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Abstract

We prove that sets with positive upper Banach density in sufficiently large dimensions
contain congruent copies of all sufficiently large dilates of three specific higher-dimensional
patterns. These patterns are: 2n vertices of a fixed n-dimensional rectangular box, the same
vertices extended with n points completing three-term arithmetic progressions, and the same
vertices extended with n points completing three-point corners. Our results provide common
generalizations of several Euclidean density theorems from the literature.

2020 Mathematics Subject Classification: Primary: 05D10, 28A75; Secondary: 11B30,
42B20

1. Introduction

Euclidean Ramsey theory typically seeks for a given pattern, such as vertices of a square,
an arithmetic progression, etc., in a single partition class determined by an arbitrary (or
only measurable) coloring of the Euclidean space. Stronger results than the mere coloring
theorems are the so-called density theorems, which establish existence of the pattern inside
an arbitrary measurable subset of positive density. The appropriate notion of density for this
purpose is the upper Banach density, defined as

δ(A) := lim sup
N→∞

sup
x∈Rd

|A ∩ (x + [0, N ]d)|
N d

(1·1)

for any measurable A ⊆R
d . Here and in what follows, |B| denotes the Lebesgue measure of

a measurable set B ⊆R
d .
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An interesting class of density results tries to find congruent copies of all sufficiently large
dilates of a given pattern. There is always a critical dimension dmin below which positive
statements cannot hold. Since many dimension-related issues are still unresolved, one is
often content with proving the claim when d is sufficiently large. An initial result of this
type starts with the simplest possible pattern, a pair of points in R

d for d � 2, and it was
established independently by Bourgain [1], Falconer and Marstrand [8], and Furstenberg,
Katznelson and Weiss [10]. Moreover, Bourgain [1] generalised it to non-degenerate k-point
patterns, also viewed as vertices of (k − 1)-dimensional simplices, in R

d for d � k.
More recently, Lyall and Magyar [13] initiated the consideration of product-type patterns.

They proved that, for fixed a1, a2 > 0, a positive density subset of R
d1 ×R

d2 , d1, d2 � 2,
contains vertices of a rectangle,

(x1, x2), (x1, x2 + s2), (x1 + s1, x2), (x1 + s1, x2 + s2),

with x1, s1 ∈R
d1 , x2, s2 ∈R

d2 , ‖s1‖�2 = λa1, and ‖s2‖�2 = λa2, for all sufficiently large λ> 0.
We write ‖v‖�2 for the Euclidean norm of a vector v= (v1, v2, . . . , vd) ∈R

d , since later we
will also consider more general �p-norms, 1< p<∞, defined as

‖v‖�p :=
(

d∑
i=1

|vi |p

)1/p

.

The particular case a1 = a2 = 1 corresponds to the search for squares. In the same paper the
authors proceed to Cartesian products of two general non-degenerate simplices.

As our first result, we establish a different generalization, replacing (vertices of) rectangles
with (vertices of) higher-dimensional rectangular solids. Let d1, d2, . . . , dn be positive inte-
gers. In what follows, a box will be a pattern consisting of 2n points in R

d1 ×R
d2 × · · · ×R

dn

of the form

(x1 + k1s1, x2 + k2s2, . . . , xn + knsn), k1, k2, . . . , kn ∈ {0, 1} (1·2)

for any x j , s j ∈R
d j , s j 	= 0, j = 1, 2, . . . , n.

THEOREM 1. Fix numbers a1, a2, . . . , an > 0. For any positive integers d1, d2, . . . ,

dn � 5 and any measurable set A ⊆R
d1 ×R

d2 × · · · ×R
dn with δ(A) > 0 one can find λ0 > 0

with the property that for any real number λ� λ0 the set A contains a box (1·2) with
x j , s j ∈R

d j and ‖s j‖�2 = λa j , j = 1, 2, . . . , n.

The possibility of generalising the aforementioned results of Lyall and Magyar to n-fold
products with n � 3 was announced by the same authors in [13]. The present paper and the
more recent preprint by Lyall and Magyar [14] achieve this goal for boxes independently
of each other and using quite different approaches. In fact, [14] proves a sharp variant of
Theorem 1 above, in which the assumptions d j � 5 are relaxed to d j � 2. It is clearly nec-
essary to assume d j � 2: if we had d1 = 1, then the set of all points with the first coordinate
from ⋃

k∈Z

[
(k − 1/10)a1, (k + 1/10)a1

]
would be a counterexample, since it would contain no boxes associated with half-integer
values of λ.
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The approach pursued in this paper is in the spirit of the paper by Cook, Magyar and
Pramanik [2], and the same method will allow us to handle certain enlarged patterns we are
about to discuss.

Bourgain [1] also constructed a measurable set A ∈R
d with δ(A) > 0 such that lengths

‖s‖�2 of gaps s for all 3-term arithmetic progressions

x, x + s, x + 2s

inside A omit an unbounded set of positive values. This prevents us from having the most
obvious candidate for a density theorem for 3-term arithmetic progressions. On the other
hand, Cook, Magyar, and Pramanik [2] showed that the corresponding density theorem still
holds if one is allowed to measure sizes of gaps s in the �p-norms for 1< p<∞, p 	= 2.

Our second result is a common generalisation of Theorem 1 above and [2, theorem 2.1].
Consider n additional points in R

d1 ×R
d2 × · · · ×R

dn ,

(x1 + 2s1, x2, . . . , xn), (x1, x2 + 2s2, . . . , xn), . . . , (x1, x2, . . . , xn + 2sn) (1·3)

for given x j , s j ∈R
d j , s j 	= 0, j = 1, 2, . . . , n. The union of (1·2) and (1·3) will be called a

3AP-extended box: it has a 3-term arithmetic progression attached to each edge coming from
a fixed vertex of the box. From the aforementioned observation of Bourgain we know that
an analogue of Theorem 1 for the 3AP-extended boxes is not possible, so one has to give up
on the Euclidean norm.

THEOREM 2. Fix numbers a1, a2, . . . , an > 0 and an exponent 1< p<∞, p 	= 2. There
exists a dimensional threshold dmin such that for any positive integers d1, d2, . . . , dn � dmin

and any measurable set A ⊆R
d1 ×R

d2 × · · · ×R
dn with δ(A) > 0 one can find λ0 > 0 with

the property that for any real number λ� λ0 the set A contains a 3AP-extended box
(1·2)∪(1·3) with x j , s j ∈R

d j and ‖s j‖�p = λa j , j = 1, 2, . . . , n.

The pattern consisting of points (1·2) and (1·3) can also be viewed as a subset of the grid

(x1 + k1s1, x2 + k2s2, . . . , xn + knsn), k1, k2, . . . , kn ∈ {0, 1, 2},
consisting of 3n points. At the moment we are not able to prove a result analogous to
Theorem 2 for this grid. Larger grids bring further complications: one should first handle
longer arithmetic progressions and it is known that additional restrictions on the values of p
are needed; see the remarks in [4].

