AUTOMORPHISMS OF METABELIAN GROUPS

ATHANASSIOS I. PAPISTAS

Abstract

We investigate the problem of determining when $\operatorname{IA}\left(F_{n}\left(\mathbf{A}_{m} \mathbf{A}\right)\right)$ is finitely generated for all n and m, with $n \geq 2$ and $m \neq 1$. If m is a nonsquare free integer then $\operatorname{IA}\left(F_{n}\left(\mathbf{A}_{m} \mathbf{A}\right)\right)$ is not finitely generated for all n and if m is a square free integer then $\operatorname{IA}\left(F_{n}\left(\mathbf{A}_{m} \mathbf{A}\right)\right)$ is finitely generated for all n, with $n \neq 3$, and $\operatorname{IA}\left(F_{3}\left(\mathbf{A}_{m} \mathbf{A}\right)\right)$ is not finitely generated. In case m is square free, Bachmuth and Mochizuki claimed in ([7], Problem 4) that $\operatorname{TR}\left(\mathbf{A}_{m} \mathbf{A}\right)$ is 1 or 4 . We correct their assertion by proving that $\operatorname{TR}\left(\mathbf{A}_{m} \mathbf{A}\right)=\infty$.

1. Introduction. For any group G, let $\operatorname{IA}(G)$ be the IA-automorphism group of G, that is, the kernel of the natural mapping from $\operatorname{Aut}(G)$ into $\operatorname{Aut}\left(G / G^{\prime}\right)$, where G^{\prime} denotes the derived group of G. For each positive integer c, we write by $\gamma_{c}(G)$ the c-th term of the lower central series of G. So, $\gamma_{2}(G)=G^{\prime}$. If a_{1}, \ldots, a_{c} are elements of a group G then $\left[a_{1}, a_{2}\right]=a_{1} a_{2} a_{1}^{-1} a_{2}^{-1}$ and, for $c \geq 3,\left[a_{1}, \ldots, a_{c}\right]=\left[\left[a_{1}, \ldots, a_{c-1}\right], a_{c}\right]$. For a positive integer n, with $n \geq 2$, we will denote by F_{n} the (absolutely) free group of rank n freely generated by the set $\left\{f_{1}, \ldots, f_{n}\right\}$. If \mathbf{V} is a variety of groups, we write $F_{n}(\mathbf{V})$ for the free group of rank n in \mathbf{V} and $\mathbf{V}\left(F_{n}\right)$ for the verbal subgroup of F_{n} corresponding to \mathbf{V}. Every element in the image of the natural mapping from $\operatorname{Aut}\left(F_{n}\right)$ into $\operatorname{Aut}\left(F_{n}(\mathbf{V})\right)$ is called tame. For a non-negative integer m, with $m \neq 1, \mathbf{A}_{m}$ denotes the variety of all abelian groups of exponent dividing m, interpreted in such a way that $\mathbf{A}_{0}=\mathbf{A}$ is the variety of all abelian groups. Further, \mathbf{W}_{m} is the variety of all extensions of groups in \mathbf{A}_{m} by groups in \mathbf{A}. We write \mathbf{W} for \mathbf{W}_{0}. In the papers ([5] and [6]), Bachmuth and Mochizuki have proved that $\operatorname{IA}\left(F_{n}(\mathbf{W})\right)$ is finitely generated for $n \neq 3$ and $\operatorname{IA}\left(F_{3}(\mathbf{W})\right)$ is not finitely generated. Bachmuth et al. (see [3], Theorem C) have shown that IA $\left(F_{2}\left(\mathbf{W}_{m}\right)\right)$ is not finitely generated if m is a free integer and finitely generated if m is a square free integer. In this paper we extend the latter result for all n, with $n \geq 2$.

