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Abstract

This article began as a study of the structure of infinite permutation groups G in which point stabilisers
are finite and all infinite normal subgroups are transitive. That led to two variations. One is the
generalisation in which point stabilisers are merely assumed to satisfy min-n, the minimal condition
on normal subgroups. The groups G are then of two kinds. Either they have a maximal finite normal
subgroup, modulo which they have either one or two minimal nontrivial normal subgroups, or they have
a regular normal subgroup M which is a divisible abelian p-group of finite rank. In the latter case the
point stabilisers are finite and act irreducibly on a p-adic vector space associated with M. This leads to
our second variation, which is a study of the finite linear groups that can arise.
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1. Introduction

Stimulated by the O’Nan–Scott theory described in [10] of primitive permutation
groups that have finite point stabilisers, we initiated a study of infinite permutation
groups in which stabilisers are finite and all infinite normal subgroups are transitive.
This class includes all primitive or, more generally quasiprimitive groups, with finite
point stabilisers. Although infinite permutation groups with finite stabilisers arise
naturally in various contexts, they do not usually have the property that their infinite
normal subgroups are transitive. A crystallographic group, for example, has finite
stabilisers (point groups), but most of its infinite normal subgroups are not transitive
on its point orbits. However, if an infinite permutation group G is primitive (or even
if it is no more than quasiprimitive), then a point stabiliser Gα is finite if and only if
there is a finite upper bound on the lengths of the Gα-orbits—this is a special case of
a theorem proved by Schlichting [9] and independently by Bergman and Lenstra [1]
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that gives necessary and sufficient conditions for a transitive group to have a bound on
its subdegrees, that is, on the lengths of orbits of a point stabiliser.

It was something of a surprise to us that our ideas about groups in which all infinite
normal subgroups are transitive and stabilisers are finite could be naturally generalised
to those in which the stabilisers merely satisfy min-n, the minimal condition on normal
subgroups. (Philip Hall introduced the notation min-n, but n has too many other natural
meanings in our mathematics, so we use a variant.)

Throughout this paper Ω denotes an infinite set, G denotes a subgroup of Sym(Ω),
and H := Gα, the stabiliser of α, where α ∈ Ω. Our focus is on groups satisfying the
following conditions:

(C1) all infinite normal subgroups of G are transitive on Ω;
(C2) any nonempty set of normal subgroups of H has a member that is minimal under

inclusion, that is, H satisfies min-n.

If all nontrivial normal subgroups of a group X are infinite (equivalently, if {1} is
the maximal finite normal subgroup of X), then, for want of a better term, we shall say
that X is normally infinite.

Note that any quasiprimitive group of permutations of an infinite set is normally
infinite since nontrivial normal subgroups, being transitive, are infinite.

To provide context, here are some simply described, but in some sense
representative, examples of groups G satisfying our conditions.

Example 1.1. Let F be an infinite field, let H := SL(2, F), and let V := F2 with the
natural action of H. Take Ω := V and G := ASL(2, F), the split extension of the
translation group of V by H. Here H is the stabiliser of 0 and satisfies min-n (it has
centre of order ≤ 2, modulo which it is simple). The translation group is the unique
minimal normal subgroup. In this case G is doubly transitive.

Example 1.2. Let G be a simple group acting transitively on an infinite set Ω such
that a stabiliser satisfies min-n (for example, a stabiliser is finite). Or, for a finite
group H acting faithfully and transitively on a set Γ and an infinite simple group T , let
G := T wr ΓH and Ω := T Γ. The action of G on Ω is the product action of the wreath
product, H is a stabiliser, and the base group T Γ of the wreath product is the unique
minimal normal subgroup of G and acts regularly on Ω.

Example 1.3. For any infinite simple group T , let Ω := T and let G := T × T acting
by left and right multiplication on Ω (that is, ω(a,b) = a−1ωb). This has two regular
minimal normal subgroups, each isomorphic to T , and the stabiliser H of 1 is the
diagonal. Then H � T , so obviously H satisfies min-n.

Example 1.4. For a prime number p, let Cp∞ denote the Prüfer p-group (isomorphic to
{θ ∈ C | ∃k ∈ N : θpk

= 1} ≤ C×). If Ω := G := Cp∞ with the regular action, then G has
only one infinite normal subgroup, namely G itself, but arbitrarily large finite normal
subgroups.
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It will be convenient to have some terminology for phenomena illustrated in very
basic form by these examples.

• A normally infinite permutation group that has an abelian regular minimal normal
subgroup (as in Example 1.1) will be said to be of affine type.

• A normally infinite permutation group that has a unique minimal normal subgroup
that is nonabelian (as in Example 1.2) will be said to be of monolithic type.

• A normally infinite permutation group that has precisely two minimal normal
subgroups (each of which necessarily acts regularly, as in Example 1.3) will be
said to be of bilithic type.

