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CODING THEORY IN GAUSSIAN CHANNEL WITH
FEEDBACK II: EVALUATION OF
THE FILTERING ERROR

SHUNSUKE ITHARA

Introduction.

The main purpose of this paper is to give a method to evaluate the
actual value of the filtering error which arises in the transmission of a
signal process, using the optimal coding, over a Gaussian channel. In
his earier papers ([4] and [7]), the author has shown a method to con-
struct an optimal causal coding for which the filtering error is minimized
and at the same time the mutual information is maximized.

A Gaussian channel is expressed in the form,

Y@®) =0@® + X®,

where @(t) stands for the channel input which is a function of a Gaussian
message {£(s); s < t} and of the output {Y(s); s < t}, and where X(-) is
a Gaussian noise assumed to be independent of £(-). As in [4] and [7]
we assume that the input &(.) is limited by the average power. It has
been proved that the coding attaining the minimal error is given by a
linear algorism. We now come to the evaluation of the error, which
will be given in this paper.

In section 1, we shall prove the convergence theorem which asserts
that for any Gaussian process &(-), if &,(-),n =1,2, ..., form a sequence
of Gausgian processes converging to &(-) in the sense of mean square
for each moment ¢, then the error for £,(-) tends to the one for &(.)
(Theorem 1). Each &,(-) can be taken to be a stepwise Gaussian process
for which the filtering error can be obtained explicitly.

The actual value of the error for a stepwise process is given by
Theorem 2, in section 2.
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Section 3 will be devoted to discussions on some related topics be-
ing in line with our approach to construct an optimal coding. There
will be discussed an optimal but not necessarily causal coding. It will
be proved that there exists a coding method with which we can send a
message having the information equal to the channel capacity and the
filtering error can be minimized although the way of evaluating is some-
what different from the ealier sections (Theorem 4). It is noted that
an interesting difference between causal cases and non-causal ones ap-
pears in the evaluation of the filtering error.

It might be worth noting that an intrinsic meaning of the concept
of multiplicity of a Gaussian process may be given from the point of
view of information theory in the same spirit as the present paper (cf.
[21, [3D).

The author should like to express his thanks to Professors M. Hitsuda
and I. Kubo.

§1. A convergence theorem in Gaussian channel.

In this section, we establish a convergence theorem on the filtering
errors according to messages.

Let X(.) be a zero mean separable Gaussian process with the ca-
nonical representation in the sense of Hida-Cramér, (cf. [1]).

1.1 X(t) = 2 :Fi(t7 wdBy(w), (N £ ),

where B,(u)’s are mutually independent Gaussian processes with inde-
pendent increment such that F|dB;(u) = m;(du)’s are continuous measures
with the property m; > m;,,. The number N is called the multiplicity of
the process X(.). The Gaussian channel treated here is the following type:

Y(t) = i Fu(t, 0AEW) — Fmddn + X®)
0<t<T(K ),

1.2)

where £,(-)’s are messages independent of X(-), 4,(#)’s are non-negative
(non-random) functions and f;(«)’s are % ,(Y)* measurable functions. Let
us assume the following conditions.

(a.1) The equation (1.2) has the unique solution Y(.).

* We denote by #,(Y) the s-algebra generated by {Y(s); 0 < s < t}.
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(a.2) The message £(-) = (§,(+), - -+, &x(+)) is a N-dimensional Gaussian
process such that B&,(f) = 0,0 < ¢ < T, and that 0 < JT Ee(tm.(dt) < oo.
0

(a.3) The channel input satisfies the average power constraint:

1.3) AiOE 50 — O <), i=1,---,N,

N T
where p,’s are given positive functions such that > | p(wm;(du) < co.
i=1J0

Here we review some results obtained in the previous papers [4]
and [7], which are useful in later. Let us denote by @ the class of
admissible codings:

1.4 0= {@(J; o(t) = 2 :F (&, WA W)(E:(w) — filw)m(du) ,
satisfying (a.1l) and (a.3)} .

The capacity C, (0 <t < T) of the channel (1.2) under the constraint (1.3)
is defined by

(15) Ct = sup IZ(E, Y) ’

where I,(§,Y) is the mutual information between {£(s); 0 < s < ¢} and
{Y(s); 0 < s < t}, and the supremum is taken over all messages & satis-
fying (a.2) and all e @. It has been shown ([4]) that

1.6) C, = %— é j: oiwym;(du) .

