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AUTOMORPHISMS OF METABELIAN GROUPS

ATHANASSIOS I. PAPISTAS

ABSTRACT. We investigate the problem of determining when IA(Fn(AmA)) is
finitely generated for all n and m, with n ½ 2 and m 6= 1. If m is a nonsquare free
integer then IA(Fn(AmA)) is not finitely generated for all n and if m is a square free
integer then IA(Fn(AmA)) is finitely generated for all n, with n 6= 3, and IA(F3(AmA))
is not finitely generated. In case m is square free, Bachmuth and Mochizuki claimed
in ([7], Problem 4) that TR(AmA) is 1 or 4. We correct their assertion by proving that
TR(AmA) =1.

1. Introduction. For any group G, let IA(G) be the IA-automorphism group of G,
that is, the kernel of the natural mapping from Aut(G) into Aut(GÛG0), where G0 denotes
the derived group of G. For each positive integer c, we write by çc(G) the c-th term of
the lower central series of G. So, ç2(G) = G0. If a1Ò    Ò ac are elements of a group G then
[a1Ò a2] = a1a2a�1

1 a�1
2 and, for c ½ 3, [a1Ò    Ò ac] =

h
[a1Ò    Ò ac�1]Ò ac

i
. For a positive

integer n, with n ½ 2, we will denote by Fn the (absolutely) free group of rank n freely
generated by the set ff1Ò    Ò fng. If V is a variety of groups, we write Fn(V) for the free
group of rank n in V and V(Fn) for the verbal subgroup of Fn corresponding to V. Every
element in the image of the natural mapping from Aut(Fn) into Aut

�
Fn(V)

�
is called

tame. For a non-negative integer m, with m 6= 1, Am denotes the variety of all abelian
groups of exponent dividing m, interpreted in such a way that A0 = A is the variety of all
abelian groups. Further, Wm is the variety of all extensions of groups in Am by groups
in A. We write W for W0. In the papers ([5] and [6]), Bachmuth and Mochizuki have
proved that IA

�
Fn(W)

�
is finitely generated for n 6= 3 and IA

�
F3(W)

�
is not finitely

generated. Bachmuth et al. (see [3], Theorem C) have shown that IA
�
F2(Wm)

�
is not

finitely generated if m is a free integer and finitely generated if m is a square free integer.
In this paper we extend the latter result for all n, with n ½ 2.

We say
n
Aut

�
Fn(V)

�
Ò n ½ 1

o
has tame range infinite, denoted by TR(V) = 1, if there

does not exist a positive integer d such that all automorphisms of Fn(V) are tame for all
n ½ d. Otherwise, we say it has a finite one. We deduce from [5] and [6] that TR(W) = 4.
So, we concentrate on m, with m ½ 2. If m is prime, say p, then TR(Wp) = 4. Indeed,
by means of techniques of [6] or more easily of [9], every automorphism of Fn(Wp) is
induced by an automorphism of Fn for all n ½ 4. As we shall see in Section 4, IA

�
F3(Wp)

�
is not finitely generated and so TR(Wp) = 4. The method of proving IA

�
F3(Wp)

�
is not

finitely generated is based on ideas of Bachmuth and Mochizuki in [5]. Thus, we may
assume m is not prime. If m is nonsquare free, it follows from a result of Bachmuth and
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Mochizuki [8] that TR(Wm) = 1. In case m is square free, Bachmuth and Mochizuki
claimed in ([7], Problem 4) that TR(Wm) is 1 or 4. We correct their assertion by proving
that TR(Wm) = 1.

For positive integers n and m, with nÒm ½ 2, let G(nÒm) be a free group of rank n in
the variety Wm. We write m = pã1

1 Ð Ð Ð pãr
r , where pi are distinct prime integers andãi 2 N.