We say $\left\{\operatorname{Aut}\left(F_{n}(\mathbf{V})\right), n \geq 1\right\}$ has tame range infinite, denoted by $\operatorname{TR}(\mathbf{V})=\infty$, if there does not exist a positive integer d such that all automorphisms of $F_{n}(\mathbf{V})$ are tame for all $n \geq d$. Otherwise, we say it has a finite one. We deduce from [5] and [6] that $\operatorname{TR}(\mathbf{W})=4$. So, we concentrate on m, with $m \geq 2$. If m is prime, say p, then $\operatorname{TR}\left(\mathbf{W}_{p}\right)=4$. Indeed, by means of techniques of [6] or more easily of [9], every automorphism of $F_{n}\left(\mathbf{W}_{p}\right)$ is induced by an automorphism of F_{n} for all $n \geq 4$. As we shall see in Section 4, $\operatorname{IA}\left(F_{3}\left(\mathbf{W}_{p}\right)\right)$ is not finitely generated and so $\operatorname{TR}\left(\mathbf{W}_{p}\right)=4$. The method of proving $\operatorname{IA}\left(F_{3}\left(\mathbf{W}_{p}\right)\right)$ is not finitely generated is based on ideas of Bachmuth and Mochizuki in [5]. Thus, we may assume m is not prime. If m is nonsquare free, it follows from a result of Bachmuth and

[^0]Mochizuki [8] that $\operatorname{TR}\left(\mathbf{W}_{m}\right)=\infty$. In case m is square free, Bachmuth and Mochizuki claimed in ([7], Problem 4) that $\operatorname{TR}\left(\mathbf{W}_{m}\right)$ is 1 or 4 . We correct their assertion by proving that $\operatorname{TR}\left(\mathbf{W}_{m}\right)=\infty$.

For positive integers n and m, with $n, m \geq 2$, let $G(n, m)$ be a free group of rank n in the variety \mathbf{W}_{m}. We write $m=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$, where p_{i} are distinct prime integers and $\alpha_{i} \in N$. For $i=1, \ldots, r$, we denote by $G(n, m, i)$ the free group of rank n in the variety $\mathbf{W}_{p_{i}}$. By a result of Bachmuth and Mochizuki [4], IA $(G(n, m))$ is isomorphic to a direct product $\operatorname{IA}(G(n, m, 1)) \times \cdots \times \operatorname{IA}(G(n, m, r))$. Suppose m is a nonsquare free integer. Then there exists a prime p such that p^{2} divides m. Let T be the subgroup of Aut $\left(G\left(n, p^{2}\right)\right)$ consisting of all tame automorphisms. Since T is finitely generated, $\operatorname{Aut}\left(G\left(n, p^{2}\right)\right)=T \operatorname{IA}\left(G\left(n, p^{2}\right)\right)$ and $\operatorname{Aut}\left(G\left(n, p^{2}\right)\right)$ is not finitely generated for all n, with $n \geq 2$, (see [8]), we obtain that $\operatorname{IA}\left(G\left(n, p^{2}\right)\right)$ is not finitely generated for all n. Therefore $\operatorname{IA}(G(n, m))$ is not finitely generated. Thus, we may assume m is square free. Our main result deals with this case. In Section 4, we prove the following theorem.

THEOREM. Let $G(n, m)$ be a free group of rank n in the variety \mathbf{W}_{m}, with $n, m \geq 2$. (i) If m is a nonsquare free integer then $\operatorname{IA}(G(n, m))$ is not finitely generated for all n. (ii) If m is a square free integer then $\operatorname{IA}(G(n, m))$ is finitely generated for all $n \neq 3$ and IA $(G(3, m))$ is not finitely generated. Further, IA $(G(n, m))$ contains nontame elements for all n.

COROLLARY. The tame range $\operatorname{TR}\left(\mathbf{W}_{\mathbf{m}}\right)$ is infinite for any positive integer m, with $m \geq 2$, but not prime.
2. Preliminaries. Let $C=A *_{U} B$ be the free product of groups A and B with amalgamated subgroup U. An element c of C can be written as $c=c_{1} \cdots c_{r}$ where each c_{i} belongs to A or B, c_{i} and c_{i+1} cannot both belong to A or both to B and r is uniquely determined. The number r is called the length of c and the length of the identity element is defined to be 0 . By the length of a subset Γ we will mean the length of the shortest element in the subset.