The same approach will enable a further generalisation of Theorems 1 and 2. The present
authors and Rimanić [4] have raised the generality of the result by Cook, Magyar and
Pramanik [2] from 3-term arithmetic progressions to corners, which are triples of points
in R

d ×R
d of the form

(x, y), (x + s, y), (x, y + s)

for x, y, s ∈R
d , s 	= 0. A corner-extended box will be a pattern in (Rd1 ×R

d2 × · · · ×R
dn )2

consisting of 2n points forming a box,

(x1 + k1s1, x2 + k2s2, . . . , xn + knsn, y1, y2, . . . , yn), k1, k2, . . . , kn ∈ {0, 1}, (1·4)
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and n additional points completing corners with n of its edges,

(x1, x2, . . . , xn, y1 + s1, y2, . . . , yn), . . . , (x1, x2, . . . , xn, y1, y2, . . . , yn + sn),

(1·5)

where x j , y j , s j ∈R
d j , s j 	= 0, j = 1, 2, . . . , n. The following result is a common generali-

sation of Theorem 1 above and [4, theorem 1·2].

THEOREM 3. Fix numbers a1, a2, . . . , an > 0 and an exponent 1< p<∞, p 	= 2. There
exists a dimensional threshold dmin such that for any positive integers d1, d2, . . . , dn � dmin

and any measurable set A ⊆ (Rd1 ×R
d2 × · · · ×R

dn )2 with δ(A) > 0 one can find λ0 > 0
with the property that for any real number λ� λ0 the set A contains a corner-extended box
(1·4)∪(1·5) with x j , y j , s j ∈R

d j and ‖s j‖�p = λa j , j = 1, 2, . . . , n.

Theorem 3 implies Theorem 2, as can be seen by considering the skew projections
(x j , y j ) �→ y j − x j ; see [4] for details. Consequently, it is still necessary to assume p 	= 2,
while the endpoint cases p = 1 and p = ∞ clearly do not allow any nontrivial results; see
the comments in [2].

Let us emphasise that the dimensional threshold dmin in Theorems 2 and 3 depends on the
exponent p. Careful analysis of the arguments below can give dmin = O(p) for each fixed n,
but we do not even have counterexamples to the possibility dmin = 2. The optimal value of
dmin is still far from understood, even in the case n = 1 studied in [2] and [4].

Lyall and Magyar [12] also worked on the Euclidean embedding of all large dilates of
a fixed distance graph. Their results do not include Theorem 1, since the boxes (or even
rectangles) are simultaneously “too rigid” and “too degenerate;” compare with the definition
of a proper k-degenerate distance graph from [12]. They also clearly do not overlap with
Theorems 2 and 3, simply because these theorems fail in the Euclidean metric.

As we have already mentioned, our method of approach is based on the paper by Cook,
Magyar, and Pramanik [2]. This method reduces Theorems 1–3 to boundedness of certain
multilinear singular integral operators. In order to obtain bounds for these operators we
invoke the main result from the recent paper by Thiele and one of the present authors [7],
which in turn uses techniques gradually developed in a series of papers including [3–6, 11].

In Section 2 we list the main ingredients of the proofs in the form of several propositions
and we explain how they imply the three theorems. Section 3 establishes the propositions
that belong to the combinatorial part of the proof, by either invoking [2], or performing
necessary modifications. Section 4 establishes the propositions dealing with singular integral
operators, which constitute the analytical part of the proof.

2. Scheme of the proofs

We have already explained how Theorem 2 can be derived from Theorem 3, so in this
section we give outlines of proofs of Theorems 1 and 3. In complete analogy with the steps
from [2], they will be reduced to Propositions 4–6 below.

If A, B : D → [0,∞) are two functions or functionals for which there exists a finite con-
stant C depending on a set of parameters P such that A(x)≤ C B(x) for each x ∈D, then
we write

A(x)�P B(x).
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If both A(x)�P B(x) and B(x)�P A(x), then we write

A(x)∼P B(x).

The parameters in P that are understood throughout the text will be omitted from this nota-
tion. In particular, it will always be understood that all constants implicit in the notation �
and ∼ depend on the fixed vector of positive numbers

a := (a1, a2, . . . , an),

which determines the shape of the patterns (the aspect ratios of the boxes), and the exponent
p, which is relevant to the proof of Theorem 3 only.

Characteristic function (i.e. the indicator function) of a set E will be written as 1E . Let us
write gt for an L1-normalised dilate of a function g : Rd →C by a factor t > 0, i.e.,

gt(s) := t−d g(t−1s) (2·1)

for each s ∈R
d . The Fourier transform of L1 functions is normalised as

ĝ(ξ) :=
∫
Rd

g(s)e−2π is·ξ ds,

where s · ξ stands the standard scalar product of vectors s and ξ in R
d . If σ is a measure on

Borel subsets of Rd , then we define its dilate by t > 0 as another measure σt given as

σt(E) := σ(t−1 E) (2·2)

for each Borel set E ⊆R
d . A consequence of a linear change of variables is∫

Rd

f (s) dσt(s)=
∫
Rd

f (ts) dσ(s)

for any measurable function f : Rd →C such that the above integrals exist. Notation
(2·1) and (2·2) is mutually consistent when σ is absolutely continuous with respect to the
Lebesgue measure with density g. Occasionally we will need an Lp-normalised dilate of
g : Rd →C by t > 0, for a more general exponent 1 ≤ p<∞, which will be denoted Dp

t g
and defined as

Dp
t g(s) := t−d/pg(t−1s). (2·3)

Let us fix an exponent 1< p<∞; it will simply be p = 2 in relation with Theorem 1,
while the proof of Theorem 3 will assume p 	= 2. We introduce a measure σ d,p on Borel
subsets of Rd in the Dirac δ notation as

σ d,p(s) := δ
(
1 − ‖s‖p

�p

)
or, less formally and abusing the integral representation for the Fourier transform, as

σ d,p(s)=
∫
R

e−2π iu(1−‖s‖p
�p ) du.

Its dilate σ d,p
λ by λ> 0 is clearly supported on the C1 surface {s ∈R

d : ‖s‖�p = λ}. Let us
also fix a Schwartz function ψ : R→ [0, 1] such that ψ̂ � 0, ψ̂ is supported in [−4, 4],
ψ̂(1) > 0, and ψ(0)= 1. For instance, we can take a C∞ function ρ : R→ [0,∞) such
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that ρ > 0 on [−1, 1], ρ = 0 outside [−2, 2], and ρ has integral 1; then we can simply set
ψ = |ρ̂|2. Any constants implicit in the notation � and ∼ will also be understood to depend
on ψ . Furthermore, for any ε > 0 we introduce a function ωd,p,ε : Rd →C by the formula

ωd,p,ε(s) :=
∫
R

e−2π iu(1−‖s‖p
�p )ψ(εu) du = ε−1ψ̂

(
ε−1(1 − ‖s‖p

�p)
)
.

It was shown in [2, lemma 4·1] that∫
Rd

ωd,p,ε(s) ds ∼d,p 1

for all 0< ε < 1/10d. Thus, for such ε we set

c(d, p, ε) :=
∫
Rd ω

d,p,ε(s) ds∫
Rd ωd,p,1(s) ds

∼d,p 1 (2·4)

and then kd,p,ε : Rd →R defined by

kd,p,ε(s) :=ωd,p,ε(s)− c(d, p, ε)ωd,p,1(s) (2·5)

has integral equal to 0.
We introduce the number D = d1 + · · · + dn , so that

R
D ∼=R

d1 × · · · ×R
dn .

