = (i, j) | b0).
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Using conventions (A3) and (A4) and the fact that for any n ∈ N , {( fniIf ,ni, mniIm,ni), i ≥ 1} are i.i.d., it
is deduced that, for (i1, j1), (i2, j2), . . . (in−1, jn−1), (i, j), (k, l) ∈ N+ × N+,

P((Fn+1, Mn+1) = (k, l) | (Fn, Mn) = (i, j), . . . , (F1, M1) = (i1, j1),
−→
b )

=
P((Fn+1, Mn+1) = (k, l), (Fn, Mn) = (i, j), · · · , (F1, M1) = (i1, j1) |

−→
b )

P((Fn, Mn) = (i, j), · · · , (F1, M1) = (i1, j1) |
−→
b )

=

P(
qn (L (i,j) )∑

v=1
( fnvIf ,nv, mnvIm,nv) = (k, l), · · · , (F1, M1) = (i1, j1) |

−→
b )

P((Fn, Mn) = (i, j), · · · , (F1, M1) = (i1, j1) |
−→
b )

=

∞∑
s=0

∞∑
h=0

P(L(i, j) = h, qn(h) = s,
s∑

v=1
( fnvIf ,nv, mnvIm,nv) = (k, l) | −→b )

=

∞∑
s=0

∞∑
h=0

P(L(i, j) = h)Q(bn; h, s){
∑

(rv,av,bv,jv ) ∈B2

[
s∏

v=1
Prv (bn)(1 − a(bn))1−av

· aav (bn)bbv (bn) (1 − b(bn))1−bvCjv
rv V

jv (bn) (1 − V(bn))rv−jv ]}.

By Definition 2.1, we obtain that {(Fn, Mn), n ≥ 1} is a Markov chain in the random environment −→b
with the desired one-step transition probabilities. �

4. Probability generating functions

For fixed n ∈ N , by the independence of {fni}, {mni}, {If ,ni}, and {Im,ni}, i ∈ N+, we denote

ibn (s, t) = E{sfniIf ,ni tmniIm,ni | −→b }, Πn(s, t) = E{sFn tMn }, 0 ≤ s, t ≤ 1,

ibn (s) = E{sfniIf ,ni+mniIm,ni | −→b }, Ψn(s) = E(sZn), 0 ≤ s ≤ 1.

Lemma 4.1. [13] For any 0 ≤ s, t ≤ 1, n ∈ N, it holds that

ibn (s, t) = ibn (V(bn)a(bn)s + (1 − V(bn))b(bn)t).

Theorem 4.2. For any 0 ≤ s, t ≤ 1, n ∈ N, it holds that

E(sFn+1 tMn+1 | Zn,−→b ) = {ibn (s, t)}qn (Zn ) ,Πn+1(s, t) = E [(ibn (s, t))qn (Zn ) ] .

Proof. For fixed n ∈ N , by the fact that {fni}, {mni}, {If ,ni}, {Im,ni}, i ∈ N+ are independent and each of
them is identically distributed, we have, for 0 ≤ s, t ≤ 1, n, k ∈ N ,

E(sFn+1 tMn+1 | Zn = k,−→b ) = E{s
qn (Zn )∑

l=1
fnlIf ,nl

t
qn (Zn )∑

l=1
mnlIm,nl | Zn = k,−→b }

= E{
qn (k)∏
l=1

sfnlIf ,nl tmnlIm,nl | −→b }

=

qn (k)∏
l=1

E(sfnlIf ,nl tmnlIm,nl | −→b )

= {ibn (s, t)}qn (k) .
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Thus

E(sFn+1 tMn+1 | Zn,−→b ) = {ibn (s, t)}qn (Zn ) .

Then it follows that

Πn+1(s, t) = E [E(sFn+1 tMn+1 | Zn,−→b )] = E [(ibn (s, t))qn (Zn ) ] .
�

Corollary 4.3. For any 0 ≤ s, t ≤ 1, n, k ∈ N, the following equalities hold

(1) P(Fn+1 = 0, Mn+1 = 0 | Zn = k,−→b ) = [ibn (0, 0)]qn (k) .

(2) E(sFn+1 | Zn = k,−→b ) = [ibn (s, 1)]qn (k) .

(3) P(Mn+1 = 0 | Zn = k,−→b ) = [ibn (1, 0)]qn (k) .

(4)
∞∑
i=0

P(Fn+1 = i, Mn+1 = 0 | Zn = k,−→b )si = [ibn (s, 0)]qn (k) .

(5) E(sMn+1 | Zn = k,−→b ) = [ibn (1, s)]qn (k) .