We shall state the Subgroup Theorem for amalgamated products as in Cohen [10], who used the theory of groups acting on trees. Let H be a subgroup of C. Following Cohen, let $\left\{D_{\alpha}\right\}$ be a set of double coset representatives for (H, A) in C and $\left\{D_{\beta}\right\}$ be a set of double coset representatives for (H, B) in C. Further, for each D_{α}, let $\left\{E_{\mu}\right\}$ be a set of double coset representatives containing 1 of ($D_{\alpha}^{-1} H D_{\alpha} \cap A, U$) in A, and for each D_{β}, let $\left\{E_{\nu}\right\}$ be a set of double coset representatives containing 1 of $\left(D_{\beta}^{-1} H D_{\beta} \cap B, U\right)$ in B. For each α and associated μ, there exists a unique element D_{β} corresponding E_{ν} and $u \in U$ such that $D_{\alpha} E_{\mu} \in H D_{\beta} E_{\nu} u$. Thus

$$
t_{\alpha, \mu}=D_{\alpha} E_{\mu}\left(D_{\beta} E_{\nu} u\right)^{-1} \in H
$$

and $t_{\alpha, \mu} \neq 1$ if and only if $D_{\alpha} E_{\mu}$ is neither a (H, A) double coset representative nor a (H, B) double coset representative.

Subgroup Theorem (cf. [10], THEOREM 3). Let H be a subgroup of $A *_{U} B$, where $U=A \cap B$. Then,
(i) those $t_{\alpha, \mu} \neq 1$ freely generate a free subgroup of H;
(ii) the group K generated by all $H \cap\left(D_{\alpha} A D_{\alpha}^{-1}\right)$ and $H \cap\left(D_{\beta} B D_{\beta}^{-1}\right)$ is the tree product of these groups, two such groups being adjacent if $D_{\alpha}=D_{\beta}=1$ or if $D_{\alpha}=D_{\beta} b, b \in B$, or $D_{\beta}=D_{\alpha}$ a for some $a \in A$; the subgroup amalgamated between two adjacent groups is $H \cap\left(D U D^{-1}\right)$, where D is the longer of D_{α} and D_{β};
(iii) H is the HNN-group

$$
\left\langle K, t_{\alpha, \mu} ; t_{\alpha, \mu}\left(H \cap D_{\beta} E_{\nu} U E_{\nu}^{-1} D_{\beta}^{-1}\right) t_{\alpha, \mu}^{-1}=H \cap D_{\alpha} E_{\mu} U E_{\mu}^{-1} D_{\alpha}^{-1}\right\rangle
$$

over all $t_{\alpha, \mu} \neq 1$ and corresponding D_{β}, E_{ν}.
Concerning tree products and HNN-groups, we refer the reader to ([11] and [12]). Since $H \cap D_{\alpha} E_{\mu} U E_{\mu}^{-1} D_{\alpha}^{-1} \subseteq H \cap D_{\alpha} A D_{\alpha}^{-1}$ and $H \cap D_{\beta} E_{\nu} U E_{\nu}^{-1} D_{\beta}^{-1} \subseteq H \cap D_{\beta} B D_{\beta}^{-1}$, we apply a result of Karrass and Solitar ([11], Lemma 6) to obtain the following result.

Proposition 2.1. In the notation of the Subgroup Theorem, if His a finitely generated subgroup of $A *_{U} B$, then only finitely many of the $t_{\alpha, \mu} \neq 1$ and K is the tree product of finitely many of the $H \cap\left(D_{\alpha} A D_{\alpha}^{-1}\right)$ and the $H \cap\left(D_{\beta} B D_{\beta}^{-1}\right)$.

The proof of the following lemma is elementary.
Lemma 2.2. Let R be a principal ideal domain (PID), which is not a field, and let $a \in R \backslash\{0\}$ be a nonunit of R. Then the localization R_{S} of R away from S is a PID, where $S=\left\{a^{n}: n \geq 0\right\}$.
3. A reduction. For a fixed prime p, we set $G:=F_{3}\left(\mathbf{W}_{p}\right)$ and $x_{i}:=f_{i}\left(\mathbf{W}_{p}\left(F_{3}\right)\right)$, $i=1,2,3$. Thus, G is a free group of rank 3 in \mathbf{W}_{p} freely generated by x_{1}, x_{2}, x_{3}. We denote by M a (left) free $\mathrm{Z}_{p}\left(F_{3} / F_{3}^{\prime}\right)$-module with a basis $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$ and by Ω the cartesian product of F_{3} / F_{3}^{\prime} by M. The set Ω becomes a group by defining a multiplication