Throughout the proofs we will use the shorthand notation

x := (x1, . . . , xn), y := (y1, . . . , yn), s := (s1, . . . , sn)

and we view x, y, and s as vectors from R
D . It will also be convenient to adopt some derived

notation, such as

dx := dx1 · · · dxn, dσ p
λa(s) := dσ d1,p

λa1
(s1) · · · dσ dn ,p

λan
(sn).

In the same spirit we define

ω
p,ε
λa (s) :=ω

d1,p,ε
λa1

(s1) · · ·ωdn ,p,ε
λan

(sn).

Let us also write k = (k1, . . . , kn) ∈ {0, 1}n and denote

(F f )(x, s) :=
∏

k∈{0,1}n

f (x1 + k1s1, . . . , xn + knsn)

for a function f : RD → [0, 1] and

(F̃ f )(x, y, s) :=
⎛⎝ ∏

k∈{0,1}n

f (x1 + k1s1, . . . , xn + knsn, y1, . . . , yn)

⎞⎠
f (x1, . . . , xn, y1 + s1, . . . , yn) · · · f (x1, . . . , xn, y1, . . . , yn + sn)

for a function f : (RD)2 → [0, 1].
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The most important objects are the pattern-counting forms, defined as follows. For a
“scale” λ> 0 we set

N p
λ ( f ) :=

∫
(RD)2

(F f )(x, s) dσ p
λa(s) dx

and

Ñ p
λ ( f ) :=

∫
(RD)3

(F̃ f )(x, y, s) dσ p
λa(s) dx dy.

The name comes from the fact that if N p
λ (1A) > 0 (resp. Ñ p

λ (1A) > 0), then A contains a
box (1·2) (resp. a corner-extended box (1·4)∪(1·5)) with ‖s j‖�p = λa j , j = 1, 2, . . . , n. We
will also need their smoothened versions, defined for ε > 0 as

Mp,ε
λ ( f ) :=

∫
(RD)2

(F f )(x, s)ωp,ε
λa (s) ds dx

and

M̃p,ε
λ ( f ) :=

∫
(RD)3

(F̃ f )(x, y, s)ωp,ε
λa (s) ds dx dy.

By the standard approximation of identity arguments,

lim
ε→0+

Mp,ε
λ ( f )=N p

λ ( f ), lim
ε→0+

M̃p,ε
λ ( f )= Ñ p

λ ( f ) (2·6)

for functions f as above. Finally, we denote

E p,ε
λ ( f ) :=Mp,ε

λ ( f )− b(p, ε)Mp,1
λ ( f )

and

Ẽ p,ε
λ ( f ) := M̃p,ε

λ ( f )− b(p, ε)M̃p,1
λ ( f ),

where we recall that the numbers c(d j , p, ε) come from (2·4) and use the shorthand notation

b(p, ε) := c(d1, p, ε) · · · c(dn, p, ε).

Here are the three main propositions needed in the proofs.

PROPOSITION 4. Suppose that 1< p<∞ and that δ, λ, N are real numbers such that
0< δ ≤ 1 and 0<λ≤ N.

(a) If f : RD → [0, 1] is a measurable function supported in [0, N ]D and satisfying∫
[0,N ]D f � δN D, then

Mp,1
λ ( f )�D,δ N D.

(b) If f : R2D → [0, 1] is a measurable function supported in [0, N ]2D and satisfying∫
[0,N ]2D f � δN 2D, then

M̃p,1
λ ( f )�D,δ N 2D.
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PROPOSITION 5. Suppose that ε, λ, N are real numbers such that 0< ε < 1 and
0<λ≤ N.

(a) If d j � 5 for j = 1, 2, . . . , n and if f : RD → [0, 1] is a measurable function supported
in [0, N ]D, then ∣∣N 2

λ ( f )−M2,ε
λ ( f )

∣∣�D ε
1/4 N D.

(b) Additionally, take 1< p<∞, p 	= 2. If each d j is sufficiently large for j = 1, 2, . . . , n
and if f : R2D → [0, 1] is a measurable function supported in [0, N ]2D, then∣∣Ñ p

λ ( f )− M̃p,ε
λ ( f )

∣∣�D εN 2D.

PROPOSITION 6. Suppose that 1< p<∞, 0< ε < 1/10D, and that λ1, λ2, . . . , λM are
positive numbers such that λm+1/λm � 2 for m = 1, 2, . . . , M − 1.

(a) If f : RD → [0, 1] is a measurable function supported in [0, N ]D, then

M∑
m=1

|E p,ε
λm
( f )|�D,ε N D.

(b) If f : R2D → [0, 1] is a measurable function supported in [0, N ]2D, then(
M∑

m=1

|Ẽ p,ε
λm
( f )|2

)1/2

�D,ε N 2D.

Proofs of Propositions 4–6 are postponed to the later sections. Now we show how they
imply Theorems 1 and 3.

Proof of Theorem 1. We argue by contradiction and suppose that there is a set A with
strictly positive upper Banach density δ(A) for which the claim does not hold: there exists
a sequence (λm)

∞
m=1 such that limm→∞ λm = ∞ and that, for each m, the set A contains no

boxes (1·2) with ‖s j‖�2 = λma j , j = 1, 2, . . . , n. By omitting some terms we can achieve
λm+1/λm � 2 for each m. Fix an arbitrary positive integer M . For δ := δ(A)/2> 0, by the
definition of the upper Banach density (1·1), we can find N � λM and x ∈R

D such that∣∣A ∩ (x + [0, N ]D)
∣∣� δN D.

Denote A′ := (−x + A)∩ [0, N ]D and f = 1A′ , so that A′ is now a measurable subset of
[0, N ]D satisfying ∫

[0,N ]D

f (x) dx = |A′|� δN D (2·7)

and it still has no boxes (1·2) of the previously described sizes determined by λ.
Consequently,

N 2
λm
( f )= 0 (2·8)

for m = 1, 2, . . . , M . Because of condition (2·7), we can apply part (a) of Proposition 4
and get

M2,1
λm
( f )�D,δ N D, (2·9)
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again for each m = 1, 2, . . . , M . Moreover, (2·8), Proposition 5(a) and (2·9) together give

M2,ε
λm
( f )= ∣∣N 2

λm
( f )−M2,ε

λm
( f )
∣∣�D ε

1/4 N D �D,δ ε
1/4M2,1

λm
( f ). (2·10)

By (2·10) and (2·4), for a sufficiently small ε depending on the dimensions and δ, we have

M2,ε
λm
( f )≤ 1

2
b(2, ε)M2,1

λm
( f ),

so,

|E2,ε
λm
( f )| = b(2, ε)M2,1

λm
( f )−M2,ε

λm
( f )� 1

2
b(2, ε)M2,1

λm
( f ).

By (2·4) and (2·9) again, we conclude

|E2,ε
λm
( f )|�D,δ N D (2·11)

for each m = 1, 2, . . . , M . Summing the lower bound (2·11) in m gives

M∑
m=1

|E2,ε
λm
( f )|�D,δ M N D. (2·12)

Finally, combining (2·12) with Proposition 6 yields M �D,δ 1, which contradicts the fact
that M could have been chosen arbitrarily large.

