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EMBEDDING UP TO HOMOTOPY TYPE IN EUCLIDEAN SPACE

A.N. DRANISNIKOV AND D. REPOVS

We give a short proof of the classical Stallings theorem that every finite n-
dimensional cellular complex embeds up to homotopy in the 2n-dimensional Eu-
clidean space. As an application we solve a problem of M. Kreck.

INTRODUCTION

This note was inspired by a question of Kreck during his visit to the Steklov
Mathematical Institute in Spring of 1989: Can every finitely presented group be realised
as the fundamental group of a 2-dimensional polyhedron embedded in R* and can such
polyhedron have a minimal Euler characteristic?

We recall that not every 2-polyhedron is embeddable in 4-dimensional Euclidean
space [4]. It turns out that the answer to the first question follows from the classical
theorem of Stallings (9):

STALLINGS THEOREM. For every finite n-dimensional (n > 0) cellular complex
K there exists a polyhedron M, homotopy equivalent to K, which is embeddable in
R,

After having seen our solution of his problem in 1991, Kreck kindly informed us
about the recent work of Huck {5], through which we became familiar with Stallings’
mimeographed notes [9] and some other related papers (1, 2, 3, 8, 11]. Our solution
of Kreck’s problem provides an alternative (and we believe also simpler) proof of the
Stallings theorem.

The final version of this paper was prepared during the visit by the second author
to the Steklov Mathematical Institute in 1991, on the basis of the long term agreement
between the Slovene Academy of Arts and Sciences and the Soviet Academy of Sciences
(1991-1995).
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PRELIMINARIES
Our proof is based on the following two lemmas:

LEMMA 1. Suppose that f: X — Y is a homotopy equivalence between cellular
complexes and g: S® — X is an attaching map for an (n + 1)-dimensional cell B™*!.
Then f can be extended to a homotopy equivalence F: X Uy, B**! — Y Uy, B™t1.

PRoOF: Standard argument — see for example in {10] or [6]. 0

LEMMA 2. Suppose that a polyhedron P lies in R*™ x O C R?" x R? where
O is a point in the boundary of semi-plane R and let f: S® — P be a map of the
boundary of the (n + 1)-dimensional ball. Then for every ¢ > 0 there exists a map
g: B™! 5 R3™2 = R?" x R? such that
(1) the restriction g |i,¢ gn+1 is an embedding in Int (R_’,_"'“) ; and
(2) the restriction g |pgn+1= g is e-close to f and Im(q) C R** x O.

PROOF: Choose g: S — R2™ x O to be e-close to f and with general position
properties. This means that there are only finitely many points of self-intersection of
g(S™). Let X C S™ be the singular set of g.

Fix an arbitrary point v in R?™ x O from the e-neighbourhood of P and define a
map g;: B™*! - R3" x O as the cone of map g with vertex v. Therefore the map g,
sends linearly the interval [z, ¢] to the interval [g(z), v] for each z € OB™+1 where ¢
is the centre of the ball B™+!,

Let O be the origin of some orthogonal coordinate system in R3 with the z-axis
lying in the boundary and let A, B and C be the points with coordinates (-1, 1/2),
(1, 1/2) and (0, 1), respectively. Since X is 0-dimensional one can choose a map
¢: dB™1! — [A, B] on the interval (4, B] such that ¢ |x is an embedding.

We define a map g2 onto the boundary of a concentric ball of half the radius
(1/2)B™*! as the composition g2 = ¢ o (x2). Here (x2) sends 8((1/2)B™*?) to
dB™*! homeomorphically. Define g2 (8B**!) = O and g2(c) = C and extend g, onto
Int (1/2)B™*! and onto Int B**! — (1/2)B™*! linearly. Define g = (g1, g2)-

The properties (2) and (3) hold by the construction of g. Assume that g(z) = g(y)
for some z, y € Int B**!. We identify B™*! with the set {z € R™: |z] < 1}. It is
easy to see that z # 0 and y # 0. If ¢(z/|z|) = q(y/|y|) then z/|z|, y/ |yl € X and
hence g2(z) # g2(y). If g(z/ |z|) # q(y/|y]) then the equation gi(z) = g:(y) implies
that the points g¢(z/|z|), ¢(y/ ly|) and c are collinear and therefore |z| # |y|. In that
case ga(z) # g2(y). Contradiction.

PROOF OF STALLINGS THEOREM

We shall use induction on n. Since every finite 1-dimensional complex is homotopy
equivalent to a finite disjoint union of wedges of circles, the theorem is true for n =1.
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Let us now verify the inductive step. Let K be an (n + 1)-dimensional cellular
complex and let K(®) denote the n-skeleton of K. By induction, there is a homo-
topy equivalence f: K™ — L, where L is a polyhedron embeddable in R?®. Let
{ei: 8B™+! — K™}, be the family of attaching mapsin K for (n + 1)-dimensional
cells. Suppose that {a;}icm is a family of angles on the plane with common vertex O
such that a; Na; = O for i # j. Note that each a; is homeomorphic to the halfplane
R%. Let N be a regular neighbourhood of L in R?™ x O. There is § > 0 such that
the §-neighbourhood of L is contained in N.

Apply Lemma 2 for L, foe; and € = § to obtain maps g;: B**! — R?* x o;
with the properties (1) and (2). The property (2) implies that the map g; = gi |ggn+1
is homotopic to foe; in N. The property (1) yields an embedding of

M=NuB*lyprtly... y B*!
N1 92 9m

in R?**2, Since we may assume that each map ¢; is simplicial with respect to some

triangulations on N and 8B™*! we may regard M as a polyhedron. Lemma 1 implies
that M is homotopy equivalent to K.

EPILOGUE

Note that by the construction dim M = 2dim K — 2 and that we can also achieve
that the Euler characteristics of M be minimal. As a result we get the answer to both
Kreck’s questions:

COROLLARY. For every finitely presented group G there exists a 2-dimensional
polyhedron M C R* with the fundamental group 7 (M) = G. In addition, we may
assume that M has minimal Euler characteristic.

REMARK. Another solution of Kreck’s problem follows from the recent work of Skopenkov,
Scepin and the second author [7].
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