$$
\left(\tilde{u}, m_{1}\right)\left(\tilde{v}, m_{2}\right)=\left(\tilde{u} \tilde{v}, \tilde{u} m_{2}+m_{1}\right)=\left(\tilde{u} v, \tilde{u} m_{2}+m_{1}\right),
$$

for all $\tilde{u}, \tilde{v} \in F_{3} / F_{3}^{\prime}$, where $\tilde{u}=u F_{3}^{\prime}$ and $\tilde{v}=v F_{3}^{\prime}$, with $u, v \in F_{3}$, and $m_{1}, m_{2} \in M$. For $i=1,2,3$, let $s_{i}=f_{i} F_{3}^{\prime}$. The mapping from G into Ω sending x_{i} to $\left(s_{i}, \lambda_{i}\right)$ is an embedding (see [2], [13]). Further, an element ($g, a_{1} \lambda_{1}+a_{2} \lambda_{2}+a_{3} \lambda_{3}$) represents an element of G if and only if $a_{1} \sigma_{1}+a_{2} \sigma_{2}+a_{3} \sigma_{3}=1-g$, where $\sigma_{i}=1-s_{i}, i=1,2,3$. We identify G with its image in Ω and let ϕ be an IA-automorphism of G. Then ϕ can be described by

$$
\begin{equation*}
\phi:\left(s_{j}, \lambda_{j}\right) \longrightarrow\left(s_{j}, a_{1 j} \lambda_{1}+a_{2 j} \lambda_{2}+a_{3 j} \lambda_{3}\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{1 j} \sigma_{1}+a_{2 j} \sigma_{2}+a_{3 j} \sigma_{3}=\sigma_{j} \tag{3.2}
\end{equation*}
$$

for all $j \in\{1,2,3\}$. The mapping of $\operatorname{IA}(G)$ into $\mathrm{GL}_{3}\left(\mathrm{Z}_{p}\left(F_{3} / F_{3}^{\prime}\right)\right)$ given by $\phi \rightarrow$ $\left(a_{i j}\right)$, where ϕ is given by (3.1), is an embedding. By a result of Bachmuth (see [2],

Proposition 2), $\left(a_{i j}\right) \in \mathrm{GL}_{3}\left(\mathrm{Z}_{p}\left(F_{3} / F_{3}^{\prime}\right)\right)$ is in the image of this embedding if and only if the columns of $\left(a_{i j}\right)$ satisfy the condition (3.2).

We adopt the convention that a 2×2 matrix $\left(a_{i j}\right)$ over a ring R is written as $\left(a_{11}, a_{12} ; a_{21}, a_{22}\right)$. Following [5], we identify $\mathrm{Z}_{p}\left(F_{3} / F_{3}^{\prime}\right)$ with $\mathrm{Z}_{p}\left[s_{1}^{ \pm 1}, s_{2}^{ \pm 1}, s_{3}^{ \pm 1}\right]$ and each element ϕ of $\operatorname{IA}(G)$ can be uniquely represented by an element of $\mathrm{GL}_{3}\left(\mathrm{Z}_{p}\left[s_{1}^{ \pm 1}, s_{2}^{ \pm 1}, s_{3}^{ \pm 1}\right]\right)$ of the form

$$
\left(\begin{array}{ccc}
1+\sigma_{2} a_{1}+\sigma_{3} a_{2} & -\sigma_{2} b_{3}-\sigma_{3} b_{1} & -\sigma_{3} c_{3}+\sigma_{2} c_{2} \tag{3.3}\\
-\sigma_{1} a_{1}+\sigma_{3} a_{3} & 1+\sigma_{3} b_{2}+\sigma_{1} b_{3} & -\sigma_{3} c_{1}-\sigma_{1} c_{2} \\
-\sigma_{1} a_{2}-\sigma_{2} a_{3} & -\sigma_{2} b_{2}+\sigma_{1} b_{1} & 1+\sigma_{1} c_{3}+\sigma_{2} c_{1}
\end{array}\right)
$$

