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AUTOMORPHISMS OF METABELIAN GROUPS

ATHANASSIOSI. PAPISTAS

ABSTRACT. We investigate the problem of determining when IA(Fr(AnA)) is
finitely generated for al n and m, withn > 2 and m # 1. If mis a nonsquare free
integer then IA(Fr(AnA)) is not finitely generated for all n and if mis a square free
integer then IA(Fr(AmA)) isfinitely generated for all n, with n # 3, and IA(F3(AmA))
is not finitely generated. In case m is square free, Bachmuth and Mochizuki claimed
in ([7], Problem 4) that TR(AwA) is 1 or 4. We correct their assertion by proving that
TR(AmA) = co.

1. Introduction. For any group G, let IA(G) be the | A-automorphism group of G,
that is, the kernel of the natural mapping from Aut(G) into Aut(G/G’), where G’ denotes
the derived group of G. For each positive integer ¢, we write by 7.(G) the c-th term of
the lower central seriesof G. So,72(G) = G'. If ay, .. .. a; are elementsof agroup G then
[a1. 8] = ayapa; ta;t and, for ¢ > 3, [a.....a] = [[as.. ... ac-1]. &|. For a positive
integer n, with n > 2, we will denote by F,, the (absolutely) free group of rank n freely
generated by the set {fy, ..., fn}. If Visavariety of groups, we write F,(V) for the free
group of rank nin 'V and V(F;) for the verbal subgroup of F,, correspondingto V. Every
element in the image of the natural mapping from Aut(Fy) into Aut(Fn(V)) is caled
tame. For a non-negative integer m, with m # 1, A, denotes the variety of all abelian
groups of exponent dividing m, interpreted in such away that Ag = A isthevariety of all
abelian groups. Further, Wy, is the variety of al extensions of groupsin An, by groups
in A. We write W for Wo. In the papers ([5] and [6]), Bachmuth and Mochizuki have
proved that 1A (Fq(W)) is finitely generated for n # 3 and IA(F3(W)) is not finitely
generated. Bachmuth et al. (see [3], Theorem C) have shown that IA(F2(Wrm)) is not
finitely generated if misafreeinteger and finitely generated if mis a squarefree integer.
In this paper we extend the latter result for al n, withn > 2.

Wesay {Aut(Fn(V)).n > 1} hastamerangeinfinite, denoted by TR(V) = oo, if there
does not exist a positive integer d such that all automorphisms of F,(V) are tame for all
n > d. Otherwise, we say it hasafinite one. We deducefrom [5] and [6] that TR(W) = 4.
So, we concentrate on m, with m > 2. If mis prime, say p, then TR(W,) = 4. Indeed,
by means of techniques of [6] or more easily of [9], every automorphism of Fn(Wp) is
induced by an automorphismof Fy for all n > 4. Asweshall seein Section 4, 1A(F3(W,))
is not finitely generated and so TR(W)) = 4. The method of proving IA (F3(Wy)) is not
finitely generated is based on ideas of Bachmuth and Mochizuki in [5]. Thus, we may
assumemis not prime. If mis nonsquarefree, it follows from aresult of Bachmuth and
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Mochizuki [8] that TR(W ) = oco. In case mis square free, Bachmuth and Mochizuki
claimedin ([7], Problem 4) that TR(Wy,) is 1 or 4. We correct their assertion by proving
that TR(W ) = oo.

For positive integers n and m, with n,m > 2, let G(n, m) be afree group of rank nin
thevariety W,. Wewritem = p7* - - - pf", wherep; aredistinct primeintegersand o; € N.
Fori=1,..., r, we denote by G(n, m, i) the free group of rank nin the variety Wp,““ . By
aresult of Bachmuth and Mochizuki [4], IA(G(n. m)) isisomorphic to adirect product
IA(G(n,m. 1)) x - -- x IA(G(n, m,r)). Supposemis anonsquarefreeinteger. Then there
existsaprime p such that p? dividesm. Let T be the subgroup of Aut(G(n. pz)) consisting
of all tameautomorphisms. Since T isfinitely generated, Aut(G(n. p?)) = TIA(G(n. p?))
and Aut(G(n. p?)) is not finitely generated for all n, with n > 2, (see [8]), we obtain
that IA(G(n. p?)) is not finitely generated for all n. Therefore |A(G(n. m)) is not finitely
generated. Thus, we may assume mis square free. Our main result deals with this case.
In Section 4, we prove the following theorem.