Proof. (1) For any 0 ≤ s, t ≤ 1, n, k ∈ N , using Theorem 4.2 gives

[ibn (s, t)]qn (k) = E(sFn+1 tMn+1 | Zn = k,−→b )

=
∑
i,j≥0

sitjP(Fn+1 = i, Mn+1 = j | Zn = k,−→b )

= P(Fn+1 = 0, Mn+1 = 0 | Zn = k,−→b )

+
∑
j≥1

s0tjP(Fn+1 = 0, Mn+1 = j | Zn = k,−→b )

+
∑
i≥1

sit0P(Fn+1 = i, Mn+1 = 0 | Zn = k,−→b )

+
∑
i,j≥1

sitjP(Fn+1 = i, Mn+1 = j | Zn = k,−→b )

= P(Fn+1 = 0, Mn+1 = 0 | Zn = k,−→b )

+
∑
j≥1

tjP(Fn+1 = 0, Mn+1 = j | Zn = k,−→b )

+
∑
i≥1

siP(Fn+1 = i, Mn+1 = 0 | Zn = k,−→b )

+
∑
i,j≥1

sitjP(Fn+1 = i, Mn+1 = j | Zn = k,−→b ).

Therefore, we have

[ibn (0, 0)]qn (k) = P(Fn+1 = 0, Mn+1 = 0 | Zn = k,−→b ).

In a similar way as above, we can obtain (2)–(5) in Corollary 4.3. �

Below the average number of females and males of the (n + 1)th generation will be given by the
probability generating function.
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Theorem 4.4.

(1) mibn (s,1)
ms |s=1= a(bn)E( fni |

−→
b ), mibn (1,t)

mt |t=1= b(bn)E(mni |
−→
b );

(2) For any i ∈ N+, n ∈ N, if E [fni] < ∞ and E [mni] < ∞, then it holds that

E [Fn+1] = E{qn(Zn)a(bn)E( fni |
−→
b )}, E [Mn+1] = E{qn(Zn)b(bn)E(mni |

−→
b )}.

Proof. To prove (1), by the definitions of ibn (s, t) and Πn(s, t), one derives

ibn (s, t) =
∞∑

k=0

∞∑
j=0

sktjP( fniIf ,ni = k, mniIm,ni = j | −→b )

=

∞∑
k=0

∞∑
j=0

sktjPkj (bn). (4.1)

Letting t = 1 and taking partial derivative with respect to s in (4.1), we have

mibn (s, 1)
ms

=

∞∑
k=1

∞∑
j=0

ksk−1Pkj (bn) =
∞∑

k=1
ksk−1P( fniIf ,ni = k | −→b ).

Since fni and If ,ni, i ≥ 1 are independent when −→
b is given, we obtain

mibn (s, 1)
ms

|s=1=

∞∑
k=1

kP( fniIf ,ni = k | −→b ) = a(bn)E( fni |
−→
b ). (4.2)

Likewise, we have

mibn (1, t)
mt

|t=1= b(bn)E(mni |
−→
b ).

Now we proceed to the proof of (2). It follows from Theorem 4.2 that

Πn+1(s, 1) = E{[ibn (s, 1)]qn (Zn ) }. (4.3)

Owing to E [fni] < ∞ and E [mni] < ∞, i = 1, 2, 3, . . . , n = 0, 1, 2, 3, . . ., taking partial derivative with
respect to s on both sides of (4.3), letting s= 1 and combining with dominated convergence theorem
and (4.2), we deduce that

E(Fn+1) =
mΠn+1(s, 1)

ms
|s=1=

m{E{[ibn (s, 1)]qn (Zn ) }}
ms

|s=1

= E{
m [(ibn (s, 1))qn (Zn ) ]

ms
|s=1}

= E{[qn(Zn) (ibn (s, 1))qn (Zn )−1i
′
bn
(s, 1))] |s=1}

= E{qn(Zn)a(bn)E( fni |
−→
b )}.

Likewise, we have

E [Mn+1] = E{qn (Zn)b(bn)E(mni |
−→
b )}.

�
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5. Extinction probability

Set q = lim
n→∞

P(Zn = 0), then q is the extinction probability of {Zn, n ≥ 0}. We denote

gbn (s) = ibn (V(bn)a(bn)s + (1 − V(bn))b(bn)),

gbn (s) = ibn (V(bn)a(bn) + (1 − V(bn))b(bn)sd), 0 ≤ s ≤ 1, n ∈ N , d ∈ N+.

Lemma 5.1 ([13]). For given
−→
b and any n ∈ N , s ∈ [0, 1], gbn (s) and gbn (s) are probability generating

functions.