Proof of Theorem 3. The same outline also applies here. The only difference is that
Proposition 5(b) only holds for sufficiently large dimensions d j depending on p. The reader
can also consult the corresponding proofs of [2, theorem 2·2] and [4, theorem 1·2].

3. Combinatorial results

The following lemma is needed in the proof of Proposition 4 in the same way in which
Bourgain’s version of Roth’s theorem for compact abelian groups [1] is needed in the
analogous proposition in [2].

LEMMA 7. Suppose 0< δ ≤ 1.

(a) If f : RD → [0, 1] is a measurable function supported in [0, N ]D and satisfying∫
[0,N ]D f � δN D, then ∫

([0,1]D)2
(F f )(x, s) ds dx �D,δ 1.

(b) If f : R2D → [0, 1] is a measurable function supported in [0, N ]2D and satisfying∫
[0,N ]2D f � δN 2D, then∫

([0,1]D)3
(F̃ f )(x, y, s) ds dx dy �D,δ 1.

Proof of Lemma 7. Both parts of the lemma are shown using multidimensional Szemerédi’s
theorem of Furstenberg and Katznelson [9]. By this result, for any dimension n and any
number 0<β ≤ 1 there exists a positive integer mn,β such that for each positive integer
m � mn,β one has the following:
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(i) each subset S ⊆ {0, 1, . . . ,m − 1}n of cardinality at least βmn contains (vertices of)
an n-dimensional cube,

(i1 + k1l, i2 + k2l, . . . , in + knl), k1, k2, . . . , kn ∈ {0, 1}
for some i1, i2, . . . , in, l ∈Z with l 	= 0;

(ii) each subset S ⊆ {0, 1, . . . ,m − 1}2n of cardinality at least βm2n contains a 2n-
dimensional corner-extended cube,

(i1 + k1l, i2 + k2l, . . . , in + knl, j1, j2, . . . , jn), k1, k2, . . . , kn ∈ {0, 1},
(i1, i2, . . . , in, j1 + l, j2, . . . , jn), . . . , (i1, i2, . . . , in, j1, j2, . . . , jn + l)

for some i1, i2, . . . , in, j1, j2, . . . , jn, l ∈Z with l 	= 0.

Then one applies the averaging trick of Varnavides [16], in the same way it was done in the
proof of lemma 3·2 in [4] for the particular case of the three-point corners.

Indeed, multidimensional Szemerédi’s theorem applies to any finite pattern on the inte-
ger lattice, not only to boxes and corner-extended boxes, so Lemma 7 can be generalized
easily. The reasons why we restrict our attention to very special patterns lie in the rigid-
ity of other auxiliary results, most notably Proposition 6 above and Theorem 10 from
Section 4.

Proof of Proposition 4. The proposition is shown by cutting the Euclidean space into cubes,
the scaled copies of ([0, 1]D)2 or ([0, 1]D)3, and applying Lemma 7 on each of them. For
details the reader can consult the proof of proposition 2·1 in [2].

Now we turn to the proof of the second proposition. We will need the Euclidean version
of the notion of the Gowers norms, so let us begin by setting

(
h g)(s) := g(s)g(s + h)

for s, h ∈R
d and a function g : Rd →C. If such g is also measurable, then its Gowers

uniformity norm of degree k is defined as

‖g‖Uk (Rd ) :=
(∫

(Rd )k+1

(
hk · · ·
h1 g)(s) ds dh1 · · · dhk

)2−k

=
(∫

(Rd )k−1

∣∣∣ ∫
Rd

(
hk−1 · · ·
h1 g)(s) ds
∣∣∣2 dh1 · · · dhk−1

)2−k

. (3·1)

We will only need the norms ‖ · ‖U2(Rd ) and ‖ · ‖U3(Rd ). The Gowers norms scale properly
with respect to the L1-normalised dilations of the function. In particular,

‖gt‖U2(Rd ) = t−d/4‖g‖U2(Rd ), ‖gt‖U3(Rd ) = t−d/2‖g‖U3(Rd ), (3·2)

as is shown by an easy change of variables of integration.
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LEMMA 8. Suppose that λ and N are real numbers such that 0<λ≤ N.

(a) If f1, f2 : R
d → [0, 1] are measurable functions supported in [0, N ]d , and

g : Rd →R is a measurable function supported in [−3λ, 3λ]d , then∣∣∣ ∫
(Rd )2

f1(x) f2(x + s)g(s) ds dx
∣∣∣�d N dλd/4‖g‖U2(Rd ). (3·3)

(b) If f1, f2, f3 : R
2d → [0, 1] are measurable functions supported in [0, N ]2d and

g : Rd →R is a measurable function supported in [−3λ, 3λ]d , then∣∣∣ ∫
(Rd )3

f1(x, y) f2(x + s, y) f3(x, y + s)g(s) ds dx dy
∣∣∣�d N 2dλd/2‖g‖U3(Rd ). (3·4)

Proof of Lemma 8. This lemma will be shown in a way similar to the proof of lemma 4·2
in [2].

Proof of (a). The left-hand side of (3·3) can be rewritten as∣∣∣ ∫
[0,N ]d

f1(x)

(∫
Rd

f2(x + s)g(s) ds

)
dx
∣∣∣,

so the Cauchy–Schwarz inequality in x bounds it by

N d/2

( ∫
(Rd )3

f2(x + s) f2(x + s ′)g(s)g(s ′) ds ds ′ dx

)1/2

.

Substituting y = x + s, h = s ′ − s, applying the Cauchy–Schwarz inequality again, and
recognising the U2-norm from (3·1), we get

N d/2‖g‖U2(Rd )

( ∫
[−6λ,6λ]d

(∫
[0,N ]d

f2(y) f2(y + h) dy

)2

dh

)1/4

.

The expression within the outer parentheses is clearly at most a constant times N 2dλd .
Proof of (b). Using the Cauchy–Schwarz inequality we first bound the left-hand side of

(3·4) by

N d

(∫
(Rd )4

f2(x + s, y) f2(x + s ′, y) f3(x, y + s) f3(x, y + s ′)g(s)g(s ′) ds ds ′ dx dy

)1/2

.

Then we substitute h = s ′ − s and perform the shift x �→ x − s to transform the integral
inside parentheses into∫
(Rd )4

f2(x, y) f2(x + h, y) f3(x − s, y + s) f3(x − s, y + s + h)g(s)g(s + h) dx dy ds dh.

Another application of the Cauchy–Schwarz inequality controls the left-hand side of (3·4)
with

N 3d/2λd/4

( ∫
(Rd )5

f3(x − s, y + s) f3(x − s ′, y + s ′) f3(x − s, y + s + h)

× f3(x − s ′, y + s ′ + h)g(s)g(s ′)g(s + h)g(s ′ + h) ds ds ′ dx dy dh

)1/4

.
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It remains to substitute h′ = s ′ − s, shift x �→ x + s, y �→ y − s, use the Cauchy–Schwarz
inequality one more time, and finally recognise ‖g‖U3(Rd ) from (3·1).

LEMMA 9. Suppose that η and ε are real numbers such that 0<η < ε < 1.

