AUTOMORPHISMS OF METABELIAN GROUPS

ATHANASSIOS I. PAPISTAS

ABSTRACT. We investigate the problem of determining when $IA(F_n(\mathbf{A}_m\mathbf{A}))$ is finitely generated for all n and m, with $n \ge 2$ and $m \ne 1$. If m is a nonsquare free integer then $IA(F_n(\mathbf{A}_m\mathbf{A}))$ is not finitely generated for all n and if m is a square free integer then $IA(F_n(\mathbf{A}_m\mathbf{A}))$ is finitely generated for all n, with $n \ne 3$, and $IA(F_3(\mathbf{A}_m\mathbf{A}))$ is not finitely generated. In case m is square free, Bachmuth and Mochizuki claimed in ([7], Problem 4) that $TR(\mathbf{A}_m\mathbf{A})$ is 1 or 4. We correct their assertion by proving that $TR(\mathbf{A}_m\mathbf{A}) = \infty$.

1. Introduction. For any group G, let IA(G) be the IA-automorphism group of G, that is, the kernel of the natural mapping from Aut(G) into Aut(G/G'), where G' denotes the derived group of G. For each positive integer c, we write by $\gamma_c(G)$ the c-th term of the lower central series of G. So, $\gamma_2(G) = G'$. If a_1, \ldots, a_c are elements of a group G then $[a_1, a_2] = a_1 a_2 a_1^{-1} a_2^{-1}$ and, for $c \ge 3$, $[a_1, \ldots, a_c] = |[a_1, \ldots, a_{c-1}], a_c|$. For a positive integer *n*, with $n \ge 2$, we will denote by F_n the (absolutely) free group of rank *n* freely generated by the set $\{f_1, \ldots, f_n\}$. If V is a variety of groups, we write $F_n(V)$ for the free group of rank *n* in **V** and $V(F_n)$ for the verbal subgroup of F_n corresponding to **V**. Every element in the image of the natural mapping from $Aut(F_n)$ into $Aut(F_n(V))$ is called *tame*. For a non-negative integer m, with $m \neq 1$, A_m denotes the variety of all abelian groups of exponent dividing m, interpreted in such a way that $A_0 = A$ is the variety of all abelian groups. Further, \mathbf{W}_m is the variety of all extensions of groups in \mathbf{A}_m by groups in A. We write W for W_0 . In the papers ([5] and [6]), Bachmuth and Mochizuki have proved that IA($F_n(\mathbf{W})$) is finitely generated for $n \neq 3$ and IA($F_3(\mathbf{W})$) is not finitely generated. Bachmuth *et al.* (see [3], Theorem C) have shown that $IA(F_2(\mathbf{W}_m))$ is not finitely generated if m is a free integer and finitely generated if m is a square free integer. In this paper we extend the latter result for all *n*, with $n \ge 2$.

We say $\{\operatorname{Aut}(F_n(\mathbf{V})), n \ge 1\}$ has tame range infinite, denoted by $\operatorname{TR}(\mathbf{V}) = \infty$, if there does not exist a positive integer *d* such that all automorphisms of $F_n(\mathbf{V})$ are tame for all $n \ge d$. Otherwise, we say it has a finite one. We deduce from [5] and [6] that $\operatorname{TR}(\mathbf{W}) = 4$. So, we concentrate on *m*, with $m \ge 2$. If *m* is prime, say *p*, then $\operatorname{TR}(\mathbf{W}_p) = 4$. Indeed, by means of techniques of [6] or more easily of [9], every automorphism of $F_n(\mathbf{W}_p)$ is induced by an automorphism of F_n for all $n \ge 4$. As we shall see in Section 4, $\operatorname{IA}(F_3(\mathbf{W}_p))$ is not finitely generated and so $\operatorname{TR}(\mathbf{W}_p) = 4$. The method of proving $\operatorname{IA}(F_3(\mathbf{W}_p))$ is not finitely generated is based on ideas of Bachmuth and Mochizuki in [5]. Thus, we may assume *m* is not prime. If *m* is nonsquare free, it follows from a result of Bachmuth and

©Canadian Mathematical Society 1998.