Lemma 5.2 ([8]). Suppose
−→
b is an i.i.d. random environment, and hbn (s), s ∈ [0, 1] is a probability

generating function. If E [h′
b0
(1)] ≤ 1, then

lim
n→∞

E [hb0 (hb1 (· · · (hbn (0)) · · · ))] = 1.

Below we will discuss the extinction conditions for processes under several given mating functions.
(H1) L(x, y) = x · min{1, y} (polyandry, such as Bronze-winged Jacana Metopidius);
(H2) L(x, y) = min{x, dy}, d ∈ N+

(d= 1: Monogamy, such as swans; d ≥ 2: Polygamy, such as mandarin ducks);
(H3) L(x, y) = x (Parthenogenetic reproduction, such as stick insects).

Theorem 5.3. Let L(x, y) = x min{1, y}. If E [V(b0)a(b0)i′
b0
(V(b0)a(b0) + (1 − V(b0)b(b0)))] ≤ 1,

then q= 1.

Proof. By the definition of L(·, ·), for any s ∈ (0, 1), we have

Ψn+1 (s) = E(sZn+1) = E{
∞∑

k=0
P(Zn+1 = k | −→b )sk}

= E{
∞∑

k=0

∞∑
j=0

P(Zn+1 = k, Zn = j | −→b )sk}

= E{
∞∑
j=0

[
∞∑

k=0
P(Zn+1 = k | Zn = j,−→b )sk]P(Zn = j | −→b )}

= E{
∞∑
j=0

P(Zn = j | −→b ) [
∞∑

k=0
P(Fn+1 = k | Zn = j,−→b )sk

−
∞∑

k=0
P(Fn+1 = k, Mn+1 = 0 | Zn = j,−→b )sk + P(Mn+1 = 0 | Zn = j,−→b )]}.

From Corollary 4.3, Lemma 4.1, and the definition of gbn (s), we get

Ψn+1(s) =E{
∞∑
j=0

P(Zn = j | −→b ) [(ibn (s, 1))qn (j) − (ibn (s, 0))qn (j)

+ (ibn (1, 0))qn (j) ]}

=E{E [(ibn (s, 1))qn (Zn ) | −→b ] − E [(ibn (s, 0))qn (Zn ) | −→b ]
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+ E [(ibn (1, 0))qn (Zn ) | −→b ]}
=E [(ibn (s, 1))qn (Zn ) ] − E [(ibn (s, 0))qn (Zn ) ] + E [(ibn (1, 0))qn (Zn ) ]
=E [(gbn (s))qn (Zn ) ] − E [(ibn (V(bn)a(bn)s))qn (Zn ) ]
+ E [(ibn (V(bn)a(bn)))qn (Zn ) ] .

Using the convention (A2) and the properties of probability generating function gives

Ψn+1 (s) ≥E [(gbn (s))Zn] − E [(ibn (V(bn)a(bn)s))qn (Zn ) ]
+ E [(ibn (V(bn)a(bn)))qn (Zn ) ]

≥E [(gbn (s))Zn] = E [Ψn(gbn (s))] ≥ E [Ψn(gbn (0))], (5.1)

that is

Ψn+1(s) ≥ E [Ψn(gbn (0))] .

By using the recursion of (5.1), we obtain

Ψn+1(s) ≥ E [Ψ0(gb0 (gb1 (· · · (gbn (0)) · · · )))] = E [gb0 (gb1 (· · · (gbn (0)) · · · ))] .

According to Lemma 5.2, if E [g′
b0
(1)] ≤ 1, that is,

E [V(b0)a(b0)i′
b0
(V(b0)a(b0) + (1 − V(b0)b(b0)))] ≤ 1,

then

q = lim
n→∞

P(Zn = 0) = lim
n→∞

Ψn+1(0) ≥ lim
n→∞

E(gb0 (gb1 (· · · (gbn (0)) · · · ))) = 1.
�

Theorem 5.4. Let L(x, y) = min{x, dy}, d ∈ N+. If min{E [V(b0)a(b0)i′
b0
(V(b0)a(b0) + (1 −

V(b0))b(b0))], E [d(1 − V(b0))b(b0)·
i′
b0
(V(b0)a(b0) + (1 − V(b0))b(b0))]} ≤ 1, then q = 1.