(a) For d � 5 we have ∥∥ωd,2,η −ωd,2,ε
∥∥

U2(Rd )
�d ε

1/4.

(b) For 1< p<∞, p 	= 2 and sufficiently large d depending on p we have∥∥ωd,p,η −ωd,p,ε
∥∥

U3(Rd )
�p,d ε.

Proof of Lemma 9. Part (b) was already established in [2, lemma 2·4].
We will show part (a) using the same lines of proof, but we need to use to our advan-

tage the fact that we only need the U2-norm and get more concrete decay in ε as ε→ 0+.
Let ϕ : R→ [0,∞) be a compactly supported C∞ function that is constantly equal to 1 on
[−3, 3] and set

�= ϕ ⊗ · · · ⊗ ϕ︸ ︷︷ ︸
d

.

All constants are assumed to depend on ϕ without further mention. Observe that ωd,2,η and
ωd,2,ε are supported on [−3, 3]d , so

ωd,2,η(s)−ωd,2,ε(s)=
∫
R

(ψ(ηu)−ψ(εu))�(s)e2π iu(‖s‖2
�2

−1) du.

Integral version of the triangle inequality for the Gowers norm and the tensor product
splitting of the exponential give∥∥ωd,2,η −ωd,2,ε

∥∥
U2(Rd )

≤
∫
R

|ψ(ηu)−ψ(εu)|∥∥ϕ(s)e2π ius2∥∥d

U2
s (R)

du. (3·5)

By definition of the Gowers norm (3·1),∥∥ϕ(s)e2π ius2∥∥4

U2
s (R)

=
∫

[−3,3]

∣∣∣ ∫
R

ϕ(s)ϕ(s + h)e−4π iuhs ds
∣∣∣2 dh,

which is certainly bounded by a constant, for each u ∈R. However, for |u|� 1 we get a better
estimate by splitting the outer domain of integration into |h| ≤ |u|−1 and |u|−1 < |h| ≤ 3. The
first part of the integral is clearly at most a constant times |u|−1. Integration by parts in the
second part gives ∣∣∣ ∫

R

ϕ(s)ϕ(s + h)e−4π iuhsuh ds
∣∣∣� 1,

so that∫
{|u|−1<|h|≤3}

∣∣∣ ∫
R

ϕ(s)ϕ(s + h)e−4π iuhs ds
∣∣∣2 dh � |u|−2

∫
{|u|−1<|h|≤3}

h−2 dh � |u|−1.

From these we conclude ∥∥ϕ(s)e2π ius2∥∥
U2

s (R)
� min{1, |u|−1/4}. (3·6)
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Now we combine (3·5) and (3·6) into a single estimate∥∥ωd,2,η −ωd,2,ε
∥∥

U2(Rd )
�
∫
R

|ψ(ηu)−ψ(εu)| min{1, |u|−d/4} du.

This time we split the domain of integration into three parts: |u| ≤ 1, 1< |u| ≤ ε−1, and
|u|> ε−1. We bound the corresponding integrals respectively as∫

{|u|≤1}
‖ψ ′‖L∞(R)ε|u| du � ε� ε1/4,

∫
{1<|u|≤ε−1}

‖ψ ′‖L∞(R)ε|u|1−d/4 du �d ε
d/4−1 � ε1/4,

and ∫
{|u|>ε−1}

2‖ψ‖L∞(R)|u|−d/4 du �d ε
d/4−1 � ε1/4.

In the last display we needed d > 4 for the convergence of the improper integral and also to
have d/4 − 1 � 1/4> 0. This allows us to conclude the desired inequality.

Proof of Proposition 5. Both parts of the proposition are shown in exactly the same way,
using Lemmata 8 and 9, so we only elaborate on the proof of part (a).

Because of (2·6) it is enough to bound the difference

M2,η
λ ( f )−M2,ε

λ ( f ) (3·7)

for all 0<η< ε < 1, with a constant independent of η. The difference of the corresponding
cutoff functions can be expanded as

ω
p,η
λa (s)−ω

p,ε
λa (s)=

n∑
j=1

τ
( j)
λ (s),

where

τ ( j)(s) :=
(

j−1∏
i=1

ωdi ,p,η
ai

(si)

) (
ω

d j ,p,η
a j (s j )−ω

d j ,p,ε
a j (s j )

)⎛⎝ n∏
i= j+1

ωdi ,p,ε
ai

(si )

⎞⎠ .
This decomposes (3·7) into n pieces,

∑n
j=1 P ( j)

λ ( f ), where

P ( j)
λ ( f ) :=

∫
(RD)2

(F f )(x, s)τ ( j)
λ (s) ds dx.

Without loss of generality we will estimate the piece P (1)
λ ( f ). Part Lemma 9(a) and

(3·2) give∥∥‖τ ( j)
λ (s)‖U2

s1
(Rd1 )

∥∥
L∞

s2 ,...,sn (R
D−d1 )

�D λ
−d1/4ε1/4λ−(d2+···+dn) = ε1/4λ−D+3d1/4.

Then we observe that (F f )(x, s) can, for fixed x2, . . . , xn , s2, . . . , sn , be written in the form
f1(x1) f2(x1 + s1) from Lemma 8, so we obtain∣∣∣ ∫

(Rd1 )2
(F f )(x, s)τ ( j)

λ (s) ds1 dx1

∣∣∣≤ N d1λd1/4ε1/4λ−D+3d1/4 = ε1/4 N d1λ−D+d1 .
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Integrating in x j ∈ [0, N ]d j and s j ∈ [−3λ, 3λ]d j , j = 1, 2, . . . , n we finally get∣∣P (1)
λ ( f )

∣∣�D ε
1/4 N d1λ−D+d1 N D−d1λD−d1 = ε1/4 N D,

which completes the proof.

4. Analytical results

The main ingredient in the proof of Proposition 6 is an estimate for multilinear singular
integral forms. We formulate it as a separate theorem.

THEOREM 10.

(a) Suppose that K : Rd1 × · · · ×R
dn →C is a bounded compactly supported function

and that its Fourier transform satisfies the standard symbol estimates (cf. [15]),

|K̂ (ξ)| ≤ Cκ‖ξ‖−|κ|
�2 (4·1)

for any multi-index κ . Then we have the inequality∣∣∣ ∫
(RD)2

K (s)
∏

k∈{0,1}n

Fk(x1 + k1s1, . . . , xn + knsn) ds dx
∣∣∣� ∏

k∈{0,1}n

‖Fk‖L2n (4·2)

with the implicit constant depending only on (Cκ)κ and the dimensions di .
(b) Suppose that K : Rd1 ×R

d1 ×R
d2 × · · · ×R

dn →C is a bounded compactly sup-
ported function such that its Fourier transform satisfies the standard symbol estimates
(4·1) for any multi-index κ . Then we have the inequality

∣∣∣∣ ∫
R3D+d1

K (s1, s ′
1, s2, . . . , sn)

⎛⎜⎜⎝ ∏
k̃=(k2,...,kn ,l1,l2,l3,l4)∈{0,1}n+3

l1+l2+l3+l4=1

×F̃k(x1 + l1s1 + l2s ′
1, x2 + k2s2, . . . , xn + knsn, y1 + l3s1 + l4s ′

1, y2, . . . , yn)

⎞⎟⎠
× ds1 ds ′

1 ds2 · · · dsn dx dy

∣∣∣∣� ∏
k̃=(k2,...,kn ,l1,l2,l3,l4)∈{0,1}n+3

l1+l2+l3+l4=1

‖F̃k‖L2n+1 ,

with the implicit constant depending only on (Cκ)κ and the dimensions di .