THEOREM. Let G(n, m) be a free group of rank n in the variety Wy, with n.m > 2.
() If misanonsguarefree integer then IA(G(n, m)) is not finitely generated for all n.
(i) If misasguarefreeinteger then IA(G(n. m)) isfinitely generated for all n # 3and
IA(G(3.m)) is not finitely generated. Further, IA(G(n. m)) contains nontame elements
for all n.

COROLLARY. The tame range TR(Wy,) is infinite for any positive integer m, with
m > 2, but not prime.

2. Preliminaries. Let C = A xy B be the free product of groups A and B with
amalgamated subgroup U. An element ¢ of C can be written asc = ¢; - - - ¢ where each
¢ belongsto A or B, ¢; and ¢;.1 cannot both belong to A or both to B and r is uniquely
determined. The number r is called the length of ¢ and the length of the identity element
is defined to be 0. By the length of a subset I' we will mean the length of the shortest
element in the subset.

We shall state the Subgroup Theorem for amalgamated products as in Cohen [10],
who used the theory of groups acting on trees. Let H be a subgroup of C. Following
Cohen, let {D, } be a set of double coset representatives for (H, A) in Cand {D;} bea
set of double coset representatives for (H. B) in C. Further, for each D,, let {E,} bea
set of double coset representatives containing 1 of (D, *HD,, N A, U) in A, and for each
Dg, let {E, } beaset of double coset representatives containing 1 of (D;*HD;NB. U) in
B. For each o and associated 1, there exists a unique element D corresponding E, and
u € U suchthat D,E, € HD4E,u. Thus

to, = DoE,(DsEU) ™t € H,

and t,, # 1if and only if DE, is neither a (H, A) double coset representative nor a
(H, B) double coset representative.
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SuBGROUP THEOREM (cf. [10], THEOREM 3). Let H be a subgroup of A xy B, where
U =AnNB. Then,

(i) thoset,, 7 1freely generatea free subgroup of H;

(ii) thegroupK generatedby all HN(D,AD,*) and HN(DsBDj ) isthe tree product
of these groups, two such groups being adjacent if D, = D = 1 or if D, = Dgh, b € B,
or Dg = D,afor somea € A; the subgroup amalgamated between two adjacent groups
isH N (DUD™1), where D isthe longer of D,, and Dg;

(iii) H isthe HNN-group

(K. tayite,s(HN DE,UE, "D Mt . = HND,E,UE,'D, ")
over all t,,, # 1 and corresponding D, E, .

Concerning tree products and HNN-groups, we refer the reader to ([11] and [12]).
SinceHN D(,El,,UElle;1 C HND,AD,* and HND4E,UE, 'D;* C HND;sBD,?, we
apply aresult of Karrass and Solitar ([11], Lemma 6) to obtain the following result.

ProOPOSITION 2.1.  Inthenotation of the Subgroup Theorem, if Hisafinitely generated
subgroup of A xy B, then only finitely many of thet, , # 1 and K is the tree product of
finitely many of the H N (D,AD; ') and the H N (DsBD; ).

The proof of the following lemmalis elementary.

LEMMA 2.2. Let R be a principal ideal domain (PID), which is not a field, and let
a € R\ {0} beanonunit of R. Then the localization Rs of Raway from Sisa PID, where
S={a":n>0}.

3. A reduction. For afixed prime p, we set G := F3(Wp) and x; := fi(Wp(Fa)),
i =1,2, 3. Thus,Gisafreegroupof rank 3in W/, freely generated by Xy, X, X3. We denote
by M a (left) free Z,(F3/F5)-module with a basis {1, A2, A3} and by Q the cartesian
product of F3/F4 by M. The set Q becomesa group by defining a multiplication

(@, my)(©, mg) = (@Y, Tmp + my) = (v, Gmp + my),

for al 0.V € F3/Fj, where @i = uFj and V = vFj, with u,v € F3, and my, m, € M. For
i=1,2 3 lets =fiF5. Themapping from G into Q sending x; to (s, Aj) isan embedding
(see[2], [13]). Further, an element (g, ay A1 + ax A2 + as\3) represents an element of G if
andonly if ajoq1 +@ap0, + @zoz =1 — g, whereo; = 1 —s,i = 1, 2, 3. Weidentify G with
itsimagein Q and let ¢ be an |A-automorphism of G. Then ¢ can be described by

(3.1) ¢:(S, A) — (S A1 +agyAz +agA3)
where
(3.2) ayjoy + agjoz +agjos = oj,

for al j € {1.2.3}. The mapping of IA(G) into GLs(Z,(Fs/F%)) given by ¢ —
(&), where ¢ is given by (3.1), is an embedding. By a result of Bachmuth (see [2],
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Proposition 2), (a;j) € GLa(Zp(Fs/F%)) isin theimage of this embedding if and only if
the columns of (&;;) satisfy the condition (3.2).