Proof. It follows from the definitions of L(·, ·) and gbn (s) and corollary 4.3 that

P(Zn+1 ≤ k | Zn,−→b ) ≥ P(Fn+1 ≤ k | Zn,−→b )

and

E(sZn+1 | Zn,−→b )
1 − s

=

∞∑
j=0

∞∑
m=0

P(Zn+1 = j | Zn,−→b )sj+m

=

∞∑
j=0

∞∑
k=j

P(Zn+1 = j | Zn,−→b )sk =

∞∑
k=0

k∑
j=0

P(Zn+1 = j | Zn,−→b )sk

=

∞∑
k=0

P(Zn+1 ≤ k | Zn,−→b )sk ≥
∞∑

k=0
P(Fn+1 ≤ k | Zn,−→b )sk

=
E(sFn+1 | Zn,−→b )

1 − s
=

[ibn (s, 1)]qn (Zn )

1 − s
=

[gbn (s)]qn (Zn )

1 − s
, s ∈ (0, 1).
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According convention (A2) and the properties of the probability generating functions, we obtain

Ψn+1(s) = E{E(sZn+1 | Zn,−→b )} ≥ E{[gbn (s)]qn (Zn ) }
≥ E{[gbn (s)]Zn } = E [Ψn(gbn (s))] ≥ E [Ψn(gbn (0))],

that is,

Ψn+1(s) ≥ E [Ψn(gbn (0))] . (5.2)

Using the recursion of (5.2), we obtain

Ψn+1(s) ≥ E [Ψ0(gb0 (gb1 (· · · (gbn (0)) · · · )))] = E [gb0 (gb1 (· · · (gbn (0)) · · · ))] .

According to Lemma 5.2, if E [g′
b0
(1)] ≤ 1, that is, E [V(b0)a(b0)i′

b0
(V(b0)a(b0)+(1−V(b0))b(b0))] ≤

1, then

q = lim
n→∞

P(Zn = 0) = lim
n→∞

Ψn+1(0) ≥ lim
n→∞

E(gb0 (gb1 (· · · (gbn (0)) · · · ))) = 1.

Similarly, we get E(sZn+1 | Zn,−→b ) ≥ [gbn (s)]
Zn , and therefore

Ψn+1(s) = E(sZn+1) ≥ E [Ψ0(gb0 (gb1 (· · · (gbn (0)) · · · )))]
= E [gb0 (gb1 (· · · (gbn (0)) · · · ))] .

Owing to Lemma 5.2, if E [g′b0
(1)] ≤ 1, that is, E [d(1 − V(b0))b(b0)i′

b0
(V(b0)a(b0) + (1 −

V(b0))b(b0))]} ≤ 1, then

q = lim
n→∞

P(Zn = 0) = lim
n→∞

Ψn+1(0) ≥ lim
n→∞

E(gb0 (gb1 (· · · (gbn (0)) · · · ))) = 1.

In summary, if min{E [V(b0)a(b0)i′
b0
(V(b0)a(b0) + (1 − V(b0))b(b0))], E [d(1 −

V(b0))b(b0)i′
b0
(V(b0)a(b0) + (1 − V(b0))b(b0))]} ≤ 1, then q= 1. �

Theorem 5.5. Let L(x, y) = x. If E [V(b0)a(b0)i′
b0
(V(b0)a(b0) + (1 − V(b0))b(b0))] ≤ 1, then q= 1.

Proof. By the definition of L(·, ·) and Corollary 4.3, we have

E(sZn+1 | Zn,−→b ) = E(sFn+1 | Zn,−→b ) = [ibn (s, 1)]qn (Zn ) .

From Lemma 5.2, convention (A2), the definition of gbn (s), and the properties of probability generating
functions, it follows that

E(sZn+1 | Zn,−→b ) = [gbn (s)]qn (Zn ) ≥ [gbn (s)]Zn .

Hence

Ψn+1(s) = E{E(sZn+1 | Zn,−→b )} ≥ E{[gbn (s)]qn (Zn ) }
≥ E{[gbn (s)]Zn } = E [Ψn(gbn (s))] ≥ E [Ψn(gbn (0))] . (5.3)

https://doi.org/10.1017/S0269964824000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000287


270 M. Ren and G. Zhang

By the recursion of (5.3), we obtain

Ψn+1(s) ≥ E [Ψ0(gb0 (gb1 (· · · (gbn (0)) · · · )))] = E [gb0 (gb1 (· · · (gbn (0)) · · · ))] .