Let a message & = (£, ---,&y) be fixed, then we say that a coding
D e @ is optimal in information sense if I,(&,Y)=C, 0<t<T. While
a coding @ c @ is said to be optimal in filtering sense if the infimum of
the filtering error

@.mn 4 = inf Y B 840) — £

is attained by ®e®, where &,(t) = E[£,(#)|F,(Y)] and the infimum is
taken over all @ ¢ @.
We have shown the following two lemmas.

LEMMA 1. (i) (Theorem 2 of [4] and Theorem 2 of [7]). Let a
Gaussion message &(.) satisfy the assumption (a.2). Then the coding
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d* c @ defined by the following equations (1.8) and (1.9) is optimal in
nformation sense and also in filtering sense,

1.8) Y = }i :Fi(ty WA W(E W) — Ew)m(du) + X(@) ,
(1.9) Al 4:(t) = pi(D) t=1,..-,N,
where

(1.10) 4t) = B &) — E®F and &) = El&,)|F.()] .
(ii) (Lemma 2.4 of [4]) The inequlity

AXOBE) < o) exp [ [ ojm,(an)]
holds.

Now the problem is to find a method evaluating the filtering error
A@) = >F, 4,(t) determnied by (1.8)-(1.10).

LEMMA 2. (Proposition 3 of [4]). Let Y(.) and A,;S be the process
and the functions given by (1.8) and (1.9). Define a process Z(.) =
(Z,(-)y -+ Zy(-)) by

(1.11) Zt) = j: Awé(wym(du) + B(t), i=1,-.-,N.

Then F(Z)= F,Y), &) = El&()|F (V)] = El&(1)| F(2)] and 1,&,2)
= It(f: Y).

It is well known that the following result can be obtained from
Lemma 2.

COROLLARY. The filtering £,(t) = E[&,(t)|F (Y)] = E[&,@)| F(2)] is

given by
1.12) Et) = jil ﬁ H,,(t, wdZ,w) ,
where h; (¢, w) = A, ()H ;(t, w) s the solution of the following Wiener-Hopf
equation,
At)ry(t, A LS)
(1.13) - kﬁl f: ha(t, ) Aoy, $)A [(8yma(du) + Tt 5)

OSSStST,i,j:]-,"',N9
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where 1;(t,8) = E[&,(&;(9)]. And then A1) = 31, E|&@) — &@F s
given by

(1.14) El&® — &OF = A7Ohut, ), 0<t<T.

The Corollary implies that if the equation (1.13) is solved then the
error can be evaluated. But, unfortunately, it is difficult to get the
concrete solution of (1.13) in general. Therefore we will evaluate the
error A(t) by an approximating method. For this purpose we prepare
a convergence theorem. At first we prove the continuity of the error
A(t) with respect to the power o(%).

LEMMA 3. Let p,i(t),n=1,2,.---,9=1, --.,N be non-negative func-
tions such that

lim p,,(8) = p;(®) for every 0<t<T,i1=1,..-,N.

And define a process U,(t) and functions D,(t),i=1,-.-,N, by (1.8)
and (1.9), replacing p,(t) by p.:(t), naomely,
N ot R
U.0) = 2, 0F (&, WD (W)(&:(w) — stw)Im(dw) + X(@) ,
D, 4:(@) = pui(?) ,

where

at) = E gt) — E®F and &) = Ele) | F (U] .
Then

1.15)  lim 4¥(¢) = 4,(b) for every 0<t<T,1=1,-..,N.

Proof. (i) At first we assume that p,;()’s are monotone decreas-
ing as n " co, for each 0 <t < T and ¢t =1,.-.,N. Then it is easily
shown that D,;(?) is monotone decreasing (cf. Proof of Theorem 2 of [4])
and 4%(t) is monotone increasing (Lemma 2.3 of [4]) as % " co. The
monotonicity enable us to define the functions D,(f) and 4%¢) by

D) =limD,;(t) and 4%t) = lim 47(¢) .