98

Received by the editors August 6, 1996. AMS subject classification: 20F28.

Mochizuki [8] that $\text{TR}(\mathbf{W}_m) = \infty$. In case *m* is square free, Bachmuth and Mochizuki claimed in ([7], Problem 4) that $\text{TR}(\mathbf{W}_m)$ is 1 or 4. We correct their assertion by proving that $\text{TR}(\mathbf{W}_m) = \infty$.

For positive integers *n* and *m*, with $n, m \ge 2$, let G(n, m) be a free group of rank *n* in the variety \mathbf{W}_m . We write $m = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, where p_i are distinct prime integers and $\alpha_i \in N$. For $i = 1, \ldots, r$, we denote by G(n, m, i) the free group of rank *n* in the variety $\mathbf{W}_{p_i^{\alpha_i}}$. By a result of Bachmuth and Mochizuki [4], IA(G(n, m)) is isomorphic to a direct product IA $(G(n, m, 1)) \times \cdots \times IA(G(n, m, r))$. Suppose *m* is a nonsquare free integer. Then there exists a prime *p* such that p^2 divides *m*. Let *T* be the subgroup of Aut $(G(n, p^2))$ consisting of all tame automorphisms. Since *T* is finitely generated, Aut $(G(n, p^2)) = TIA(G(n, p^2))$ and Aut $(G(n, p^2))$ is not finitely generated for all *n*, with $n \ge 2$, (see [8]), we obtain that IA $(G(n, p^2))$ is not finitely generated for all *n*. Therefore IA(G(n, m)) is not finitely generated. Thus, we may assume *m* is square free. Our main result deals with this case. In Section 4, we prove the following theorem.

THEOREM. Let G(n,m) be a free group of rank n in the variety \mathbf{W}_m , with $n, m \ge 2$. (i) If m is a nonsquare free integer then IA(G(n,m)) is not finitely generated for all n. (ii) If m is a square free integer then IA(G(n,m)) is finitely generated for all $n \ne 3$ and IA(G(3,m)) is not finitely generated. Further, IA(G(n,m)) contains nontame elements for all n.

COROLLARY. The tame range $TR(W_m)$ is infinite for any positive integer m, with $m \ge 2$, but not prime.

2. **Preliminaries.** Let $C = A *_U B$ be the free product of groups A and B with amalgamated subgroup U. An element c of C can be written as $c = c_1 \cdots c_r$ where each c_i belongs to A or B, c_i and c_{i+1} cannot both belong to A or both to B and r is uniquely determined. The number r is called the *length* of c and the length of the identity element is defined to be 0. By the length of a subset Γ we will mean the length of the shortest element in the subset.

We shall state the Subgroup Theorem for amalgamated products as in Cohen [10], who used the theory of groups acting on trees. Let *H* be a subgroup of *C*. Following Cohen, let $\{D_{\alpha}\}$ be a set of double coset representatives for (H, A) in *C* and $\{D_{\beta}\}$ be a set of double coset representatives for (H, B) in *C*. Further, for each D_{α} , let $\{E_{\mu}\}$ be a set of double coset representatives containing 1 of $(D_{\alpha}^{-1}HD_{\alpha} \cap A, U)$ in *A*, and for each D_{β} , let $\{E_{\nu}\}$ be a set of double coset representatives containing 1 of $(D_{\beta}^{-1}HD_{\beta} \cap B, U)$ in *B*. For each α and associated μ , there exists a unique element D_{β} corresponding E_{ν} and $u \in U$ such that $D_{\alpha}E_{\mu} \in HD_{\beta}E_{\nu}u$. Thus

$$t_{\alpha,\mu} = D_{\alpha}E_{\mu}(D_{\beta}E_{\nu}u)^{-1} \in H,$$

and $t_{\alpha,\mu} \neq 1$ if and only if $D_{\alpha}E_{\mu}$ is neither a (H,A) double coset representative nor a (H,B) double coset representative.