By Lemma 5.2, if E [g′
b0
(1)] ≤ 1, that is, E [V(b0)a(b0)i′

b0
(V(b0)a(b0) + (1− V(b0))b(b0))] ≤ 1, then

q = lim
n→∞

P(Zn = 0) = lim
n→∞

Ψn+1(0) ≥ lim
n→∞

E(gb0 (gb1 (· · · (gbn (0)) · · · ))) = 1.
�

6. Limiting behaviors

Definition 6.1. Suppose {Zn, n ≥ 0} is a bisexual branching process affected by viral infectivity and
with random control functions in the random environment

−→
b , when the nth generation has k mating

units,

rk (\) =
E(Zn+1 | Zn = k, bn = \)

k

is defined to be the mean growth rate of per mating unit in nth generation.

Lemma 6.2. Let qn(·) and L(·, ·) be super additive, then for any n ∈ N , j ∈ N+, it holds that inf
j≥1

rj (bn)
exists.

Proof. By the super additivity of mating function L(·, ·) and the condition P(cZn ≤ qn (Zn) ≤ Zn |
−→
b ) = 1, we get

rj (bn) = j−1E(Zn+1 | Zn = j,−→b )

= j−1E{L(
qn (Zn )∑

i=1
( fniIf ,ni, mniIm,ni)) | Zn = j,−→b }

= j−1E{L(
qn (j)∑
i=1

( fniIf ,ni, mniIm,ni)) |
−→
b }

≥ j−1E{
qn (j)∑
i=1

L(( fniIf ,ni, mniIm,ni)) |
−→
b }, j ∈ N+.

For given −→
b and fixed n ∈ N , {( fniIf ,ni, mniIm,ni), i ≥ 1} are i.i.d., so we have

rj (bn) ≥ cE(L( fn1If ,n1, mn1Im,n1) |
−→
b ), j ∈ N+.

According to the supremum and infimum principle, it holds that inf
j≥1

rj (bn) exists.

Writing R(bn) = inf
j≥1

rj (bn), we have

R(bn) ≤ cE(L( fn1If ,n1, mn1Im,n1) |
−→
b ).

�
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Lemma 6.3. Let
−→
b be an i.i.d. random environment, L(., .) and qn(·) be super additive, then it holds

that

lim
j→∞

rj (bn) = sup
j≥0

rj (bn) � r(bn), n ∈ N .

Proof. Using the definition of conditional mean growth rate, the super additivity of qn(·) and L(·, ·)
and the fact that for given −→

b and any n ∈ N , {( fniIf ,ni, mniIm,ni), i ≥ 1} are i.i.d., it suffices to show that

(k + j)rk+j (bn) = E(Zn+1 | Zn = k + j,−→b )

= E{L(
qn (Zn )∑

i=1
( fniIf ,ni, mniIm,ni)) | Zn = k + j,−→b }

≥ E{L(
qn (k)+qn (j)∑

i=1
( fniIf ,ni, mniIm,ni)) |

−→
b }

≥ E{L(
qn (k)∑
i=1

( fniIf ,ni, mniIm,ni)) |
−→
b }

+ E{L(
qn (k)+qn (j)∑
i=qn (k)+1

( fniIf ,ni, mniIm,ni)) |
−→
b }

= E{L(
qn (k)∑
i=1

( fniIf ,ni, mniIm,ni)) |
−→
b } + E{L(

qn (j)∑
i=1

( fniIf ,ni, mniIm,ni)) |
−→
b }

= E{L(
qn (Zn )∑

i=1
( fniIf ,ni, mniIm,ni)) | Zn = k,−→b }

+ E{L(
qn (Zn )∑

i=1
( fniIf ,ni, mniIm,ni)) | Zn = j,−→b }

= krk (bn) + jrj (bn).

Namely krk (bn) is super additive, so we have

lim
j→∞

rj (bn) = sup
j≥0

rj (bn) � r(bn).

�

Corollary 6.4. For any n ∈ N, it holds that

n−1∏
k=0

R(bk) ≤ E(Zn | −→b ) ≤
n−1∏
k=0

r(bk). (6.1)

Proof. We shall prove this result by induction. For n= 1, using the definition of conditional mean growth
rate, convention (A2) and Lemma 6.3 gives
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R(b0) ≤ cE(L(( f01If ,01, m01Im,01) | b0)) ≤ E(Z1 | −→b ) = E(Z1 | Z0 = 1,−→b )

= E(L(
q0 (1)∑
i=1

( f0iIf ,0i, m0iIm,0i)) |
−→
b ) ≤ r(b0).

Namely inequality (6.1) holds for n= 1. Supposing inequality (6.1) holds for n = s ∈ N+, below we
prove it holds for n = s + 1

E(Zs+1 | −→b ) = E [E(Zs+1 | Zs,
−→
b ) | −→b ] = E(ZsrZs (bs) |

−→
b ) ≤ E(Zsr(bs) |

−→
b )

= r(bs)E(Zs |
−→
b ) ≤

s∏
k=0

r(bk).