In the same manner as in [6] we can show that if we define a process
U(-) by
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u@) = i}l :F i(t, WD )(&(u) — EXB)Yym(du) + X (@) ,

E(w) = Elg,(w) | F (D)) then E|&,(t) — () = 4(t). Using the relations
D) 4(t) = lim D}, (D) 43(t) = lim p,,(t) = p:(®) ,

T 0

and the uniqueness of the optimal coding (cf. Theorem 2 of [4]), we have
Dyt) = Ay(t) and 43(F) = 4,()

Thus (1.15) is proved.
(ii) In case where p,(f)’s are monotone increasing, (1.15) can be
proved in the same way as above, since 4,(f) is bounded ((ii) of Lemma 1).
(iii) In the general case, put

P;i(t) = ilzlnp (plci(t) \Y% Pi(t)) and P;i(t) = lkrzlf (pki(t) A Pi(t)) ’

(where a \/ b = max (e, ) and ¢ A b = min (a, b)), then p(t) > pn:i(t) > p5:(0)
and p;(t) (p,(1)) is monotone increasing (decreasing, respectively) to p;(f)
as n /" oo. Since (i) and (ii) are applicable to p; and p;, respectively,
if we define Dy and 47" in the same manner as in (i) for p%, then we
have

D7) > Dui(t) > Di(t) ,  45"(0) < 4,(8) < 477(0)

and

Dy N\ D«®) , Do)/ Dy®, 4@/ 4,@), 47@)\ 4(0)

as n /" oo. Thus the proof is completed.

Let (5n0:(2)y -, &n() (m=1,2,...) be a Gaussian process satisfying
the condition (a.2) and denote 77,(t, s) = El£,:(£)5,,(s)]. We introduce the
following conditions (b.1)—(b.4):

.1 lim,_, %, t) = r,(t,t), 0<t<T,i=1,..--,N.
(.2) lim J: I: 172, 8) — 7a,(E, S)F ma(dbym,(ds) = O .

n-r00

(b.3) There exist constants 0 < a; < a, < oo such that «, < r;;(¢, 1) < o
and o < (¢, 0) <, foral 0 <t <T and t=1,..-,N.
(b.4) There exists a constant K > 0 such that p,(f) < K for all 0 <t < T
and t=1,.--,N.

Now we can give the statement of our theorem.
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THEOREM 1. Define processes Y ,(-) and functions A,(t) by

Ya(t) = 2 :F ot WA (W (Eri(w) — En(W)m(du) + X(@) ,
Z_Aii(t)zlm(t) =pt), i=1,---,N,
where
4y®) = B |E0(t) — P and  £,(t) = El6,(8) | F (Y] .

Then, under the conditions (b.1)-(b.4), 4,,(t) converges to A,(t) for each
0<t<L<Taond t=1,...,N.

In order to prove Theorem 1 we need a lemma. Let us introduce
some notations for the lemma. We define processes Z,(:) = (Z,,(-), -+ -,
Z.n(+)) and Z3(-) = (Z3(-), « - -, Z3x(+)) by

(1.16) Zoi(®) = || An@enCm(du) + Bu®)

(L.17) 224) = [ Ansmdn) + Bit)

and define &, 4° and 0% by (1.18),(1.19) and (1.20), respectively,
(1.18) 8.0 = Ble)| F (2],

(1.19) A1) = &) — E0F,

(1.20) ) = A2 .

From Corollary of Lemma 1, there exist the kernels H7,(¢,s) and HYj(¢, s)
such that

E) = jﬁ j " Hyy(t, 07, (0)

1.21) ¥ e -
= 2 [[ Hit, A @ensomy(dn) + 3 [ Hiy(t, wdB,@) ,
a0 =3 [ Bt waz,w
(1.22) S

= 5 [ Ht A g comy @ + 33 [ B3, wdBiw) .
If we denote

(1.23) ALt =FE

£ — i [ e, wazsy i
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and

(1.24) dy) = E

N 13 2
&l — 33 [ B, 0dZ0,00)
j=1J0
then it is clear that
(1.25) i) < dna(®) 4,8 < 243 .

LEMMA 4. Under the conditions (b.1)-(b.4), for every fized t c [0, T,
there exist a constant M (= M(t)) < co and numbers ¢, (=¢,(t)), n =
1,2, ..., such that lim,_.e, = 0 and that

(1.26) [4p®) — £ < Me,,, i=1,---,N,
(1.27) loi®) — D] < Men, G=1,---,N.