For i = 1Ò    Ò r, we denote by G(nÒmÒ i) the free group of rank n in the variety Wp
ãi
i

. By

a result of Bachmuth and Mochizuki [4], IA
�
G(nÒm)

�
is isomorphic to a direct product

IA
�
G(nÒmÒ 1)

�
ðÐ Ð Ðð IA

�
G(nÒmÒ r)

�
. Suppose m is a nonsquare free integer. Then there

exists a prime p such that p2 divides m. Let T be the subgroup of Aut
�
G(nÒ p2)

�
consisting

of all tame automorphisms. Since T is finitely generated, Aut
�
G(nÒ p2)

�
= T IA

�
G(nÒ p2)

�
and Aut

�
G(nÒ p2)

�
is not finitely generated for all n, with n ½ 2, (see [8]), we obtain

that IA
�
G(nÒ p2)

�
is not finitely generated for all n. Therefore IA

�
G(nÒm)

�
is not finitely

generated. Thus, we may assume m is square free. Our main result deals with this case.
In Section 4, we prove the following theorem.

THEOREM. Let G(nÒm) be a free group of rank n in the variety Wm, with nÒm ½ 2.
(i) If m is a nonsquare free integer then IA

�
G(nÒm)

�
is not finitely generated for all n.

(ii) If m is a square free integer then IA
�
G(nÒm)

�
is finitely generated for all n 6= 3 and

IA
�
G(3Òm)

�
is not finitely generated. Further, IA

�
G(nÒm)

�
contains nontame elements

for all n.

COROLLARY. The tame range TR(Wm) is infinite for any positive integer m, with
m ½ 2, but not prime.

2. Preliminaries. Let C = A ŁU B be the free product of groups A and B with
amalgamated subgroup U. An element c of C can be written as c = c1 Ð Ð Ð cr where each
ci belongs to A or B, ci and ci+1 cannot both belong to A or both to B and r is uniquely
determined. The number r is called the length of c and the length of the identity element
is defined to be 0. By the length of a subset Γ we will mean the length of the shortest
element in the subset.

We shall state the Subgroup Theorem for amalgamated products as in Cohen [10],
who used the theory of groups acting on trees. Let H be a subgroup of C. Following
Cohen, let fDãg be a set of double coset representatives for (HÒA) in C and fDåg be a
set of double coset representatives for (HÒB) in C. Further, for each Dã, let fEñg be a
set of double coset representatives containing 1 of (D�1

ã HDã \ AÒU) in A, and for each
Då, let fEóg be a set of double coset representatives containing 1 of (D�1

å HDå\BÒU) in
B. For each ã and associated ñ, there exists a unique element Då corresponding Eó and
u 2 U such that DãEñ 2 HDåEóu. Thus

tãÒñ = DãEñ(DåEóu)�1 2 HÒ

and tãÒñ 6= 1 if and only if DãEñ is neither a (HÒA) double coset representative nor a
(HÒB) double coset representative.
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SUBGROUP THEOREM (cf. [10], THEOREM 3). Let H be a subgroup of A ŁU B, where
U = A \ B. Then,

(i) those tãÒñ 6= 1 freely generate a free subgroup of H;
(ii) the group K generated by all H\ (DãAD�1

ã ) and H\ (DåBD�1
å ) is the tree product

of these groups, two such groups being adjacent if Dã = Då = 1 or if Dã = DåbÒ b 2 B,
or Då = Dãa for some a 2 A; the subgroup amalgamated between two adjacent groups
is H \ (DUD�1), where D is the longer of Dã and Då;

(iii) H is the HNN-group

hKÒ tãÒñ; tãÒñ(H \ DåEóUE�1
ó D�1

å )t�1
ãÒñ = H \ DãEñUE�1

ñ D�1
ã i

over all tãÒñ 6= 1 and corresponding DåÒEó.

Concerning tree products and HNN-groups, we refer the reader to ([11] and [12]).
Since H\DãEñUE�1

ñ D�1
ã � H\DãAD�1

ã and H\DåEóUE�1
ó D�1

å � H\DåBD�1
å , we

apply a result of Karrass and Solitar ([11], Lemma 6) to obtain the following result.

PROPOSITION 2.1. In the notation of the Subgroup Theorem, if H is a finitely generated
subgroup of A ŁU B, then only finitely many of the tãÒñ 6= 1 and K is the tree product of
finitely many of the H \ (DãAD�1

ã ) and the H \ (DåBD�1
å ).

The proof of the following lemma is elementary.

LEMMA 2.2. Let R be a principal ideal domain (PID), which is not a field, and let
a 2 R n f0g be a nonunit of R. Then the localization RS of R away from S is a PID, where
S = fan : n ½ 0g.