On the other hand, we can also obtain

E(Zs+1 | −→b ) = E [ZsrZs (bs) |
−→
b ] ≥ E(ZsR(bs) |

−→
b )

= R(bs)E(Zs |
−→
b ) ≥

s∏
k=0

R(bk),

which completes the proof. �

In what follows, we let Sn =
n−1∏
k=0

r(bk), In =
n−1∏
k=0

R(bk), n ∈ N+, S0 = I0 = 1, Ŵn = S−1
n · Zn, Wn =

I−1
n · Zn, n ∈ N .

Theorem 6.5. Let
−→
b be an i.i.d. random environment, qn(·) and L(·, ·) be super additive, then there

exists a nonnegative, finite random variable Ŵ such that

lim
n→∞

Ŵn = Ŵ a.s.

Proof. For any n ∈ N , it holds that

E(Zn+1 | Fn(
−→
b )) = E(Zn+1 | Zn,−→b ) = ZnrZn (bn) ≤ Znr(bn).

From the definition of Ŵn and Lemma 6.3, we deduce that

E(Ŵn+1 | Fn(
−→
b )) = [

n∏
k=0

r(bk)]−1E(Zn+1 | Fn (
−→
b )) ≤ [

n−1∏
k=0

r(bk)]−1Zn = Ŵn.

Namely {Ŵn,Fn (
−→
b ), n ≥ 0} is a nonnegative supermartingale. Since

E(Ŵn+1) = E [E(Ŵn+1 | Fn(
−→
b ))] ≤ E(Ŵn) ≤ · · · ≤ E(Ŵ0) = 1 , n ∈ N ,

according to the martingale convergence theorem, there exists a nonnegative, finite random variable Ŵ
such that

lim
n→∞

Ŵn = Ŵ a.s.
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The proof ends. �

In what follows, for any n ∈ N , j ∈ N+, we denote fj (bn) � j−2Var(Zn+1 | Zn = j,−→b ), dj (bn) �
E(Z2

n+1 | Zn = j,−→b ), then we have the following.

Lemma 6.6. For any n ∈ N, let qn(·) and L(·, ·) be super additive, then there exists a f(bn) such that
fj (bn) ≤ f(bn), j ∈ N+ when

−→
b is given.

Proof. From Definition (2.2), the super additivity of L(·, ·) and qn(·), and the fact that
{( fniIf ,ni, mniIm,ni), i ≥ 1} are i.i.d. when n is given, it follows that

E(Z2
n+1 | Zn = k + j,−→b ) = E{[L(

qn (k+j)∑
i=1

( fniIf ,ni, mniIm,ni))]2 | −→b }

≥ E{[L(
qn (k)+qn (j)∑

i=1
( fniIf ,ni, mniIm,ni))]2 | −→b }

≥ E{[L(
qn (k)∑
i=1

( fniIf ,ni, mniIm,ni))]2 | −→b }

+E{[L(
qn (j)∑
i=1

( fniIf ,ni, mniIm,ni))]2 | −→b }

= E(Z2
n+1 | Zn = k,−→b ) + E(Z2

n+1 | Zn = j,−→b ).

So dj (bn) = E(Z2
n+1 | Zn = j,−→b ) is super additive, then it holds

lim
j→∞

j−1dj (bn) = sup
j>0

j−1dj (bn) = sup
j>0

j−1E(Z2
n+1 | Zn = j,−→b ).

Since j−2dj (bn) = j−2E(Z2
n+1 | Zn = j,−→b ) ≤ j−1E(Z2

n+1 | Zn = j,−→b ), then fj (bn) = j−2dj (bn) − r2
j (bn) ≤

sup
j>0

j−1E(Z2
n+1 | Zn = j,−→b ) − R2(bn) � f(bn), j ∈ N+, which completes the proof of Lemma 6.6.

�

Lemma 6.7 ([11]). Let R+ = (0,+∞). For given
−→
b , it follows that

(1) For any given n ∈ N, if {Aj (bn), j ≥ 1} is a nonincreasing sequence, then there exists a nonincreas-
ing function Vbn (·) on R+ such that Vbn (j) ≥ Aj (bn), j ∈ N+ and V∗

bn
(x) = x · Vbn (x), x ≥ 1 and

V̂∗
bn
(x) = x · V2

bn
(x 1

2 ), x ≥ 1 are concave.
(2) For any given n ∈ N, if {Aj (bn), j ≥ 1} is a nondecreasing sequence, then there exists a nonde-

creasing function kbn (·) on R+ such that kbn (j) ≤ Aj (bn), j ∈ N+ and k∗
bn
(x) = x · kbn (x), x > 0 is

convex.