Proof. We can choose numbers ¢, (= ¢,(f),n =1,2, ..., by the as-
sumptions (b.1) and (b.2), such that lim,_.e, = 0 and that

(1.28) 7@, 8) — i@, D)) < ey t=1.--,N,
(1.29) > j j oy aty 0) — 7, 0) madiym (o) < ey
T, 0

(1.30) Z r lrij(t, u) — T::Lj(t’ uf mj(du) <én, t=1,.-.,N.
7 Jo

Now we will prove the existence of a constant M, (= M,(t)) < oo such
that

|Am(t) - Zl?n(t)l < Mlen and Ijni(t) - Agn(t)l < M15n ’

1.31
(.31 i=1,---,N.

By the definitions, 4%(t) and 4,,(t) can be written in the form,

2t = rut,) — 2 3 [ Byt ) Aoyt wym, (@)
+ Z f‘ J\t H?j(t, U)ka(t, ’U)Anj(u)/rjk(u’ ?’)Ank(’v)mj(du)mk(dv)

+ ; J.: [H?j(t’ u)]zmj(du)

and
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40i) = it, ) — 2 3] || Hit, A, 000, wym (d)
+ jZI:c J: J.: H7(t, wHE(E, VA, (W17 (u, v)A 4 ()m (du)ym(dv)
+ ; j: [H:L](t’ u)]zmj(du) .

So we get the inequality:

where

I = [ru(t, ©) — i@, 01,

I, = ; U: H7y (€, WAL () [ry4(E, w) — r;‘,(t,u)]m,(du)l
and

L= 3| [ | Bit 0B, 4,

X [ty v) — 14(E, u)]Ank(v)m,(du)mk(dv)\ .

We have I, <¢, from (1.28). By the use of (ii) of Lemma 1 and the as-
sumptions (b.3) and (b.4) we get

ALl) < [rult, D17 odt) exp [Z .[: pi(u)mz(du)] < o'KL ,
and we get
= j [H(t, wmy(du) < B @) < 7t t) < o,

from (1.21). Therefore it holds that

;= (5[ Hit, w1t w — 1 wlm @]

< 3 [ty wrazeman 3 [ o, w — 2, 0,6

<% KL, , (L = exp [; [l ewomaan)) .

(441

and in the same way, it holds that I? < ((«,/a;)KL)%,. We obtain the in-

equality |42,(t) — 4,:t)| < Mie,, putting M, =1 + 2v/(a,/a)KL + (a,/a)KL.

The other inequality of (1.81) can be obtained in the same manner.
The desired inequality (1.26) follows from (1.25) and (1.31). Finally,
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the inequality (1.27) is derived from the inequality,
lo(®) — o) = [A%: (D) 4ni(t) — AL D) 4:,(D)| < a7’ KLM ¢y, .
Now we proceed to

Proof of Theorem 1. By (1.26), it holds that
1.32) lim |4,:1) — 4| =0 .

On the other hand, using (1.27) we have the following relation by Lemma 3,
(1.33) lim £2,(t) = 4,%) .

n-—s00

Thus we have, from (1.32) and (1.33), the result:
lim 4,,,(t) = 4,(%) .

n—00

§ 2. Evaluation of the filtering error.

We can take stepwise processes as the approximating processes &,’s
in Theorem 1. In this section, we give a method to evaluate the mini-
mal filtering error 4(t) for such a stepwise process in a special case
where the noise X(-) = B(.) is a standard Wiener process (Theorem 2).
Consequently, we can evaluate the minimal filtering error for any
Gaussian process, using Theorem 1 and Theorem 2. The method pre-
sented in this section is applicable to the case of multiplicity one.

Let us assume, throughout this section, that the noise X(.) = B(-)
be a standard Wiener process. Then the message &(.) of (a.2) is a

Gaussian process such that 0 < .[T Eg(t)dt < oo, and the optimal coding
0

for £(-) can be presented by

@.1) Y(t) = j:A(u)(s(u) _ éw)du + BO) ,

2.2) AXB)A@) = o(@) ,

where

2.3) A = Elet) — EDF,  &B) = Ele@®)| FL)],

and p(f) is a given positive function.