Note that the implicit constants in both inequalities claimed by Theorem 10 depend only
on the implicit constants from the symbol estimates (4·1) and the dimensions, the latter being
regarded as fixed throughout the text. Also observe that part (b) of the theorem specialised
to n = 1 coincides with [4, theorem 1·3], the main analytic result of that paper.

Once Theorem 10 is established, it is easy to complete the proof of Proposition 6. Let us
elaborate on that argument and postpone the proof of the theorem to the second half of this
section.

Proof of Proposition 6. For the proof of part (a), note that the cutoff function appearing in
E p,ε
λm
( f ) is

ω
p,ε
λm a(s)− b(p, ε)ωp,1

λm a(s)=
n∏

j=1

ω
d j ,p,ε
λm a j

(s j )−
n∏

j=1

c(d j , p, ε)ω
d j ,p,1
λm a j

(s j ).
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Recalling the introduction of kd,p,ε in (2·5), we can rewrite it as

n∑
j=1

(
j−1∏
i=1

ω
di ,p,ε
λm ai

(si)

)
k

d j ,p,ε
λm a j

(s j )

⎛⎝ n∏
i= j+1

c(di , p, ε)ωdi ,p,1
λm ai

(si)

⎞⎠ . (4·3)

Note that each summand in (4·3) is of the form

ϕ
(1)
λm
(s1)ϕ

(2)
λm
(s2) . . . ϕ

(n)
λm
(sn), (4·4)

where ϕ( j), j = 1, 2, . . . , n, are C1 functions and one of them has integral equal to 0,
while the others are nonnegative. Take arbitrary signs αm ∈ {−1, 1}, m = 1, 2, . . . , M . By a
standard computation (see [2]) the kernels

K (s) :=
M∑

m=1

αmϕ
(1)
λm
(s1)ϕ

(2)
λm
(s2) . . . ϕ

(n)
λm
(sn)

satisfy the conditions from Theorem 10, with constants Cκ independent of the numbers M ,
λ1, . . . , λM and signs α1, . . . , αM , but we allow dependencies on the dimensions (i.e. D),
on ε, on the numbers a1, . . . , an , and on the exponent p. Applying part (a) of Theorem 10
to those kernels and Fk = f , we obtain

∣∣∣ M∑
m=1

αmE p,ε
λm
( f )
∣∣∣�D,ε ‖ f ‖2n

L2n ≤ N D.

It remains to choose the signs αm appropriately, so that the left hand side becomes∑M
m=1 |E p,ε

λm
( f )|.

In the proof of part (b) we begin with the same splitting (4·3) into summands of the
form (4·4). Since the notation has become symmetric in j , without loss of generality we
can suppose

∫
Rd1 ϕ

(1) = 0, i.e. the cancellation comes from the variable s1. Gathering inside
parentheses all factors containing that variable, the corresponding part of Ẽ p,ε

λm
( f ) can be

rewritten as∫
R3D−d1

⎛⎝∫
Rd1

⎛⎝ ∏
(k2,...,kn)∈{0,1}n−1

f (x1 + s1, x2 + k2s2, . . . , xn + knsn, y1, . . . , yn)

⎞⎠
× f (x1, . . . , xn, y1 + s1, . . . , yn)ϕ

(1)
λm
(s1) ds1

)

×
⎛⎝ ∏
(k2,...,kn)∈{0,1}n−1

f (x1, x2 + k2s2, . . . , xn + knsn, y1, . . . , yn)

⎞⎠
× f (x1, . . . , xn, y1, y2 + s2, . . . , yn) · · · f (x1, . . . , xn, y1, y2, . . . , yn + sn)

× ϕ
(2)
λm
(s2) . . . ϕ

(n)
λm
(sn) ds2 · · · dsn dx dy.

By the Cauchy–Schwarz inequality its square is bounded with

Aλm ( f )Bλm ( f ), (4·5)
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where

Aλ( f ) :=
∫
R3D+d1

⎛⎜⎜⎝ ∏
k̃=(k2,...,kn ,l1,l2,l3,l4)∈{0,1}n+3

l1+l2+l3+l4=1

× fk̃(x1 + l1s1 + l2s ′
1, x2 + k2s2, . . . , xn + knsn, y1 + l3s1 + l4s ′

1, y2, . . . , yn)

⎞⎟⎠
× ϕ

(1)
λ (s1)ϕ

(1)
λ (s

′
1)ϕ

(2)
λ (s2) . . . ϕ

(n)
λ (sn) ds1 ds ′

1 ds2 · · · dsn dx dy

and

Bλ( f ) :=
∫
R3D−d1

⎛⎝ ∏
(k2,...,kn)∈{0,1}n−1

1[0,N ]2D (x1, x2 + k2s2, . . . , xn + knsn, y1, . . . , yn)

⎞⎠
× 1[0,N ]2D (x1, . . . , xn, y1, y2 + s2, . . . , yn)

· · · 1[0,N ]2D (x1, . . . , xn, y1, y2, . . . , yn + sn)

× ϕ
(2)
λ (s2) . . . ϕ

(n)
λ (sn) ds2 · · · dsn dx dy.

The functions fk̃ appearing in the definition of Aλ( f ) are all supported in [0, N ]2D and
taking values in [0, 1]; some of them are equal to f , while the others are artificially inserted
into the expression as 1[0,2N ]2D . Clearly,

Bλm ( f )≤
⎛⎝ n∏

j=2

∫
R

d j

ϕ
( j)
λm

⎞⎠⎛⎝ n∏
j=1

∫
R

d j

1[0,N ]d j

⎞⎠2

�D,ε N 2D. (4·6)

On the other hand, Theorem 10(b) applied with the kernel

K (s) :=
M∑

m=1

ϕ
(1)
λm
(s1)ϕ

(1)
λm
(s ′

1)ϕ
(2)
λm
(s2) . . . ϕ

(n)
λm
(sn)

and the functions F̃k = fk̃ yields ∣∣∣ M∑
m=1

Aλm ( f )
∣∣∣�D,ε N 2D. (4·7)

Summing the products (4·5) in m = 1, 2, . . . , M , from (4·6) and (4·7) we finally conclude

M∑
m=1

|Ẽ p,ε
λm
( f )|2 �D,ε N 4D,

as claimed.