Theorem 6.8. Let
−→
b be an i.i.d. random environment, qn(·) and L(·, ·) be super additive. If

∞∑
k=0

E [r−2(bk)f(bk)] < ∞

and

∞∑
k=0

E [1 − r−1(bk)kbk (E(Zk | −→b ))] < ∞,
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then it holds that {Ŵn, n ≥ 0} converges in L1, as n → ∞, to a nonnegative finite random variable Ŵ
with P(Ŵ > 0) > 0.

Proof. For any n ∈ N , by the definition of Ŵn and Lemmas 6.3 and 6.6, we have

E(Ŵ2
n+1 | −→b ) = S−2

n+1E [E(Z2
n+1 | −→b ) | −→b ] = S−2

n+1E(dZn (bn) |
−→
b )

= S−2
n+1E [Z2

n (fZn (bn) + r2
Zn
(bn)) |

−→
b ]

= E(Ŵ2
n | −→b ) (fZn (bn)r−2(bn) + r2

Zn
(bn)r−2(bn))

≤ E(Ŵ2
n | −→b ) (1 + f(bn)r−2(bn)),

namely,

E(Ŵ2
n+1 | −→b ) ≤ E(Ŵ2

n | −→b ) (1 + f(bn)r−2(bn)). (6.2)

By the recursion of (6.2), we have

E(Ŵ2
n+1 | −→b ) ≤

n∏
k=0

(1 + f(bk)r−2(bk)) ≤
∞∏

k=0
(1 + f(bk)r−2(bk)).

Since
∞∑

k=0
E [r−2(bk)f(bk)] < ∞ and −→

b is i.i.d., it follows that

E(Ŵ2
n+1) = E [E(Ŵ2

n+1 | −→b )] ≤
∞∏

k=0
[1 + E(f(bk)r−2 (bk))] < ∞.

Namely {Ŵn, n ≥ 0} is bounded in L2, and therefore {Ŵn, n ≥ 0} is uniformly integrable. It follows
from Theorem 6.5 that

lim
n→∞

EŴn = E( lim
n→∞

Ŵn) = EŴ < ∞.

Below we prove P(Ŵ > 0) > 0. By the fact that rZn (bn) is nondecreasing and Lemma 6.7, it suffices to
show that there exists a nondecreasing function kbn (·) and a convex function k∗

bn
(x) = x ·kbn (x) on R+

such that

E(Ŵn+1 | −→b ) = S−1
n+1E [E(Zn+1 | −→b ) | −→b ] = S−1

n+1E(ZnrZn (bn) |
−→
b )

≥ S−1
n+1E [Znkbn (Zn)] = S−1

n+1E [k∗
bn
(Zn) |

−→
b ]

≥ S−1
n+1k

∗
bn
[E(Zn | −→b )] = S−1

n+1E(Zn | −→b )kbn [E(Zn | −→b )]
= r−1(bn)E(Ŵn | −→b )kbn [E(Zn | −→b )],

namely,

E(Ŵn+1 | −→b ) ≥ r−1(bn)E(Ŵn | −→b )kbn [E(Zn | −→b )] . (6.3)

The recursion of (6.3) implies

E(Ŵn+1 | −→b ) ≥
n∏

k=0
r−1(bk)kbk [E(Zk | −→b )], n ∈ N .
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Combining
∞∑

k=0
E [1 − r−1(bk)kbk (E(Zk | −→b ))] < ∞ with Lemma 6.7, one derives that

lim
n→∞

E(Ŵn | −→b ) ≥
∞∏

k=0
r−1 (bk)kbk [E(Zk | −→b )] > 0.

By the Dominated convergence theorem, we have

EŴ = lim
n→∞

EŴn = E [ lim
n→∞

E(Ŵn | −→b )] > 0,

which completes the proof. �

Let Yk (bn) = r(bn) − rk (bn) > 0, k ∈ N . By Lemma 6.7 (i) and the fact that rk (bn), k ∈ N is
nondecreasing, there exists a nonincreasing function Vbn (·) satisfying Lemma 6.7 (i) such that Vbn (k) ≥
Yk (bn), k ∈ N+ and V∗

bn
(x) = xV2

bn
(x 1

2 ), x ≥ 1 are convex.

Theorem 6.9. If
∞∑

n=0
E [r−2(bn)f(bn)] < ∞ and

∞∑
n=0

{E [r−2(bn)V2
bn
(In)]}

1
2 < ∞, then {Ŵn, n ∈ N}

converges in L2 to a nonnegative random variable Ŵ.