Further, there exists a representation τ of $\operatorname{IA}(G)$ into $\mathrm{GL}_{2}\left(\mathrm{Z}_{p}\left[s_{1}^{ \pm 1}, s_{2}^{ \pm 1}\right]\right)$ by sending a matrix of the form (3.3) into a matrix of the form

$$
\begin{equation*}
\left(1+\sigma_{1} \hat{b}_{3}+\sigma_{2} \hat{a}_{1},-\hat{c}_{2} ;-\sigma_{1} \sigma_{2} \hat{b}_{2}+\sigma_{1}^{2} \hat{b}_{1}+\sigma_{1} \sigma_{2} \hat{a}_{2}+\sigma_{2}^{2} \hat{a}_{3}, 1+\sigma_{1} \hat{c}_{3}+\sigma_{2} \hat{c}_{1}\right) \tag{3.4}
\end{equation*}
$$

where \hat{a}, \hat{b} and \hat{c} are the images of a, b and c in $Z_{p}\left[s_{1}^{ \pm 1}, s_{2}^{ \pm 1}, s_{3}^{ \pm 1}\right]$ via the natural mapping from $\mathrm{Z}_{p}\left[s_{1}^{ \pm 1}, s_{2}^{ \pm 1}, s_{3}^{ \pm 1}\right]$ into $\mathrm{Z}_{p}\left[s_{1}^{ \pm 1}, s_{2}^{ \pm 1}\right]$ by sending s_{3} into 1 and $Z_{p}\left[s_{1}^{ \pm 1}, s_{2}^{ \pm 1}\right]$ is mapped identical onto itself. Let \mathcal{A} be the image of the representation τ and $\mathcal{B}=$ $\mathcal{A} \cap \mathrm{SL}_{2}\left(\mathrm{Z}_{p}\left[s_{1}^{ \pm 1}, s_{2}^{ \pm 1}\right]\right)$. Similar arguments as in the proof of Lemma 1 of [5], we have the following result.

Lemma 3.1. If \mathcal{A} is finitely generated then \mathcal{B} is finitely generated.
4. Proof of Theorem. Let R be a PID with a quotient field Q and t an indeterminate over R. Write $\mathrm{SL}_{2}(Q[t])^{S}$ for $S^{-1}\left(\mathrm{SL}_{2}(Q[t])\right) S$ where $S=(t, 0 ; 0,1)$. By Ihara's Theorem we obtain $\mathrm{SL}_{2}\left(Q\left[t, t^{-1}\right]\right)=\mathrm{SL}_{2}(Q[t]) *_{U} \mathrm{SL}_{2}(Q[t])^{S}$, where $U=\mathrm{SL}_{2}(Q[t]) \cap \mathrm{SL}_{2}(Q[t])^{S}$.

Lemma 4.1. Let π be an irreducible element of R. Then the matrices $A(i)=$ $\left(1,0 ; \frac{1}{\pi^{i}}, 1\right)$, with $i \geq 1$, can be chosen as part of a set of double coset representatives of $\left(\mathrm{SL}_{2}(R[t]), U\right)$ in $\mathrm{SL}_{2}(Q[t])$.

Proof. Suppose there exist $1 \leq i<j$ such that $A(i)$ and $A(j)$ are in the same double coset. By setting $t=0$, we obtain

$$
A(i)=(f, g ; h, k) A(j)\left(\delta^{-1}, \xi ; 0, \delta\right)
$$

where $(f, g ; h, k) \in \mathrm{SL}_{2}(R)$ and $\left(\delta^{-1}, \xi ; 0, \delta\right) \in \mathrm{SL}_{2}(Q)$. Therefore,

$$
\begin{gather*}
f+\frac{g}{\pi^{j}}=\delta \tag{4.1}\\
h+\frac{k}{\pi^{j}}=\frac{\delta}{\pi^{i}} \tag{4.2}\\
\xi\left(f+\frac{g}{\pi^{j}}\right)+g \delta=0 \tag{4.3}\\
\xi\left(h+\frac{k}{\pi^{j}}\right)+k \delta=1 \tag{4.4}
\end{gather*}
$$

From (4.1) and (4.3), we obtain that $\xi=-g$. So (4.4) becomes

$$
\begin{equation*}
\delta^{-1}=-\frac{g}{\pi^{i}}+k \tag{4.5}
\end{equation*}
$$