We finalise the paper with the proof of the remaining analytical result. As we will soon
see, the case when all dimensions di are equal will be an easy consequence of the main result
from the paper by Thiele and one of the present authors [7]. We will spend just a slight
additional effort to reduce the case of possibly different dimensions di to the very same
result. An alternative to this addition could be considering appropriate lower-dimensional
sections of the sets and functions appearing throughout the paper.
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Proof of Theorem 10. Proof of (a). First we consider the case of equal dimensions, i.e.
d1 = d2 = · · · = dn , and we write them simply as d. Relabelling xi to x0

i in the left-hand
side of (4·2) and changing variables x0

i + si = x1
i for i = 1, . . . , n, we see that we need to

show ∣∣∣ ∫
R2dn

∏
k∈{0,1}n

Fk(�kx)K (�x) dx
∣∣∣�(Cκ )κ

∏
k∈{0,1}n

‖Fk‖L2n
(Rnd ),

where x = (x0
1 , . . . , x0

n , x1
1 , . . . x1

n) ∈ (Rd)2n and �k, � : (Rd)2n → (Rd)n are linear opera-
tors given by

�kx := (xk1
1 , . . . , xkn

n ), �x := (x1
1 − x0

1 , . . . , x1
n − x0

n).

This estimate can be recognised as one of the singular Brascamp–Lieb inequalities from the
main theorem of [7], which establishes the claim in the case of equal dimensions.

The general case of different dimensions in (4·2) will be deduced from the case of equal
dimensions as follows. By approximating K with smooth compactly supported functions
in L1 and applying Hölder’s inequality, we may assume that K is a smooth compactly
supported function on R

D ∼=R
d1 × · · · ×R

dn , satisfying the symbol estimates (4·1). We set

d := max
1≤i≤n

di + 1.

(We have added 1 for technical reasons, so that d − di > 0 for all 1 ≤ i ≤ n.) First we define
a new function K̃ on R

nd , whose integration in a certain direction gives K . To achieve this
take a smooth compactly supported function ϕ on R

nd−D ∼=R
d−d1 × · · · ×R

d−dn satisfying
ϕ(0)= 1. Then we define K̃ by setting

̂̃K (ξ, ξ̃ ) := K̂ (ξ)ϕ

(
ξ̃

‖ξ‖
)

(4·8)

for 0 	= ξ ∈R
D , ξ̃ ∈R

nd−D . Observe that we have

̂̃K (ξ, 0)= K̂ (ξ)

or, passing to the spatial side,

K (s)=
∫
Rnd−D

K̃ (s, s̃) d̃s.

Moreover, the function ̂̃K satisfies the symbol estimates∣∣̂̃K (ξ, ξ̃ )∣∣≤ C̃κ‖(ξ, ξ̃ )‖−|κ|
�2

for all multi-indices κ and all (ξ, ξ̃ ) 	= 0, with C̃κ depending only on Cκ .
Assuming the estimate (4·2) in the case of equal dimensions, let us plug in the kernel K̃

and the functions F̃k : (Rd)n →C defined by

F̃k(z, z̃) := Fk(z)(D2n

λ ϕ1 ⊗ · · · ⊗ D2n

λ ϕn)(̃z),
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where z ∈R
D, z̃ ∈R

nd−D , Fk :RD →C, ϕi is a Schwartz function on R
d−di and D2n

λ ϕi is
defined by (2·3). Then the form in question becomes∫

R2nd

K̃ (s, s̃)

⎛⎝ ∏
k∈{0,1}n

Fk(x1 + k1s1, . . . , xn + knsn)

×D2n

λ ϕ1(̃x1 + k1̃s1) · · · D2n

λ ϕn (̃xn + kns̃n)

)
ds d̃s dx d̃x, (4·9)

where s̃ = (̃s1, . . . , s̃n), x̃ = (̃x1, . . . , x̃n) ∈R
nd−D . From the case of equal dimensions we

know that the last display is bounded by∏
k∈{0,1}n

‖F̃k‖L2n
(Rnd ) = ‖ϕ1 ⊗ · · · ⊗ ϕn‖2n

L2n
(Rnd−D)

∏
k∈{0,1}n

‖Fk‖L2n
(RD) (4·10)

times a constant depending only on (Cκ)κ . On the other hand, (4·9) equals∫
R2nd

K̃ (s, s̃)

(
n∏

i=1

λ−(d−di )ϕi (λ
−1 x̃i )

2n−1
ϕi(λ

−1(̃xi + s̃i))
2n−1

)
×
∏

k∈{0,1}n

Fk(x1 + k1s1, . . . , xn + knsn) ds d̃s dx d̃x. (4·11)

Integrating in x̃ we obtain∫
Rnd+D

K̃ (s, s̃)�(λ−1s̃)
∏

k∈{0,1}n

Fk(x1 + k1s1, . . . , xn + knsn) ds d̃s dx, (4·12)

where we have set

� := (ϕ2n−1

1 ∗ ϕ̃ 2n−1

1

)⊗ · · · ⊗ (ϕ 2n−1

n ∗ ϕ̃2n−1

n

)
and ϕ̃i (s) := ϕi (−s). Integrating in s̃ and taking the limit as λ→ ∞, (4·12) becomes, up to
a constant, ∫

(RD)2
K (s)

∏
k∈{0,1}n

Fk(x1 + k1s1, . . . , xn + knsn) ds dx (4·13)

and we know that it is bounded by (4·10), as desired.
To justify passage to the limit we observe that the difference of (4·12) and (4·13) equals∫
(RD)2

(∫
Rnd−D

K̃ (s, s̃)
(
�(λ−1s̃)− 1

)
d̃s
) ∏

k∈{0,1}n

Fk(x1 + k1s1, . . . , xn + knsn) ds dx,

which tends to zero as λ→ ∞. Indeed, this follows by applying Hölder’s inequality in x,
which bounds the last display by(∫

RD

∣∣∣ ∫
Rnd−D

K̃ (s, s̃)
(
�(λ−1s̃)− 1

)
d̃s
∣∣∣ ds
) ∏

k∈{0,1}n

‖Fk‖L2n
(RD).

We note that the expression in the bracket tends to zero as λ→ ∞, as desired.
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Proof of (b). Note that it suffices to show the bound

∣∣∣∣ ∫
R2D+2d1

K (s, s ′
1)

⎛⎜⎜⎝ ∏
k̃=(k2,...,kn ,l1,l2,l3,l4)∈{0,1}n+3

l1+l2+l3+l4=1

×F̃k(x1 + l1s1 + l2s ′
1, x2 + k2s2, . . . , xn + knsn, y1 + l3s1 + l4s ′

1)

⎞⎟⎠
× ds ds ′

1 dx dy1

∣∣∣∣�(Cκ )κ

∏
k̃=(k2,...,kn ,l1,l2,l3,l4)∈{0,1}n+3

l1+l2+l3+l4=1

‖F̃k‖L2n+1
(R(n+1)d )

(4·14)

for functions F̃k :RD+d1 →C, where s = (s1, . . . , sn) ∈R
D . Indeed, part (b) of Theorem 10

then follows by Fubini, applying the estimate (4·14) and Hölder’s inequality in y2, . . . , yn .
To show (4·14) we again first consider the case of equal dimensions, d1 = · · · = dn . Once

again, we write them simply as d. Changing variables x1 + y1 + s1 = x0
n+1, x1 + y1 + s ′

1 =
x1

n+1, we obtain∫
R2d(n+1)

K (x0
n+1 − x1 − y1, s2, . . . , sn, x1

n+1 − x1 − y1)

⎛⎝ ∏
k=(k2,...,kn)∈{0,1}n−1

× F(k,e1)(x
0
n+1 − y1, x2 + k2s2, . . . , xn + knsn, y1)