SUBGROUP THEOREM (cf. [10], THEOREM 3). Let H be a subgroup of $A *_U B$, where $U = A \cap B$. Then,

(*i*) those $t_{\alpha,\mu} \neq 1$ freely generate a free subgroup of *H*;

(ii) the group K generated by all $H \cap (D_{\alpha}AD_{\alpha}^{-1})$ and $H \cap (D_{\beta}BD_{\beta}^{-1})$ is the tree product of these groups, two such groups being adjacent if $D_{\alpha} = D_{\beta} = 1$ or if $D_{\alpha} = D_{\beta}b, b \in B$, or $D_{\beta} = D_{\alpha}a$ for some $a \in A$; the subgroup amalgamated between two adjacent groups is $H \cap (DUD^{-1})$, where D is the longer of D_{α} and D_{β} ;

(iii) H is the HNN-group

$$\langle K, t_{\alpha,\mu}; t_{\alpha,\mu}(H \cap D_{\beta}E_{\nu}UE_{\nu}^{-1}D_{\beta}^{-1})t_{\alpha,\mu}^{-1} = H \cap D_{\alpha}E_{\mu}UE_{\mu}^{-1}D_{\alpha}^{-1}\rangle$$

over all $t_{\alpha,\mu} \neq 1$ and corresponding D_{β}, E_{ν} .

Concerning tree products and HNN-groups, we refer the reader to ([11] and [12]). Since $H \cap D_{\alpha}E_{\mu}UE_{\mu}^{-1}D_{\alpha}^{-1} \subseteq H \cap D_{\alpha}AD_{\alpha}^{-1}$ and $H \cap D_{\beta}E_{\nu}UE_{\nu}^{-1}D_{\beta}^{-1} \subseteq H \cap D_{\beta}BD_{\beta}^{-1}$, we apply a result of Karrass and Solitar ([11], Lemma 6) to obtain the following result.

PROPOSITION 2.1. In the notation of the Subgroup Theorem, if H is a finitely generated subgroup of $A *_U B$, then only finitely many of the $t_{\alpha,\mu} \neq 1$ and K is the tree product of finitely many of the $H \cap (D_{\alpha}AD_{\alpha}^{-1})$ and the $H \cap (D_{\beta}BD_{\beta}^{-1})$.

The proof of the following lemma is elementary.

LEMMA 2.2. Let *R* be a principal ideal domain (PID), which is not a field, and let $a \in R \setminus \{0\}$ be a nonunit of *R*. Then the localization R_S of *R* away from *S* is a PID, where $S = \{a^n : n \ge 0\}$.

3. A reduction. For a fixed prime *p*, we set $G := F_3(\mathbf{W}_p)$ and $x_i := f_i(\mathbf{W}_p(F_3))$, i = 1, 2, 3. Thus, *G* is a free group of rank 3 in \mathbf{W}_p freely generated by x_1, x_2, x_3 . We denote by *M* a (left) free $Z_p(F_3/F'_3)$ -module with a basis $\{\lambda_1, \lambda_2, \lambda_3\}$ and by Ω the cartesian product of F_3/F'_3 by *M*. The set Ω becomes a group by defining a multiplication

$$(\tilde{u}, m_1)(\tilde{v}, m_2) = (\tilde{u}\tilde{v}, \tilde{u}m_2 + m_1) = (\tilde{u}v, \tilde{u}m_2 + m_1).$$

for all $\tilde{u}, \tilde{v} \in F_3/F'_3$, where $\tilde{u} = uF'_3$ and $\tilde{v} = vF'_3$, with $u, v \in F_3$, and $m_1, m_2 \in M$. For i = 1, 2, 3, let $s_i = f_iF'_3$. The mapping from *G* into Ω sending x_i to (s_i, λ_i) is an embedding (see [2], [13]). Further, an element $(g, a_1\lambda_1 + a_2\lambda_2 + a_3\lambda_3)$ represents an element of *G* if and only if $a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3 = 1 - g$, where $\sigma_i = 1 - s_i, i = 1, 2, 3$. We identify *G* with its image in Ω and let ϕ be an IA-automorphism of *G*. Then ϕ can be described by