Remark. In the transmission of the Gaussian message
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£(t) = i " Fu(t, e mo(dw)

over the channel (1.8), if we assume that £(.),---,&x(:) are mutually
independent, then

Y(t) = J: Ft, WA u)(&w) — Ew)Im(du) + By(¥) ,
(7' = 1’ tt N)
are mutually independent and

&) = Bl | F (V)] = El&,()| F (Y )] .

Therefore, for the evaluation of
N N a
A®) = ; 4,(t) = g Elg@) — &@®F,

it is enough to consider the case of multiplicity one.
As for the minimal filtering error 4(¢) of (2.3), the following ex-
amples are known.

ExaMmpLE 1. ([5],[10]). Let &(t) =6,0 <t < T, be a deterministic
process, where 4 is a Gaussian random variable with distribution N(O, 7).
Then

@.4) A(t) = 1 exp [—j: p(u)du] . 0<t<T.

EXAMPLE 2. (Liptzer-Shiryaev [10],[11]). Let &(-) be a Gaussian
Markov process presented by

de(t) = a@®)e@)dt + b@dW({) and E&0) =0, E&0) =y >0,

where W(.) is a standard Wiener process independent of B(-). Then
A(t) is given by

At) = 7y exp [2 J: a(s)ds] exp [_j: p(s)ds]
+ ﬁ b*(s) exp [2 j: a(u)du] exp [_f: p(u)du] ds .

We give a lemma which is used in later.

LEMMA 5. (i) The process Y(-) given by (2.1) is a standard Wiener
process.
(ii) The equation (2.1) can be rewritten in the form,
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@5 T = j AWEW — E@)du + B®),  t=60>0),

where Y(t) = Y(t) — Y(t), B®) = B(t) — B(t), éw) = £(u) —~ B§@) | F (V)]

and E(u) = ElEw) | F ., ()]

Proof. (i) It is easily shown that Y(-) is the innovation process
for the process Y,(f) = J: Aw)éw)du + Bft) (cf. Kailath [8]).

(i) It is enough to show that &(u) — &(u) = &(u) — &(u) (u > t,). Since
Y(s), s < t,, is independent of YO =Y@®) - Y@, t > t,, F +(Y) is inde-
pendentof F,(Y¥) and then F,(Y) = F WYV F ) (u >t,). Therefore,
£(w) = Bltw) | F (V)] = Elew) | F,(Y)] + Elew) | F ()] and &w) — &) =

Ew) — Elew) | F ()] = Ew) — ).

Remark. (i) The property (i) of Lemma 5 was first pointed out

by Liptzer-Shiryaev [10].

@ii) The property (ii) of Lemma 5 makes it possible to treat ¢, as
the starting point of the channel, by replacing the message & by &.

Now we consider a stepwise process. Let 0 =¢, <, <. <, =T
be a partition of the interval [0,7T]. And let &(-) be a Gaussian process

such that

(2-6) S(t) - 0i ’ ti—l < t < ti ’

where (@, ---,0,) is a system of Gaussian random variables with

E01;=0 and EﬂiejZT,;j, ’I:,j:]_’--.’N.

Then we can give a formula to calculate the error A(f) for the process

£().

THEOREM 2. Let &(-) be the Gaussian process given by (2.6).

@7 4t = russexp [~

tp—

where yi,_, ts determined by the following equations:

x=1
—S A, k=28 --,n—1,
(28) T {Tkk ;1 ki

P11 s k=1,

te
2.9) Ak = ai;m_l[l — exp [—-J

[ 728}
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£-1
2.10) 4y, = [ﬁzl-l(?”m — ;1 akiaiilii) ’ ¢=1,--, k-1,
1, {=FK.
Remark. 7z, is uniquely determined by (2.8)-(2.10), inductively.
Proof. For the process Y(.) given by (2.1) and (2.2), we define a
process Y,(t) by (2.5), replacing ¢, by t;_,:
t A
211 Y@ = L Aw)(E(w) — §x(w))du + By(t) , e Kt <ty

where Y(f) = Y(¢) — Y(¢x-0), Bi(t) = B(t) — B(ti_1), &:(w) = &(uw) — E[§(w)|
F .., (Y)] and £.(w) = El&,(w) | F (Y)] (u > t;_). Define random variables
0y, and 6, by

2.12) ékt = E[ﬂmql?(yt)l ’ t=1,.--,k,
6k£—1""ékly 521:”'9]5’

2.13 Oy =

( ) “ {Bk ’ ﬂ = 0 )

where #(Y) = #,,(Y), ahd put '

(2.14) Tee =E 0wl Ae=FE|0f, £=1,---,k.