Proof. By Theorem 6.8, if
∞∑

n=0
E [r−2(bn)f(bn)] < ∞, then {Ŵn, n ∈ N} is bounded in L2, that is,

there exists a constant C ≥ 0 such that EŴ2
n ≤ C, n ∈ N . Since {Ŵn,Fn (

−→
b ), n ∈ N} is a nonnegative

supermartingale, it follows from the Doob martingale decomposition theorem that Ŵn = Yn−Tn, n ∈ N ,
where {Yn,Fn(

−→
b ), n ∈ N} is a martingale with T0 = 0 and

Tn =

n−1∑
k=0

(Ŵk − E(Ŵk+1 | Fn (
−→
b ))) =

n−1∑
k=0

Ŵkr−1(bk)YZk (bk). a.s.

Below we show that {Tn, n ∈ N} is bounded in L2

‖ Tn ‖2 = ‖
n−1∑
k=0

Ŵkr−1(bk)YZk (bk) ‖2

≤
n−1∑
k=0

‖ Ŵkr−1(bk)YZk (bk) ‖2

=
n−1∑
k=0

{E [Ŵ2
k r−2(bk)Y2

Zk
(bk)]}

1
2

≤
∞∑

k=0
{E [E(Ŵ2

k r−2(bk)Y2
Zk
(bk) |

−→
b )]} 1

2 .
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Lemma 6.7 implies that xV2
bn
(x 1

2 ) is convex, and we deduce from Jensens inequality and Corollary 6.4
that

‖ Tn ‖2 ≤
∞∑

k=0
{E [S−2

k+1E(Z2
k Y

2
Zk
(bk) |

−→
b )]} 1

2 ≤
∞∑

k=0
{E [S−2

k+1E(Z2
k V2

bk
(Zk) |

−→
b )]} 1

2

≤
∞∑

k=0
{E [S−2

k+1(E(Zk | −→b ))2V2
bk
(E(Zk | −→b )]} 1

2

=
∞∑

k=0
{E [Ŵ2

k r−2 (bk)V2
bk
(E(Zk | −→b )]} 1

2

≤
∞∑

k=0

√
C{E [r−2(bk)V2

bk
(Ik)]}

1
2 .

An immediate consequence of the assumptions of Theorem 6.9 is that ‖ Tn ‖2≤
∞∑

k=0

√
C{E [r−2(bk)V2

bk
(Ik)]}

1
2 < ∞, namely {Tn, n ∈ N} is bounded in L2, and therefore {Tn, n ∈ N}

converges in L2 . Since Yn = Ŵn + Tn, then {Yn, n ∈ N} is a martingale bounded in L2. It follows that
from the martingale convergence theorem that {Yn, n ∈ N} converges in L2. In summary, we get that
{Ŵn, n ∈ N} converges to Ŵ in L2. �

Theorem 6.10. If
∞∑

k=0
[E(r(bk)R−1(bk))−1] < ∞, then there exists a nonnegative finite random variable

W such that

lim
n→∞

Wn = W a.s.

Proof. By Definition 2.2, we have

E(Wn+1 | Fn(
−→
b )) = I−1

n+1E(Zn+1 | Fn(
−→
b )) = I−1

n+1E(Zn+1 | Zn, bn)
= I−1

n+1ZnrZn (bn) ≥ Wn a.s.

Namely {Wn+1,Fn(
−→
b ), n ≥ 0} is a nonnegative submartingale. Corollary 6.4 implies

E(Wn | −→b ) = I−1
n E(Zn | −→b ) ≤

n−1∏
k=0

r(bk)R−1(bk).

Since−→b is an i.i.d. random environment and R(bn) ≤ r(bn), we have

E(Wn) = E [E(Wn | −→b )] ≤
n−1∏
k=0

E [r(bk)R−1(bk)] ≤
∞∏

k=0
E [r(bk)R−1(bk)] .

From
∞∑

k=0
[E(r(bk)R−1(bk)) − 1] < ∞, we have sup

n≥0
E(Wn) < ∞. Thus, by the Doob con-

vergence theorem, it follows that there exists a nonnegative finite random variable W such that
lim
n→∞

Wn = W a.s. �

7. Conclusion

So far, there are few results on the the model of bisexual branching processes affected by viral infectivity
and with random control functions in i.i.d. random environments. In this paper, based on the model, we
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discussed the Markov property, the relations of the probability generating functions of this model, and
some sufficient conditions for process extinction under common mating functions as well as the limiting
behaviors. The results of classical bisexual branching process are generalized and its application scope
is broadened.
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