We write $\delta=\delta_{1} / \delta_{2}$, where $\left(\delta_{1}, \delta_{2}\right)=1$. We claim π^{j} divides g. To get a contradiction, we assume that π^{j} does not divide g. We first show that π divides g. Indeed, if not and since π is prime in R, we obtain from (4.1) that π divides δ_{2}. Further, we obtain from (4.5) that π divides δ_{1} which is a contradiction. Therefore, $g=\pi^{\mu} g^{\prime}$, where $g^{\prime} \in R$ and $\left(\pi, g^{\prime}\right)=1$. Since g is not divided by π^{j} and π divides g, we have $1 \leq \mu \leq j-1$. Now, either $\mu<i$ or $i \leq \mu \leq j-1$. Suppose $\mu<i$. Then, we obtain from (4.1) that π divides δ_{2}. Similarly, from (4.5), we have π divides δ_{1}, which is a contradiction. Thus, $i \leq \mu \leq j-1$. By (4.5), $\delta^{-1} \in R$ and so π^{j} must divide g. Therefore, we obtain from (4.1) and (4.2) that $\delta \in R$ and π^{j-i} must divide k. Thus, π divides both g and k. Since $(f, g ; h, k)$ is invertible over R and the ideal $\langle\pi\rangle$ is properly contained in R, we get the required contradiction.

Let m be a square free integer. If $n \neq 3$ then $\operatorname{IA}(G(n, m))$ is finitely generated (see, Introduction). So, we may assume that $n=3$. To prove that $\operatorname{IA}(G(3, m))$, with $m \geq 2$, is not finitely generated, it is enough to show that, for any prime $p, \operatorname{IA}(G(3, p))$ is not finitely generated. For a fixed prime p, we recall that $G:=F_{3}\left(\mathbf{W}_{p}\right)$ and $x_{i}:=f_{i}\left(\mathbf{W}_{p}\left(F_{3}\right)\right)$, $i=1,2,3$. Thus, G is a free group of rank 3 in the variety \mathbf{W}_{p} freely generated by x_{1}, x_{2}, x_{3}. We set $R:=\mathrm{Z}_{p}\left[s_{1}, s_{2}^{-1}\right], \pi:=s_{1}+1$ and $A(i):=\left(1,0 ; \frac{1}{\left(s_{1}+1\right)^{2}}, 1\right)$, with $i \geq 1$. By Lemma 2.2, we obtain that R is a PID. Further, it is easily checked that π is an irreducible element of R. By Lemma 4.1, the set $\{A(i), i \geq 1\}$ may be included as part of a set of double coset representatives of $\mathrm{SL}_{2}\left(R\left[s_{2}\right], U\right)$ in $\mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right)$, where $U=\mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right) \cap \mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right)^{S}$ and $S=\left(s_{2}, 0 ; 0,1\right)$. Hence also part of representatives of $\left(\mathcal{B} \cap \mathrm{SL}_{2}\left(R\left[s_{2}\right]\right), U\right)$ in $\mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right)$. We apply the Subgroup Theorem to \mathcal{B} as a subgroup of $\mathrm{SL}_{2}\left(Q\left[s_{2}, s_{2}^{-1}\right]\right)$. Let $\left\{D_{\alpha}\right\}$ be a set of double coset representatives for $\left(\mathcal{B}, \operatorname{SL}_{2}\left(Q\left[s_{2}\right]\right)\right)$ in $\operatorname{SL}_{2}\left(Q\left[s_{2}, s_{2}^{-1}\right]\right)$ and $\left\{D_{\beta}\right\}$ a set of double coset representatives for $\left(\mathcal{B}, \mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right)^{S}\right)$ in $\mathrm{SL}_{2}\left(Q\left[s_{2}, s_{2}^{-1}\right]\right)$. Recall that the group K generated by all $\mathcal{B} \cap\left(D_{\alpha} \mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right) D_{\alpha}^{-1}\right)$ and $\mathcal{B} \cap\left(D_{\beta} \mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right)^{S} D_{\beta}^{-1}\right)$ is the tree product of these groups. To show that \mathcal{B} is not finitely generated, it is enough, by Proposition 2.1, to show that infinitely many of the $A(i)$ are not double coset representatives of $\left(\mathcal{B}, \mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right)^{S}\right)$ in $\mathrm{SL}_{2}\left(Q\left[s_{2}, s_{2}^{-1}\right]\right)$. To get a contradiction, we suppose that infinitely many of the $A(i)$ are double coset representatives. We assert that K is not the tree product of only finitely many of the $\mathcal{B} \cap D_{\alpha} \mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right) D_{\alpha}^{-1}$ and the $\mathcal{B} \cap D_{\beta} \mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right)^{S} D_{\beta}^{-1}$. In particular, we claim that $\mathcal{B} \cap A(i) U A(i)^{-1}$ is a proper subgroup of $\mathcal{B} \cap A(i) \mathrm{SL}_{2}\left(Q\left[s_{2}\right]\right)^{S} A(i)^{-1}$ for all i. To see this, let $\Lambda=\left(1, \pi^{2 i} \sigma_{1}^{2} \sigma_{2} s_{2}^{-1} ; 0,1\right)$. Then $A(i) \Lambda A(i)^{-1}=\left(1-\pi^{i} s_{2}^{-1} \sigma_{1}^{2} \sigma_{2}, \pi^{2 i} \sigma_{1}^{2} \sigma_{2} s_{2}^{-1} ;-s_{2}^{-1} \sigma_{1}^{2} \sigma_{2}, 1+\pi^{i} s_{2}^{-1} \sigma_{1}^{2} \sigma_{2}\right)$. It is easily seen that both Λ and $A(i) \Lambda A(i)^{-1}$ belong to \mathcal{B}, also $A(i) \Lambda A(i)^{-1} \in \mathcal{B} \cap A(i) \mathrm{SL}_{2}\left(R\left[s_{2}\right]\right)^{S} A(i)^{-1}$, but $A(i) \Lambda A(i)^{-1}$ does not belong to $\mathcal{B} \cap A(i) U A(i)^{-1}$, which is the required contradiction.