We adopt the convention that a 2 x 2 matrix (a;) over a ring R is written as
(1. @12; A21. az2). Following [5], weidentify Z(Fs/F3) with Zg[s. 55, s31] and each
element ¢ of 1A(G) can be uniquely represented by an element of GL3(Zp[s . 552 s51)

of the form
{1"'0’281"‘(73&2 —oobs — o3by —03C3 + 0202
(33) —01a; +ozaz  l+o3br+o1bs  —o3c1 — 010
—018 — 0283  —02bp+oiby 1+01C3+ 020

Further, there exists a representation 7 of I1A(G) into GL2(Zp[s;. s31]) by sending a
matrix of the form (3.3) into amatrix of the form

(3.9 @a+ 0163 + 0281, —C; —010262 + 0561 + 01008, + U%é.g, 1+ 0183+ 02C1)

where &, b and & are the images of a,b and ¢ in Z,[s;%, 5%, 53] via the natural map-
ping from Zp[s;t. 55t 551 into Zp[sit. s;51] by sending s; into 1 and Zp[s{t, s3] is
mapped identical onto itself. Let A be the image of the representation 7 and B =
A N SLa(Zp[si. s51). Similar arguments as in the proof of Lemma 1 of [5], we have
the following resullt.

LEmMMA 3.1. If A isfinitely generated then B isfinitely generated.

4. Proof of Theorem. Let RbeaPID with aquotient field Q andt an indeterminate
over R. Write SL,(Q[t])S for S™(SL,(Q[t])) Swhere S= (t. 0; 0, 1). By Ihara’s Theorem
we obtain SLo(Q[t, t™]) = SL2(QIt]) *u SL2(Q[t])®, where U = SL,(Q[t]) N SL2(QI{])*.

LEMMA 4.1. Let 7 be an irreducible element of R. Then the matrices A(i) =
(1,0; 7% 1), withi > 1, can be chosen as part of a set of double coset representatives of
(SL2(RIt]), U) in SLo(Q[t]).

PrROOF. Supposethereexist 1 <i < j suchthat A(i) and A(j) are in the same double
coset. By settingt = 0, we obtain

A) = (f. g h. KAGE. € 0.6)

where (f. g; h. k) € SL»(R) and (671, ¢; 0,6) € SL»(Q). Therefore,

(4.1) f+9 =5

7
4.2) he K22

m o
4.3) g(f+2)+g5=o
(4.4) g(h+%)+k§zl
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From (4.1) and (4.3), we obtain that ¢ = —g. So (4.4) becomes

(4.5) 5t=—d i
™

Wewriteé = 61 /62, where (61, 62) = 1. Weclaim 7 dividesg. To get acontradiction, we
assumethat 7 does not divide g. Wefirst show that 7 divides g. Indeed, if not and since
mwisprimein R, we obtain from (4.1) that = dividesd,. Further, we obtain from (4.5) that
7 divides 4, whichisacontradiction. Therefore, g = n#'g’, whereg’ € Rand (7, ¢') = 1.
Since g is not divided by 7 and 7 dividesg, wehave 1 < p < j — 1. Now, either p < i
ori <p <j—1.Supposep < i. Then, weobtain from (4.1) that 7 dividesd,. Similarly,
from (4.5), we have  divides 61, whichisacontradiction. Thus,i < u <j—1.By (4.5),
671 € Rand so 7/ must divide g. Therefore, we obtain from (4.1) and (4.2) thaté € R
and 7~ must divide k. Thus, 7 divides both g and k. Since (f, g; h. k) isinvertible over
Randtheideal () isproperly contained in R, we get the required contradiction.