Then it follows from Lemma 5 that 4,4 =1, ---,k, are mutually in-
dependent and that

2.15) E6,| F (V)] = 21 by L=1,---,k.

Since

2

k-1 ,
0kk—1 = Oproz — Oggpor = +++ = 0 — Z_:. 9u =0, — E[ak!ytk_l(Y)] ’

(2.11) can be rewritten as follows:
4 A
@160 Vi) =[ A@Ou. - fuaddu+ Bult),  ta<t<ti,

where ékk—l(u) = B0y, | F (Y1)l

Using (ii) of Lemma 5 and (2.4), it it concluded that the error A4(f)
is given by (2.7).

From (2.14), (2.15) and (2.16), 74, is given by (2.8), since f;;,7 = 1,
.+, k, are mutually independent.

To prove (2.9) and (2.10) completes the proof of Theorem. Define
constants a;,’s by
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2.17 Orer = Oplbo_y + ©rs b=1,--.,k,

where ¢, is independent of 6,,_,. Since ¢;, is independent of Y,(.) and
(by (2.4)), we have

2 " . 173
s = B |0,f = o}, B |0, = af?d?’u—l[l — exp <— J

tg—1

p(u)du]

p(u)du)] .
Thus (2.9) is proved. In order to prove (2.10), we put

akz(m) = E[akmﬁlm] ’ O é m S g S k .
Then, by (2.12),(2.17) and (2.14),

a(m) = ElOxm_, — ékm)(atm—l — ézm)]
(2‘18) = “kt(m - 1) — akma/;mE |émmlz = ...

= a,(0) — ,Z1 Qi j0gghsy = Vo — Zi U gesAsg -
= j=
On the other hand, from (2.17), it follows that

2.19) ap(b — 1) = Elby,_0,_1] = o B [Opesf = Apofoo-1 -

The relation (2.10) follows from (2.18) and (2.19).
Theorem 1 and Theorem 2 give us a method to evaluate the mini-
mal filtering error A(t).

THEOREM 3. Let £t),0<t< T, be a zero mean Goussian Pprocess
such that r(t,s) = F&(t)&(s) is continuous in (t,s) and that r(t,t) #0 for
all t. Let 0 =1, <1, < - <tlpp,=Tm=12,...) be a partition of
[0, T such that max,cx<s, |t — tax_s| — 0 a8 . — o, and define & Gaussian
process &,(-) by

If we denote by A4,(t) the minimal filtering error for &,(-), then, under

the assumption (b.4), 4,(t) is given by (2.7-(2.10) (replacing r;; by v =
El&,(t,)8.t.))). And the minimal filtering error A(t) for &(-) is given by

(2.20) A(t) = lim 4,(@) .

n—>00

Proof. We can easily show that the conditions (b.1)-(b.3) are satis-
fied, because 7(Z,s) is continuous and »(¢{,t) # 0. Thus we can apply
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Theorem 2 and we know that 4,(f) is given by (2.7)-(2.10). And we get
(2.20) from Theorem 1.

§ 3. Filtering error under non-causal coding.

We take into account non-causal codings in this section, while we
treated only causal codings in the preceding sections. We will show
that we can construct a non-causal coding which is optimal in informa-
tion sense and, at the same time, in filtering sense, and that the minimal
filtering error is determined by the e-entropy of the message and the
channel capacity (Theorem 4).