(3.1)
$$\phi: (s_j, \lambda_j) \longrightarrow (s_j, a_{1j}\lambda_1 + a_{2j}\lambda_2 + a_{3j}\lambda_3)$$

where

$$(3.2) a_{1i}\sigma_1 + a_{2i}\sigma_2 + a_{3i}\sigma_3 = \sigma_i,$$

for all $j \in \{1, 2, 3\}$. The mapping of IA(G) into $GL_3(Z_p(F_3/F'_3))$ given by $\phi \rightarrow (a_{ij})$, where ϕ is given by (3.1), is an embedding. By a result of Bachmuth (see [2],

100

Proposition 2), $(a_{ij}) \in GL_3(Z_p(F_3/F'_3))$ is in the image of this embedding if and only if the columns of (a_{ij}) satisfy the condition (3.2).

We adopt the convention that a 2 \times 2 matrix (a_{ij}) over a ring R is written as $(a_{11}, a_{12}; a_{21}, a_{22})$. Following [5], we identify $Z_p(F_3/F'_3)$ with $Z_p[s_1^{\pm 1}, s_2^{\pm 1}, s_3^{\pm 1}]$ and each element ϕ of IA(G) can be uniquely represented by an element of GL₃($Z_p[s_1^{\pm 1}, s_2^{\pm 1}, s_3^{\pm 1}]$) of the form

(3.3)
$$\begin{pmatrix} 1 + \sigma_2 a_1 + \sigma_3 a_2 & -\sigma_2 b_3 - \sigma_3 b_1 & -\sigma_3 c_3 + \sigma_2 c_2 \\ -\sigma_1 a_1 + \sigma_3 a_3 & 1 + \sigma_3 b_2 + \sigma_1 b_3 & -\sigma_3 c_1 - \sigma_1 c_2 \\ -\sigma_1 a_2 - \sigma_2 a_3 & -\sigma_2 b_2 + \sigma_1 b_1 & 1 + \sigma_1 c_3 + \sigma_2 c_1 \end{pmatrix}$$

Further, there exists a representation τ of IA(G) into GL₂($Z_p[s_1^{\pm 1}, s_2^{\pm 1}]$) by sending a matrix of the form (3.3) into a matrix of the form

$$(3.4) \qquad (1 + \sigma_1 \hat{b}_3 + \sigma_2 \hat{a}_1, -\hat{c}_2; -\sigma_1 \sigma_2 \hat{b}_2 + \sigma_1^2 \hat{b}_1 + \sigma_1 \sigma_2 \hat{a}_2 + \sigma_2^2 \hat{a}_3, 1 + \sigma_1 \hat{c}_3 + \sigma_2 \hat{c}_1)$$

where \hat{a} , \hat{b} and \hat{c} are the images of a, b and c in $Z_p[s_1^{\pm 1}, s_2^{\pm 1}, s_3^{\pm 1}]$ via the natural mapping from $Z_p[s_1^{\pm 1}, s_2^{\pm 1}, s_3^{\pm 1}]$ into $Z_p[s_1^{\pm 1}, s_2^{\pm 1}]$ by sending s_3 into 1 and $Z_p[s_1^{\pm 1}, s_2^{\pm 1}]$ is mapped identical onto itself. Let A be the image of the representation τ and B = $A \cap SL_2(\mathbb{Z}_p[s_1^{\pm 1}, s_2^{\pm 1}])$. Similar arguments as in the proof of Lemma 1 of [5], we have the following result.

LEMMA 3.1. If A is finitely generated then B is finitely generated.

4. **Proof of Theorem.** Let *R* be a PID with a quotient field *Q* and *t* an indeterminate over *R*. Write $SL_2(Q[t])^S$ for $S^{-1}(SL_2(Q[t]))S$ where S = (t, 0; 0, 1). By Ihara's Theorem we obtain $SL_2(Q[t, t^{-1}]) = SL_2(Q[t]) *_U SL_2(Q[t])^S$, where $U = SL_2(Q[t]) \cap SL_2(Q[t])^S$.

LEMMA 4.1. Let π be an irreducible element of R. Then the matrices A(i) = $(1,0;\frac{1}{\pi},1)$, with $i \ge 1$, can be chosen as part of a set of double coset representatives of $(\operatorname{SL}_2(R[t]), U)$ in $\operatorname{SL}_2(Q[t])$.