3. A reduction. For a fixed prime p, we set G := F3(Wp) and xi := fi
�
Wp(F3)

�
,

i = 1Ò 2Ò 3. Thus, G is a free group of rank 3 in Wp freely generated by x1Ò x2Ò x3. We denote
by M a (left) free Zp(F3ÛF0

3)-module with a basis fï1Ò ï2Ò ï3g and by Ω the cartesian
product of F3ÛF0

3 by M. The set Ω becomes a group by defining a multiplication

(ũÒm1)(ṽÒm2) = (ũṽÒ ũm2 + m1) = (ũvÒ ũm2 + m1)Ò

for all ũÒ ṽ 2 F3ÛF0
3, where ũ = uF0

3 and ṽ = vF0
3, with uÒ v 2 F3, and m1Òm2 2 M. For

i = 1Ò 2Ò 3, let si = fiF0
3. The mapping from G into Ω sending xi to (siÒ ïi) is an embedding

(see [2], [13]). Further, an element (gÒ a1ï1 + a2ï2 + a3ï3) represents an element of G if
and only if a1õ1 + a2õ2 + a3õ3 = 1� g, where õi = 1� siÒ i = 1Ò 2Ò 3. We identify G with
its image in Ω and let û be an IA-automorphism of G. Then û can be described by

(31) û: (sjÒ ïj) �! (sjÒ a1jï1 + a2jï2 + a3jï3)

where

(32) a1jõ1 + a2jõ2 + a3jõ3 = õjÒ

for all j 2 f1Ò 2Ò 3g. The mapping of IA(G) into GL3

�
Zp

�
F3ÛF0

3)
�

given by û !

(aij), where û is given by (3.1), is an embedding. By a result of Bachmuth (see [2],
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Proposition 2), (aij) 2 GL3(Zp

�
F3ÛF0

3)
�

is in the image of this embedding if and only if
the columns of (aij) satisfy the condition (3.2).

We adopt the convention that a 2 ð 2 matrix (aij) over a ring R is written as
(a11Ò a12; a21Ò a22). Following [5], we identify Zp(F3ÛF0

3) with Zp[sš1
1 Ò sš1

2 , sš1
3 ] and each

element û of IA(G) can be uniquely represented by an element of GL3(Zp[sš1
1 Ò sš1

2 Ò sš1
3 ])

of the form

(33)

0
B@

1 + õ2a1 + õ3a2 �õ2b3 � õ3b1 �õ3c3 + õ2c2

�õ1a1 + õ3a3 1 + õ3b2 + õ1b3 �õ3c1 � õ1c2

�õ1a2 � õ2a3 �õ2b2 + õ1b1 1 + õ1c3 + õ2c1

1
CA

Further, there exists a representation ú of IA(G) into GL2(Zp[sš1
1 Ò sš1

2 ]) by sending a
matrix of the form (3.3) into a matrix of the form

(34) (1 + õ1b̂3 + õ2â1Ò �ĉ2;�õ1õ2b̂2 + õ2
1b̂1 + õ1õ2â2 + õ2

2â3Ò 1 + õ1ĉ3 + õ2ĉ1)

where â, b̂ and ĉ are the images of aÒ b and c in Zp[sš1
1 Ò sš1

2 Ò sš1
3 ] via the natural map-

ping from Zp[sš1
1 Ò sš1

2 Ò sš1
3 ] into Zp[sš1

1 Ò sš1
2 ] by sending s3 into 1 and Zp[sš1

1 Ò sš1
2 ] is

mapped identical onto itself. Let A be the image of the representation ú and B =
A \ SL2(Zp[sš1

1 Ò sš1
2 ]). Similar arguments as in the proof of Lemma 1 of [5], we have

the following result.

LEMMA 3.1. If A is finitely generated then B is finitely generated.

4. Proof of Theorem. Let R be a PID with a quotient field Q and t an indeterminate
over R. Write SL2(Q[t])S for S�1(SL2

�
Q[t])

�
S where S = (tÒ 0; 0Ò 1). By Ihara’s Theorem

we obtain SL2(Q[tÒ t�1]) = SL2(Q[t]) ŁU SL2(Q[t])S , where U = SL2(Q[t]) \ SL2(Q[t])S.