Let m be a square free integer. If n # 3 then IA(G(n, m)) is finitely generated (see,
Introduction). So, we may assume that n = 3. To prove that IA(G(3. m)), with m > 2,
is not finitely generated, it is enough to show that, for any prime p, IA(G(3, p)) is not
finitely generated. For afixed prime p, we recall that G := F3(W,,) and x; := f; (W(Fa)),
i =1,2,3.Thus, Gisafreegroup of rank 3inthevariety W freely generated by Xy, Xo, X3.
WesetR = Zy[s1, S5 1], m = sy +1and A(i) == (1,0; ﬁ 1), withi > 1. By Lemma2.2,
we obtainthat RisaPID. Further, it is easily checked that 7 is an irreducible element of
R. By Lemma4.1, the set {A(i),i > 1} may be included as part of a set of double coset
representativesof SL,(R[s;]. U) in SL»(Q[sz]), whereU = SL»(Q[s2])NSL2(Q[s2])S and
S=(s.,0;0, 1). Hencealso part of representatives of (B NSL2(R[s2]), U) in SL2(Q[s2]).
We apply the Subgroup Theorem to B as a subgroup of SL»(Q[sz, s;1]). Let {D,} bea
set of double coset representatives for (B, SL>(Q[s])) in SL2(Q[sz. 5;*]) and {D;} a
set of double coset representatives for (B, SL2(Q[s:])®) in SL2(Q[sz, S;}]). Recall that
the group K generated by all B N (D., SL2(Q[sz])D;*) and B N (D SL2(Q[s:])°Dj5?)
is the tree product of these groups. To show that B is not finitely generated, it is
enough, by Proposition 2.1, to show that infinitely many of the A(i) are not double
coset representatives of (B. SLo(Q[s2])®) in SL(Qlsz. 5;*1). To get acontradiction, we
suppose that infinitely many of the A(i) are double coset representatives. We assert
that K is not the tree product of only finitely many of the B N D,, SL»(Q[s])D;,* and the
BND; SL2(Q[s])°D5 . In particular, weclaim that BNA(i))UA(i) ~* isaproper subgroup
of B N A(i) SL2(Q[s:])°A(i)~? for all i. To seethis, let A = (1, 7% 0302S,%; 0, 1). Then
AMNAG) Y = (1 — 7's; 0200, 12 02028, —S; 20202, 1 + s, 10%0,). It is easily seen
that both A and A(i)AA(®)~* belongto B, also A()AA(G)~ € BNA(i) SL2(R[s2])SAG) 2,
but A(i)AA(i)~* does not belong to B NA(I))UA(i) 1, which is the required contradiction.

To complete the proof of Theorem (ii), we need some further notation. Recall that
G(n, m) is afree group of rank n in the variety W, with n,m > 2. For the next few
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freely generatesH. Let m = py-- - pr, with r > 2, where p; are distinct prime integers.
Since Z, is equal to the direct product 11 & - - - @ I, wherel; is an ideal of Z,, whichis
isomorphic to Z,, asrings, there exists a (necessarily unique) complete set {ey.....&}
of pairwise orthogonal idempotentsin Z,, suchthat I; = Zn,i = 1,...,r. Notethat H’
may be regarded as aright Z,(H /H’)- module, where the action of H/H’ comes from
conjugationin H. For u € H and d € Zm(H/H)" we write ud for the image of u under
the module action by d.

lines, weset H := G(n.m) andy; := fi(Wm(Fn)),i=1..... m. Thus, the set {y1. . .., Y}

ProrosITION 4.1. Let n > 2 and, in the notation described above, let A\ be the
endomorphism of H satisfying A(y1) = yilys.y2l"%%, A(y2) = yaly1.y2]*"*)%, and
AYi) = Vi, i > 3. Then X is a non-tame automor phism of H.

PROOF. Let u be the endomorphism of H satisfying u(y1) = yalYi1, Y21%%%2, u(y2) =
Yo[y1. yo] “4—8)%% and u(y;) = yi.i > 3. Itis easily checked that X = A = 1, where 1
denotesthe identity mapping on H. Hence, ) is an automorphism of H. By Corollary 3.2
of [4], A may be represented by an n x n matrix over Zm(Fn/Fy), say \*. It is easy to
see that the determinant of \* is equal to (1 — e1)s; + e15,. Now, suppose ) is tame
automorphism. Thus, there exists an automorphism ¢ of Fy, such that ) induces A on H.
SinceH /H" >~ F,/F;, wemay take ¢ € IA(Fp). Let ¢ be theinduced | A-automorphism
of ¥ on F,(W). By Theorem 1 of [1], ¢ corresponds to an n x n matrix C(¢) over
Z(Fn/F},) such that C(¢) induces A*. Namely, C(¢) = In + (c;j), where |, is the identity
matrix, oy = —€1(1 — ) + Uy, a2 = (1 — €1)(1 — $) + U2, ap1 = €1(1 — 1) + Uy,
az = (1—e1)(1—s1)+ux and ajj = ujj otherwise. Eachuj isapolynomial inthevariables
S st1 over Z with coefficients multiples of m. But the determinant of C(¢) equals

LS, wherea; € Z.Therefore, by workingover Zy,, wehavelll; s = (1—ep)s;+e1S,
which isacontradiction. Thus, X is anon-tame automorphism of H for all n > 2.
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