PROOF. Suppose there exist $1 \le i < j$ such that A(i) and A(j) are in the same double coset. By setting t = 0, we obtain

$$A(i) = (f, g; h, k)A(j)(\delta^{-1}, \xi; 0, \delta)$$

where $(f, g; h, k) \in SL_2(R)$ and $(\delta^{-1}, \xi; 0, \delta) \in SL_2(Q)$. Therefore,

$$(4.1) f + \frac{g}{\pi i} = \delta$$

(4.2)
$$h + \frac{k}{\pi i} = \frac{\delta}{\pi i}$$

(4.2)
$$h + \frac{1}{\pi^{j}} = \frac{1}{\pi^{i}}$$

(4.3)
$$\xi\left(f + \frac{g}{\pi^{j}}\right) + g\delta = 0$$

(4.4)
$$\xi\left(h + \frac{k}{\pi^j}\right) + k\delta = 1$$

From (4.1) and (4.3), we obtain that $\xi = -g$. So (4.4) becomes

$$\delta^{-1} = -\frac{g}{\pi^i} + k$$

We write $\delta = \delta_1/\delta_2$, where $(\delta_1, \delta_2) = 1$. We claim π^j divides g. To get a contradiction, we assume that π^j does not divide g. We first show that π divides g. Indeed, if not and since π is prime in R, we obtain from (4.1) that π divides δ_2 . Further, we obtain from (4.5) that π divides δ_1 which is a contradiction. Therefore, $g = \pi^{\mu}g'$, where $g' \in R$ and $(\pi, g') = 1$. Since g is not divided by π^j and π divides g, we have $1 \leq \mu \leq j - 1$. Now, either $\mu < i$ or $i \leq \mu \leq j - 1$. Suppose $\mu < i$. Then, we obtain from (4.1) that π divides δ_2 . Similarly, from (4.5), we have π divides δ_1 , which is a contradiction. Thus, $i \leq \mu \leq j - 1$. By (4.5), $\delta^{-1} \in R$ and so π^j must divide g. Therefore, we obtain from (4.1) and (4.2) that $\delta \in R$ and π^{j-i} must divide k. Thus, π divides both g and k. Since (f, g; h, k) is invertible over R and the ideal $\langle \pi \rangle$ is properly contained in R, we get the required contradiction.