LEMMA 4.1. Let ô be an irreducible element of R. Then the matrices A(i) =
(1Ò 0; 1

ôi Ò 1), with i ½ 1, can be chosen as part of a set of double coset representatives of�
SL2(R[t])ÒU

�
in SL2(Q[t]).

PROOF. Suppose there exist 1 � i Ú j such that A(i) and A(j) are in the same double
coset. By setting t = 0, we obtain

A(i) = (f Ò g; hÒ k)A(j)(é�1 Ò ò; 0Ò é)

where (f Ò g; hÒ k) 2 SL2(R) and (é�1Ò ò; 0Ò é) 2 SL2(Q). Therefore,

(4.1) f +
g
ôj

= é

(4.2) h +
k
ôj

=
é

ôi

(4.3) ò
�

f +
g
ôj

�
+ gé = 0

(4.4) ò

�
h +

k
ôj

�
+ ké = 1
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From (4.1) and (4.3), we obtain that ò = �g. So (4.4) becomes

(45) é�1 = �
g
ôi

+ k

We write é = é1Ûé2, where (é1Ò é2) = 1. We claim ôj divides g. To get a contradiction, we
assume that ôj does not divide g. We first show that ô divides g. Indeed, if not and since
ô is prime in R, we obtain from (4.1) that ô divides é2. Further, we obtain from (4.5) that
ô divides é1 which is a contradiction. Therefore, g = ôñg0, where g0 2 R and (ôÒ g0) = 1.
Since g is not divided by ôj and ô divides g, we have 1 � ñ � j � 1. Now, either ñ Ú i
or i � ñ � j� 1. Suppose ñ Ú i. Then, we obtain from (4.1) that ô divides é2. Similarly,
from (4.5), we have ô divides é1, which is a contradiction. Thus, i � ñ � j�1. By (4.5),
é�1 2 R and so ôj must divide g. Therefore, we obtain from (4.1) and (4.2) that é 2 R
and ôj�i must divide k. Thus, ô divides both g and k. Since (f Ò g; hÒ k) is invertible over
R and the ideal hôi is properly contained in R, we get the required contradiction.

Let m be a square free integer. If n 6= 3 then IA
�
G(nÒm)

�
is finitely generated (see,

Introduction). So, we may assume that n = 3. To prove that IA
�
G(3Òm)

�
, with m ½ 2,

is not finitely generated, it is enough to show that, for any prime p, IA
�
G(3Ò p)

�
is not

finitely generated. For a fixed prime p, we recall that G := F3(Wp) and xi := fi
�
Wp(F3)

�
,

i = 1Ò 2Ò 3. Thus, G is a free group of rank 3 in the variety Wp freely generated by x1Ò x2Ò x3.
We set R := Zp[s1Ò s�1

2 ], ô := s1 +1 and A(i) := (1Ò 0; 1
(s1+1)i Ò 1), with i ½ 1. By Lemma 2.2,

we obtain that R is a PID. Further, it is easily checked that ô is an irreducible element of
R. By Lemma 4.1, the set fA(i)Ò i ½ 1g may be included as part of a set of double coset
representatives of SL2(R[s2]ÒU) in SL2(Q[s2]), where U = SL2(Q[s2])\SL2(Q[s2])S and
S = (s2Ò 0; 0Ò 1). Hence also part of representatives of

�
B\SL2(R[s2])ÒU

�
in SL2(Q[s2]).

We apply the Subgroup Theorem to B as a subgroup of SL2(Q[s2Ò s�1
2 ]). Let fDãg be a

set of double coset representatives for (B, SL2

�
Q[s2])

�
in SL2(Q[s2Ò s�1

2 ]) and fDåg a
set of double coset representatives for (BÒSL2(Q[s2])S) in SL2(Q[s2Ò s�1

2 ]). Recall that
the group K generated by all B \

�
Dã SL2(Q[s2])D�1

ã

�
and B \

�
Då SL2(Q[s2])SD�1

å

�
is the tree product of these groups. To show that B is not finitely generated, it is
enough, by Proposition 2.1, to show that infinitely many of the A(i) are not double
coset representatives of