To complete the proof of Theorem (ii), we need some further notation. Recall that $G(n, m)$ is a free group of rank n in the variety \mathbf{W}_{m}, with $n, m \geq 2$. For the next few
lines, we set $H:=G(n, m)$ and $y_{i}:=f_{i}\left(\mathbf{W}_{m}\left(F_{n}\right)\right), i=1, \ldots, m$. Thus, the set $\left\{y_{1}, \ldots, y_{m}\right\}$ freely generates H. Let $m=p_{1} \cdots p_{r}$, with $r \geq 2$, where p_{i} are distinct prime integers. Since Z_{m} is equal to the direct product $I_{1} \oplus \cdots \oplus I_{r}$, where I_{i} is an ideal of Z_{m} which is isomorphic to $\mathrm{Z}_{p_{i}}$ as rings, there exists a (necessarily unique) complete set $\left\{e_{1}, \ldots, e_{r}\right\}$ of pairwise orthogonal idempotents in Z_{m} such that $I_{i}=e_{i} \mathrm{Z}_{m}, i=1, \ldots, r$. Note that H^{\prime} may be regarded as a right $\mathrm{Z}_{m}\left(H / H^{\prime}\right)$ - module, where the action of H / H^{\prime} comes from conjugation in H. For $u \in H^{\prime}$ and $d \in \mathrm{Z}_{m}(H / H)^{\prime}$ we write u^{d} for the image of u under the module action by d.

Proposition 4.1. Let $n \geq 2$ and, in the notation described above, let λ be the endomorphism of H satisfying $\lambda\left(y_{1}\right)=y_{1}\left[y_{1}, y_{2}\right]^{-e_{1} s_{1}}, \lambda\left(y_{2}\right)=y_{2}\left[y_{1}, y_{2}\right]^{\left(1-e_{1}\right) s_{2}}$, and $\lambda\left(y_{i}\right)=y_{i}, i \geq 3$. Then λ is a non-tame automorphism of H.