Let m be a square free integer. If $n \neq 3$ then IA(G(n, m)) is finitely generated (see, Introduction). So, we may assume that n = 3. To prove that IA(G(3,m)), with $m \ge 2$, is not finitely generated, it is enough to show that, for any prime p, IA(G(3, p)) is not finitely generated. For a fixed prime p, we recall that $G := F_3(\mathbf{W}_p)$ and $x_i := f_i(\mathbf{W}_p(F_3))$, i = 1, 2, 3. Thus, G is a free group of rank 3 in the variety \mathbf{W}_p freely generated by x_1, x_2, x_3 . We set $R := \mathbb{Z}_p[s_1, s_2^{-1}], \pi := s_1 + 1$ and $A(i) := (1, 0; \frac{1}{(s_1+1)^i}, 1)$, with $i \ge 1$. By Lemma 2.2, we obtain that R is a PID. Further, it is easily checked that π is an irreducible element of R. By Lemma 4.1, the set $\{A(i), i \ge 1\}$ may be included as part of a set of double coset representatives of $SL_2(R[s_2], U)$ in $SL_2(Q[s_2])$, where $U = SL_2(Q[s_2]) \cap SL_2(Q[s_2])^S$ and $S = (s_2, 0; 0, 1)$. Hence also part of representatives of $(B \cap SL_2(R[s_2]), U)$ in $SL_2(Q[s_2])$. We apply the Subgroup Theorem to B as a subgroup of $SL_2(Q[s_2, s_2^{-1}])$. Let $\{D_{\alpha}\}$ be a set of double coset representatives for $(B, SL_2(Q[s_2]))$ in $SL_2(Q[s_2, s_2^{-1}])$ and $\{D_\beta\}$ a set of double coset representatives for $(B, SL_2(Q[s_2])^S)$ in $SL_2(Q[s_2, s_2^{-1}])$. Recall that the group K generated by all $B \cap (D_{\alpha} \operatorname{SL}_2(Q[s_2])D_{\alpha}^{-1})$ and $B \cap (D_{\beta} \operatorname{SL}_2(Q[s_2])^{s}D_{\beta}^{-1})$ is the tree product of these groups. To show that B is not finitely generated, it is enough, by Proposition 2.1, to show that infinitely many of the A(i) are not double coset representatives of $(B, SL_2(Q[s_2])^S)$ in $SL_2(Q[s_2, s_2^{-1}])$. To get a contradiction, we suppose that infinitely many of the A(i) are double coset representatives. We assert that K is not the tree product of only finitely many of the $B \cap D_{\alpha} \operatorname{SL}_2(Q[s_2])D_{\alpha}^{-1}$ and the $B \cap D_{\beta} \operatorname{SL}_2(Q[s_2])^S D_{\beta}^{-1}$. In particular, we claim that $B \cap A(i)UA(i)^{-1}$ is a proper subgroup of $B \cap A(i)$ SL₂($Q[s_2]$)^S $A(i)^{-1}$ for all *i*. To see this, let $\Lambda = (1, \pi^{2i}\sigma_1^2\sigma_2s_2^{-1}; 0, 1)$. Then $A(i)\Lambda A(i)^{-1} = (1 - \pi^i s_2^{-1} \sigma_1^2 \sigma_2, \pi^{2i} \sigma_1^2 \sigma_2 s_2^{-1}; -s_2^{-1} \sigma_1^2 \sigma_2, 1 + \pi^i s_2^{-1} \sigma_1^2 \sigma_2).$ It is easily seen that both Λ and $A(i)\Lambda A(i)^{-1}$ belong to B, also $A(i)\Lambda A(i)^{-1} \in B \cap A(i) \operatorname{SL}_2(R[s_2])^S A(i)^{-1}$, but $A(i)\Lambda A(i)^{-1}$ does not belong to $B \cap A(i)UA(i)^{-1}$, which is the required contradiction.

To complete the proof of Theorem (ii), we need some further notation. Recall that G(n,m) is a free group of rank *n* in the variety \mathbf{W}_m , with $n, m \ge 2$. For the next few

lines, we set H := G(n, m) and $y_i := f_i(\mathbf{W}_m(F_n))$, i = 1, ..., m. Thus, the set $\{y_1, ..., y_m\}$ freely generates H. Let $m = p_1 \cdots p_r$, with $r \ge 2$, where p_i are distinct prime integers. Since Z_m is equal to the direct product $I_1 \oplus \cdots \oplus I_r$, where I_i is an ideal of Z_m which is isomorphic to Z_{p_i} as rings, there exists a (necessarily unique) complete set $\{e_1, ..., e_r\}$ of pairwise orthogonal idempotents in Z_m such that $I_i = e_i Z_m$, i = 1, ..., r. Note that H'may be regarded as a right $Z_m(H/H')$ - module, where the action of H/H' comes from conjugation in H. For $u \in H'$ and $d \in Z_m(H/H)'$ we write u^d for the image of u under the module action by d.

PROPOSITION 4.1. Let $n \ge 2$ and, in the notation described above, let λ be the endomorphism of H satisfying $\lambda(y_1) = y_1[y_1, y_2]^{-e_1s_1}$, $\lambda(y_2) = y_2[y_1, y_2]^{(1-e_1)s_2}$, and $\lambda(y_i) = y_i$, $i \ge 3$. Then λ is a non-tame automorphism of H.