× F(k,e2)(x
1
n+1 − y1, x2 + k2s2, . . . , xn + knsn, y1)

× F(k,e3)(x1, x2 + k2s2, . . . , xn + knsn, x0
n+1 − x1)

×F(k,e4)(x1, x2 + k2s2, . . . , xn + knsn, x1
n+1 − x1)

⎞⎠
× dx0

n+1 dx1
n+1 ds2 · · · dsn dx dy1,

where ei are standard unit vectors in R
4. Shearing the functions F(k,ei ) we see that it suffices

to show estimate an estimate for the form∫
R2d(n+1)

K (x0
n+1 − x1 − y1, s2, . . . , sn, x1

n+1 − x1 − y1)

⎛⎝ ∏
k=(k2,...,kn)∈{0,1}n−1

× F(k,e1)(x
0
n+1, x2 + k2s2, . . . , xn + knsn, y1)

× F(k,e2)(x
1
n+1, x2 + k2s2, . . . , xn + knsn, y1)

× F(k,e3)(x1, x2 + k2s2, . . . , xn + knsn, x0
n+1)

×F(k,e4)(x1, x2 + k2s2, . . . , xn + knsn, x1
n+1)

⎞⎠ dx0
n+1 dx1

n+1 ds2 · · · dsn dx dy1.

We relabel y1 into x1
1 , xi into x0

i for 1 ≤ i ≤ n, and change variables x0
i + si = x1

i for
2 ≤ i ≤ n. Then we see that it suffices to show the estimate∣∣∣ ∫

R2d(n+1)

∏
k∈{0,1}n+1

Fk(�kx)K (�x) dx
∣∣∣�(Cκ )κ

∏
k∈{0,1}n

‖Fk‖L2n+1
(R(n+1)d )
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for x = (x0
1 , . . . , x0

n+1, x1
1 , . . . x1

n+1) ∈ (Rd)n+1 and linear operators �k, � : (Rd)2(n+1) →
(Rd)n+1 given by

�kx := (xk1
1 , . . . , xkn+1

n+1 ),

�x := (x0
n+1 − x1

1 − x0
1 , x1

2 − x0
2 , . . . , x1

n − x0
n , x1

n+1 − x1
1 − x0

1).

This estimate again follows from the main result in [7].
To finish the proof of (4·14) it remains to deduce the case of different dimensions from the

case of equal dimensions. This follows similarly as in part (a) and we only sketch the nec-
essary modifications. Let d be defined as in the proof of part (a) of this theorem. Assuming
the estimate (4·14) in the case of equal dimensions, let us plug in the kernel K̃ defined on
(Rd)n+1 as in (4·8) and the functions F̃k : (Rd)n+1 →C given by

F̃̃k(z, z̃) := F̃k(z)(D
2n+1

λ ϕ1 ⊗ · · · ⊗ D2n+1

λ ϕn ⊗ D2n+1

λ ϕ1)(̃z),

where z ∈R
D+d1, z̃ ∈R

(n+1)d−D−d1 , F̃k :RD+d1 →C, ϕi is a Schwartz function on R
d−di for

1 ≤ i ≤ n, and D2n+1

λ ϕi was defined in (2·3). Then the form in (4·14) becomes, analogously
to the display (4·11) in part (a),∫

R2d(n+1)

K̃ (s, s ′
1) λ

−(d−d1)ϕ1(λ
−1 x̃1)

2n
ϕ1(λ

−1(̃x1 + s̃1))
2n−1
ϕ1(λ

−1(̃x1 + s̃ ′
1))

2n−1

×
(

n∏
i=2

λ−(d−di )ϕi (λ
−1 x̃i )

2n
ϕi (λ

−1(̃xi + s̃i ))
2n

)
× λ−(d−d1)ϕ1(λ

−1 ỹ1)
2n
ϕ1(λ

−1(ỹ1 + s̃1))
2n−1
ϕ1(λ

−1(ỹ1 + s̃ ′
1))

2n−1

×

⎛⎜⎜⎝ ∏
k̃=(k2,...,kn ,l1,l2,l3,l4)∈{0,1}n+3

l1+l2+l3+l4=1

×F̃k(x1 + l1s1 + l2s ′
1, x2 + k2s2, . . . , xn + knsn, y1 + l3s1 + l4s ′

1)

⎞⎟⎠
× ds ds ′

1 d̃s d̃s ′
1 dx d̃x dy1 dỹ1, (4·15)

where s̃ = (̃s1, . . . , s̃n) ∈R
nd−D, s̃ ′

1 ∈R
d−d1, ỹ1 ∈R

d−d1 . From the case of equal dimensions
we know that it is bounded by a constant times∏

k̃

‖ F̃̃k‖L2n+1
(R(n+1)d )

= ‖ϕ1 ⊗ · · · ⊗ ϕn ⊗ ϕ1‖2n+1

L2n+1
(R(n+1)d−D−d1 )

∏
k̃

‖Fk‖L2n+1
(RD+d1 )

.

On the other hand, integrating in x̃ and ỹ1 gives that the form (4·15) equals

∫
R2d(n+1)

K̃ (s, s ′
1) �1(λ

−1s̃1, λ
−1s̃ ′

1)
2�(λ−1(̃s2, . . . , s̃n))

⎛⎜⎜⎝ ∏
k̃=(k2,...,kn ,l1,l2,l3,l4)∈{0,1}n+3

l1+l2+l3+l4=1

×F̃k(x1 + l1s1 + l2s ′
1, x2 + k2s2, . . . , xn + knsn, y1 + l3s1 + l4s ′

1)

⎞⎟⎠
× ds ds ′

1 d̃s d̃s ′
1 dx dy1,
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where

�1(̃s1, s̃ ′
1) :=

∫
Rd−d1

ϕi(u)
2n
ϕi (u + s̃1)

2n−1
ϕ1(u + s̃ ′

1)
2n−1

du

and

� := (ϕ2n

2 ∗ ϕ̃ 2n

2

)⊗ · · · ⊗ (ϕ2n

n ∗ ϕ̃ 2n

n

)
,

where ϕ̃i is defined as in (a). Taking the limit as λ→ ∞ and integrating in s̃, s̃ ′
1, similarly as

in the proof of part (a), we recover the form on the left-hand side of (4·14).

Acknowledgements. The authors thank Christoph Thiele for inspiring discussions aided
by the bilateral DAAD-MZO grant Multilinear singular integrals and applications. The
authors are also grateful to the anonymous referee for useful suggestions. V. K. was sup-
ported in part by the Croatian Science Foundation under the project UIP-2017-05-4129
(MUNHANAP).

REFERENCES

[1] J. BOURGAIN. A Szemerédi type theorem for sets of positive density in R
k . Israel J. Math. 54 (1986),

no. 3, 307–316.
[2] B. COOK, Á. MAGYAR and M. PRAMANIK. A Roth type theorem for dense subsets of Rd . Bull.

London Math. Soc. 49 (2017), no. 4, 676–689.
[3] P. DURCIK. An L4 estimate for a singular entangled quadrilinear form. Math. Res. Lett. 22 (2015),

no. 5, 1317–1332.
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