Atfirst we will interpret the messages and the codings to be considered
in this section. Let the message &(t) = (&,(t), -+, &x(£), 0 < t < S (< o0)
be a M-dimensional Gaussian process such that

Eegt)=0, ET£,()¢;(D] = 74(s, 1)

and that
M rS
3| Bemdn < oo,

where v;’s are measures on [0, S]. The c-entropy H,.(¢) of &(-) is defined
(cf. [9],[13]) by

(.1 H@ =infI&,n, (>0,

where the infimum is taken over all processes 7(¢) = (%), - - -, 7x(?)), 0 <
t < 8, such that

M S
(3.2) > [ Eled — n@ruan < ¢
On the other hand, the channel and the codings are as follows:

where the noise X(¢) = Z Fi(t w)dB,(u) is of (1.1) and the channel

input @(t) is a functlonal of {£(9);0<s< 8} and {Y(w); 0<u<t}. Note
that @(-) can be non-causal in the message &(.). ILet us assume that
@(-) can be written in the form,

G4 0@ = ir F(t, )0 u)ym(du) , with probability one
i=1J0
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where fT D¥tym,(dt) < oo (with probability one), and assume that the
0

average power constraint is imposed on @(-):

(3-5) E(Df(t)ﬁpt(t), OStST, ’L:l,',N,

where p,’s are given positive functions with Z pi(u)mz(du) < co. Then
the capacity C; of the channel (3.3)-(3.5) is glven by (1.6).
From the definitions, we know that if
H®>C (=0Cp),

then their is no method of coding which transmit &(-) with reproduction
accuracy e. The Shannon’s fundamental problem ([14]) is that if

HELC

then is it possible to construct a coding which transmit &(-) with reproduc-
tion accuracy e. The first result of this section is to construct such a
coding.

THEOREM 4. Assume that
(3.6) H©® =Cyr,

N

then there exists a coding method O*(t) = > ‘ F(t, w)@Fw)ym,(du), satisfy-
i=14J0

ing (38.5), such that

@ o IR ATCER GRS

where
7¥(@) = B, | F (YH] and Y*@E) = 0*®) + X(@) .

Remark. In case where M = N =1 and X(-) is a standard Wiener
process, the result has been obtained by Ovseevich [12].

In order to prove Theorem 4 we prepare two lemmas. The one is
concerning the e-entropy and the other is concerning the optimal coding
for a deterministic process.

A formula to calculate the e-entropy can be obtained in the same
manner as in 1-dimensional case (cf. [9],[13]). Let % be a Hilbert space

= {p(®) = (@), - - -, ou(®) ; @ € L*([0, S, v,)}

with an inner product
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M S
o) =3 j o OB dt) .

Then the covariance operator R on %, given by

Re)(t) = ;"‘j j Pt Doy Syds),  pe 2,

is symmetric, positive definite and Hilbert-Schmidt type. Denote by {2;}
the eigenvalues of R, then we have

LEMMA 6. The e-entropy H,(E) is given by
1 A%
3.8) H© =2 3 log (v 1),
2 k=1 a
where a is a constant determined by
ST A @) =é .
k=1

Let 6 be a Gaussian random variable with E§ = 0 and E¢* = ¢ > 0.
Then it is known ([9], [13]) that

8.9  H() =inf{10,0); B0 — 0F < &} = % log (LZ Y, 1) .
€
By Lemma 1, the optimal coding (in @ of (1.4)) for # is given by
N o[t R
(3.10) Y®) = ; OF (&, WA;w)©O — d(w)m(du) + X(¢) ,

(3.11) AXDE 10 — 0O = o) ,
where 6(t) = E[6]|Z (Y)].
LEMMA 7. Under the optimal coding (8.10) and (3.11), if we put
¢t =E0 —00r,
then the following relation holds:
(3.12) H,,®=C0C,, 0LtLT.
And then the error &(t) is

3.13) e(t) = 1 exp [— }”j j: pi(u)mi(du)] .

Proof. By Corollary of Lemma 2, it holds that
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(3.14) hi(t, t) = AXDE |0 — )P = AXD)E(E) = pi(t)
where h;;(t,s) is the solution of the equation
N t
(3.15) A (D)yA;(s) = ICZ;L hin(t, WA (U7 A j(S)my(du) + hiy(t, 8) , s<t.

Noting that %;; must be in the form Ay (£,8) = yH (£)A,(s), we have,
from (3.14) and (3.15), that

N t
(3.16) &) = r[r > fﬂ Az uyme(du) + 1] .
According to (3.9) we have
N ¢
.17 H,,©0) = }log [7 > Jﬂ A(wymy(du) + 1] .
On the other hand, it is easily shown, from (1.6),(8.14) and (3.16), that
N t N U -1
@18  Ci=1}3 Jo TAg(u)[r > j © Aj@yma(do) + 1] m(du) .