PROOF. Let μ be the endomorphism of H satisfying $\mu(y_1) = y_1[y_1, y_2]^{e_1s_1s_2}$, $\mu(y_2) = y_2[y_1, y_2]^{-(1-e_1)s_1s_2}$, and $\mu(y_i) = y_i$, $i \ge 3$. It is easily checked that $\mu\lambda = \lambda\mu = 1$, where 1 denotes the identity mapping on H. Hence, λ is an automorphism of H. By Corollary 3.2 of [4], λ may be represented by an $n \times n$ matrix over $Z_m(F_n/F'_n)$, say λ^* . It is easy to see that the determinant of λ^* is equal to $(1 - e_1)s_1 + e_1s_2$. Now, suppose λ is tame automorphism. Thus, there exists an automorphism ψ of F_n such that ψ induces λ on H. Since $H/H' \cong F_n/F'_n$, we may take $\psi \in IA(F_n)$. Let ϕ be the induced IA-automorphism of ψ on $F_n(\mathbf{W})$. By Theorem 1 of [1], ϕ corresponds to an $n \times n$ matrix $C(\phi)$ over $Z(F_n/F'_n)$ such that $C(\phi)$ induces λ^* . Namely, $C(\phi) = I_n + (\alpha_{ij})$, where I_n is the identity matrix, $\alpha_{11} = -e_1(1 - s_2) + u_{11}$, $\alpha_{12} = (1 - e_1)(1 - s_2) + u_{12}$, $\alpha_{21} = e_1(1 - s_1) + u_{21}$, $\alpha_{22} = (1 - e_1)(1 - s_1) + u_{22}$ and $\alpha_{ij} = u_{ij}$ otherwise. Each u_{ij} is a polynomial in the variables $s_1^{\pm 1}, \ldots, s_n^{\pm 1}$ over Z with coefficients multiples of m. But the determinant of $C(\phi)$ equals $\prod_{i=1}^n s_i^{\alpha_i}$, where $\alpha_i \in \mathbb{Z}$. Therefore, by working over Z_m , we have $\prod_{i=1}^n s_i^{\alpha_i} = (1 - e_1)s_1 + e_1s_2$, which is a contradiction. Thus, λ is a non-tame automorphism of H for all $n \ge 2$.

REFERENCES

- 1. S. Bachmuth, Automorphisms of free metabelian groups. Trans. Amer. Math. Soc. 118(1965), 93–104.
- Automorphisms of a class of metabelian groups. Trans. Amer. Math. Soc. 127(1967), 284–293.
 S. Bachmuth, G. Baumslag, J. Dyer and H. Y. Mochizuki, Automorphisms of 2-generator metabelian
- groups. J. London Math. Soc. **36**(1987), 393–406.
- S. Bachmuth and H. Y. Mochizuki, Automorphisms of a class of metabelian groups II. Trans. Amer. Math. Soc. 127(1967), 294–301.
- 5. _____, IA-automorphisms of free metabelian group of rank 3. J. Algebra 55(1979), 106–115.
- 6. <u>Aut</u>(F) \rightarrow Aut(F/F'') is surjective for free groups F of rank $n \ge 4$. Trans. Amer. Math. Soc. **292**(1985), 81–101.
- The tame range of automorphism groups and GL_n. Group Theory Proc. Singapore Group Theory Conf., 1987, 241–251, de Gruyter, New York, 1989.
- Infinite generation of automorphism groups. Proceedings of Groups Korea 1988, Pusan, 1988, 25–28, Lecture Notes in Math. 1398, Springer, Berlin, New York, 1989.
- R. M. Bryant and J. R. J. Groves, Automorphisms of free metabelian groups of infinite rank. Comm. Algebra (11) 18(1990), 3619–3631.
- 10. D. E. Cohen, Subgroups of HNN-groups. J. Austral. Math. Soc. 17(1974), 394-405.
- 11. A. Karrass and D. Solitar, *The subgroups of a free product of two groups with an amalgamated subgroup*. Trans. Amer. Math. Soc. **150**(1970), 227–255.

ATHANASSIOS I. PAPISTAS

12. _____, Subgroups of HNN-groups and groups with one defining relation. Canad. J. Math. 23(1971), 627–543.

13. A. F. Krasnikov, Nilpotent subgroups of relatively free groups. Algebra i Logika 17(1978), 389-401.

Department of Mathematics Aristotle University of Thessaloniki GR 540 06, Thessaloniki Greece e-mail: apapist@ccf.auth.gr

104