Proof. Let μ be the endomorphism of H satisfying $\mu\left(y_{1}\right)=y_{1}\left[y_{1}, y_{2}\right]^{e_{1} s_{1} s_{2}}, \mu\left(y_{2}\right)=$ $y_{2}\left[y_{1}, y_{2}\right]^{-\left(1-e_{1}\right) s_{1} s_{2}}$, and $\mu\left(y_{i}\right)=y_{i}, i \geq 3$. It is easily checked that $\mu \lambda=\lambda \mu=1$, where 1 denotes the identity mapping on H. Hence, λ is an automorphism of H. By Corollary 3.2 of [4], λ may be represented by an $n \times n$ matrix over $Z_{m}\left(F_{n} / F_{n}^{\prime}\right)$, say λ^{*}. It is easy to see that the determinant of λ^{*} is equal to $\left(1-e_{1}\right) s_{1}+e_{1} s_{2}$. Now, suppose λ is tame automorphism. Thus, there exists an automorphism ψ of F_{n} such that ψ induces λ on H. Since $H / H^{\prime} \cong F_{n} / F_{n}^{\prime}$, we may take $\psi \in \operatorname{IA}\left(F_{n}\right)$. Let ϕ be the induced IA-automorphism of ψ on $F_{n}(\mathbf{W})$. By Theorem 1 of [1], ϕ corresponds to an $n \times n$ matrix $C(\phi)$ over $\mathrm{Z}\left(F_{n} / F_{n}^{\prime}\right)$ such that $C(\phi)$ induces λ^{*}. Namely, $C(\phi)=\mathrm{I}_{n}+\left(\alpha_{i j}\right)$, where I_{n} is the identity matrix, $\alpha_{11}=-e_{1}\left(1-s_{2}\right)+u_{11}, \alpha_{12}=\left(1-e_{1}\right)\left(1-s_{2}\right)+u_{12}, \alpha_{21}=e_{1}\left(1-s_{1}\right)+u_{21}$, $\alpha_{22}=\left(1-e_{1}\right)\left(1-s_{1}\right)+u_{22}$ and $\alpha_{i j}=u_{i j}$ otherwise. Each $u_{i j}$ is a polynomial in the variables $s_{1}^{ \pm 1}, \ldots, s_{n}^{ \pm 1}$ over Z with coefficients multiples of m. But the determinant of $C(\phi)$ equals $\prod_{i=1}^{n} s_{i}^{\alpha_{i}}$, where $\alpha_{i} \in \mathrm{Z}$. Therefore, by working over Z_{m}, we have $\prod_{i=1}^{n} s_{i}^{\alpha_{i}}=\left(1-e_{1}\right) s_{1}+e_{1} s_{2}$, which is a contradiction. Thus, λ is a non-tame automorphism of H for all $n \geq 2$.

References

1. S. Bachmuth, Automorphisms of free metabelian groups. Trans. Amer. Math. Soc. 118(1965), 93-104.
2. \quad _ Automorphisms of a class of metabelian groups. Trans. Amer. Math. Soc. 127(1967), 284-293.
3. S. Bachmuth, G. Baumslag, J. Dyer and H. Y. Mochizuki, Automorphisms of 2-generator metabelian groups. J. London Math. Soc. 36(1987), 393-406.
4. S. Bachmuth and H. Y. Mochizuki, Automorphisms of a class of metabelian groups II. Trans. Amer. Math. Soc. 127(1967), 294-301.
5. _, IA-automorphisms of free metabelian group of rank 3. J. Algebra 55(1979), 106-115.
6. $\quad \operatorname{Aut}(F) \rightarrow \operatorname{Aut}\left(F / F^{\prime \prime}\right)$ is surjective for free groups F of rank $n \geq 4$. Trans. Amer. Math. Soc. 292(1985), 81-101.
7. The tame range of automorphism groups and GL_{n}. Group Theory Proc. Singapore Group Theory Conf., 1987, 241-251, de Gruyter, New York, 1989.
8. Infinite generation of automorphism groups. Proceedings of Groups Korea 1988, Pusan, 1988, 25-28, Lecture Notes in Math. 1398, Springer, Berlin, New York, 1989.
9. R. M. Bryant and J. R. J. Groves, Automorphisms of free metabelian groups of infinite rank. Comm. Algebra (11) 18(1990), 3619-3631.
10. D. E. Cohen, Subgroups of HNN-groups. J. Austral. Math. Soc. 17(1974), 394-405.
11. A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup. Trans. Amer. Math. Soc. 150(1970), 227-255.
12. Subgroups of HNN-groups and groups with one defining relation. Canad. J. Math. 23(1971), 627-543.
13. A. F. Krasnikov, Nilpotent subgroups of relatively free groups. Algebra i Logika 17(1978), 389-401.

Department of Mathematics
Aristotle University of Thessaloniki
GR 540 06, Thessaloniki
Greece
e-mail: apapist@ccf.auth.gr

[^0]: Received by the editors August 6, 1996.
 AMS subject classification: 20F28.
 (C)Canadian Mathematical Society 1998.