The desired equation (3.12) is obtained by differentiating the right hand
sides of (3.17) and (3.18). And finally (3.13) is derived from (1.6),(3.9)
and (3.12).

By the use of Lemma 6 and Lemma 7, Theorem 4 can be proved
in the same manner as in [12]. So we show only the outline of the proof.

Outline of the proof of Theorem 4. The desired coding method
o+t) = 3. [ Futt, woramaw)
i=1J0

is given by the following progresses (i)-(@{v):
(i) Define constants a¢ and L, for ¢ in (3.6), by the equation

=X Aa)=La+ X%
k=1 kE>L

(we may assume that 1,’s are arranged in decreasing order).
(ii) Define 0 < T, < --. < T, by the equations

A

k; k=1)"',L$
a

N Tr
; L pi(wymy(du) = log

then it can be shown that T, = T.
(iii) Define random variables &,, k =1,2,--- by
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to= 2 [  e®putman),

where ¢,(t) = (0, (1), - - -, euu(®) € &£ is an eigenfunction of R correspond-
ing to 2, such that {p;} forms a complete orthonormal system of . And
define processes £,(.),i=1,.--,N by

W) =¢ if T,.,<t<Ty i=1,---,N.
(iv) The coding @¥,7=1,...,N is given by
OX(t) = AEWD — E1)
where A,(t) and §i are determined by
B|0¥O)F = AE |80 — EOF = o)
£(t) = ElE,) | F (Y], Y*(t) = 0*(t) + X (@) .

Then we can show (3.7), applying Lemma 7 to & on each time in-
terval (T;_,, T,l.

From Theorem 4 we can get the following fact in the same manner
as in [5].

COROLLARY. Let &(-) = (&,(+), - -+, &x(+)) be a M-dimensional Gaussion
message. Then in all non-causal codings of (3.4) and (3.5), the coding
@* in Theorem 4 minimizes the error

3.19) 4’:, AR ICIMCOY

where gi(t) = FEl&;() | F(Y)]. And then the minimal filtering error & is
given by (3.6).

Proof. Suppose that there exists another coding ¥ such that & =
M S
Z; . E &) — L) vi(dt) £ &8, where ((t) = El§:()|F r(Z2)] and Z(t) =
Tt) + X(t). Then by the definitions we have

(3.20) H,(¢) £ H(®) < I(£,0) < Cy
<Where we use the fact that the c-entropy H,(&) is strictly decreasing in

ez(< 5 f * Eéi(t)vi(dt))). The inequality contradicts the equality (3.6).
i=1J0

Corollary asserts that, if we take into account non-causal codings
the minimal filtering error is determined only by the sum P(T) =

https://doi.org/10.1017/50027763000016718 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016718

146 SHUNSUKE IHARA

N T
211 0i(®m(dt), since the capacity C, depends only upon P(T). But if
1=1J0

we treat only causal codings @ ¢ @ (of (1.4)), such a fact is not expected.
To illustrate such a situation we give an example.

ExAMPLE. Let &(-) = (&(-), ---,&x(-)) be a N-dimensional process
such that &,(t) =6, 0<t< T, where 6, ---,0y are mutually independent
and the distribution of ¢, is N(0,7;) (suppose that y;, > r;, > -+ > 14,).
Then it is easily shown that the minimal filtering error 4(t) = > 7, 4,(t)

is not determined only by the sum P(¢) = f}f oiwym(du). Here we as-
i=1J0

sume that the sum P(f), 0 <t<T, is given. Then the method, to choose
p:(t) such that 4(¢) is minimized, is as follows:

_];ﬁ(t)’ k=1,"'rg,
pu® = | ¢ if t,, <t<t,
O, k:g-’-l,...,N’

where §;(t) = p,(t)(m,(dt) /m,(dt)), 5(t) = 3, 5t) and t,’s are determined by
1 (e
Tigrr = 71, €XD [——j p(u)ml(du)] .
€ tg—-1
The proof follows from Lemma 7 and the proof of Theorem 4.
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