�
BÒSL2(Q[s2])S

�
in SL2(Q[s2Ò s�1

2 ]). To get a contradiction, we
suppose that infinitely many of the A(i) are double coset representatives. We assert
that K is not the tree product of only finitely many of the B \Dã SL2(Q[s2])D�1

ã and the
B\Då SL2(Q[s2])SD�1

å . In particular, we claim that B\A(i)UA(i)�1 is a proper subgroup
of B \ A(i) SL2(Q[s2])SA(i)�1 for all i. To see this, let Λ = (1Ò ô2iõ2

1õ2s�1
2 ; 0Ò 1). Then

A(i)ΛA(i)�1 = (1 � ôis�1
2 õ2

1õ2Ò ô
2iõ2

1õ2s�1
2 ;�s�1

2 õ2
1õ2Ò 1 + ôis�1

2 õ2
1õ2). It is easily seen

that both Λ and A(i)ΛA(i)�1 belong to B, also A(i)ΛA(i)�1 2 B\A(i) SL2(R[s2])SA(i)�1,
but A(i)ΛA(i)�1 does not belong to B\A(i)UA(i)�1 , which is the required contradiction.

To complete the proof of Theorem (ii), we need some further notation. Recall that
G(nÒm) is a free group of rank n in the variety Wm, with nÒm ½ 2. For the next few
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lines, we set H := G(nÒm) and yi := fi
�
Wm(Fn)

�
, i = 1Ò    Òm. Thus, the set fy1Ò    Ò ymg

freely generates H. Let m = p1 Ð Ð Ð pr, with r ½ 2, where pi are distinct prime integers.
Since Zm is equal to the direct product I1 ý Ð Ð Ð ý Ir, where Ii is an ideal of Zm which is
isomorphic to Zpi as rings, there exists a (necessarily unique) complete set fe1Ò    Ò erg

of pairwise orthogonal idempotents in Zm such that Ii = eiZmÒ i = 1Ò    Ò r. Note that H0

may be regarded as a right Zm(HÛH0)- module, where the action of HÛH0 comes from
conjugation in H. For u 2 H0 and d 2 Zm(HÛH)0 we write ud for the image of u under
the module action by d.

PROPOSITION 4.1. Let n ½ 2 and, in the notation described above, let ï be the
endomorphism of H satisfying ï(y1) = y1[y1Ò y2]�e1s1 , ï(y2) = y2[y1Ò y2](1�e1 )s2 , and
ï(yi) = yi, i ½ 3. Then ï is a non-tame automorphism of H.

PROOF. Let ñ be the endomorphism of H satisfying ñ(y1) = y1[y1Ò y2]e1s1s2 , ñ(y2) =
y2[y1Ò y2]�(1�e1 )s1s2 , and ñ(yi) = yiÒ i ½ 3. It is easily checked that ñï = ïñ = 1, where 1
denotes the identity mapping on H. Hence, ï is an automorphism of H. By Corollary 3.2
of [4], ï may be represented by an n ð n matrix over Zm(FnÛF0

n), say ïŁ. It is easy to
see that the determinant of ïŁ is equal to (1 � e1)s1 + e1s2. Now, suppose ï is tame
automorphism. Thus, there exists an automorphism † of Fn such that † induces ï on H.
Since HÛH0 ≤ FnÛF0

n, we may take † 2 IA(Fn). Let û be the induced IA-automorphism
of † on Fn(W). By Theorem 1 of [1], û corresponds to an n ð n matrix C(û) over
Z(FnÛF0

n) such that C(û) induces ïŁ. Namely, C(û) = In + (ãij), where In is the identity
matrix, ã11 = �e1(1 � s2) + u11, ã12 = (1 � e1)(1 � s2) + u12, ã21 = e1(1 � s1) + u21,
ã22 = (1�e1)(1�s1)+u22 andãij = uij otherwise. Each uij is a polynomial in the variables
sš1

1 Ò    Ò sš1
n over Z with coefficients multiples of m. But the determinant of C(û) equalsQn

i=1 sãi
i , whereãi 2 Z. Therefore, by working over Zm, we have

Qn
i=1 sãi

i = (1�e1)s1+e1s2,
which is a contradiction. Thus, ï is a non-tame automorphism of H for all n ½ 2.
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