• If, for some prime number p, our group G has a regular normal subgroup that is
a divisible abelian p-group of finite rank (hence is a direct sum of finitely many
copies of Cp∞—as in Example 1.4), then G will be said to be of p-divisible affine
type.

Before stating our main theorems (to be proved in later sections), we give a further
item of contextual information.

Observation 1.1. Suppose that conditions (C1) and (C2) hold. Then G satisfies min-n.

Proof. Let N be any nonempty set of normal subgroups of G. We show that N has
minimal members. If N contains any finite normal subgroups of G, then it contains
one of smallest order, and clearly this is minimal. Suppose now, therefore, that all
members of N are infinite. By the assumption on G, they are transitive on Ω. Define
Nα := {N ∩ H | N ∈ N}. Since H satisfies min-n and all members of Nα are normal
subgroups of H, there exists N0 ∈ N such that N0 ∩ H is minimal in Nα. Suppose
that N ∈ N and N ≤ N0. Then N ∩ H = N0 ∩ H since N0 ∩ H is minimal in Nα and
N ∩ H ≤ N0 ∩ H. Now, if x ∈ N0, then, since N is transitive on Ω, there exists y ∈ N
such that αy = αx, and so x = (xy−1)y ∈ (N0 ∩ H).N, whence (since N0 ∩ H = N ∩ H)
x ∈ N. Thus, N0 = N and we have shown that N0 is minimal in N . Hence, G satisfies
min-n. �

Note that the axiom of choice (AC) is not needed in the above proof. In fact, there
are, we believe, only a few places where it is really needed (in some cases in a weak
form) in this paper. Those will be noted.

Clearly, in any group X, either there are arbitrarily large finite normal subgroups
or there is a bound on the sizes of finite normal subgroups. In the latter case, since
the product of two finite normal subgroups is a finite normal subgroup, there will be a
unique maximal (largest) finite normal subgroup K and X/K is normally infinite.

Lemma 1.2. Suppose that conditions (C1) and (C2) hold, and G has a maximal finite
normal subgroup K. Then K is semi-regular on Ω (stabilisers Kω are trivial for all
ω ∈ Ω). If Ḡ := G/K, H̄ := HK/K � H, and Ω̄ := Ω/K = Ω/ρ, where ρ is the G-
congruence whose blocks are the K-orbits, then Ḡ acts faithfully as a normally infinite
group on Ω̄ with stabiliser H̄.
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This lemma essentially reduces the case where G has a maximal finite normal
subgroup to that of normally infinite groups. The following gives a description of
normally infinite groups in our context.

Theorem 1.3. Suppose that conditions (C1) and (C2) hold and G is normally infinite
(equivalently, G is quasiprimitive on Ω). Then G has at most two minimal normal
subgroups. Moreover, in the language introduced after the examples above, precisely
one of the following holds:

(1) G is of affine type;
(2) G is of monolithic type and, if M is its minimal normal subgroup, then

CG(M) = {1};
(3) G is of bilithic type.

In the bilithic case, if M1, M2 are the two minimal normal subgroups of G, they
generate their direct product and, if M0 := H ∩ (M1 × M2), then M0 is a minimal
normal subgroup of H and projects isomorphically onto each of M1 and M2 (hence
M1 � M2 and M0 is a diagonal of the direct product).

The description given by Lemma 1.2 and Theorem 1.3 of the possibilities in the
case that G has a maximal finite normal subgroup probably cannot be developed much
further in general.

When G is normally infinite and monolithic, H acts faithfully by conjugation as
a group of automorphisms of the minimal normal subgroup M, and all we know
about M is that it must be characteristically simple. One possibility is that it is a
direct product of isomorphic simple groups. Then its simple direct factors are minimal
normal subgroups of M and they are permuted transitively under the conjugation action
of H. In this case G looks something like a (perhaps twisted) wreath product of a
simple group T by H, where T is isomorphic to the simple direct factors of M. Indeed,
if M acts regularly, that is, if H ∩ M = {1}, then it actually is isomorphic to a (perhaps
twisted) wreath product of T by H.

Other possibilities are that M could be a variant of the McLain group (see [3, 8]) or
one of Philip Hall’s wreath powers [5]. A crucial ingredient in the McLain and Hall
constructions is an index set that is linearly ordered. In our case the index set needs to
be a dense linear ordering whose automorphism group contains a subgroup isomorphic
to H having an orbit that is unbounded both above and below. For example, the index
set could be Q with H = Aut(Q,≤), a group that certainly satisfies min-n. These are
just a few possibilities—it seems probable that there are very many more.

Very similar remarks apply to the bilithic case. Since M0 is a minimal normal
subgroup of H, it is characteristically simple, and any characteristically simple group
that can serve as the socle of a monolithic group G could serve as one of the two
minimal normal subgroups of a group G of bilithic type. If we strengthen the condition
on H and suppose that it satisfies min-sn, the minimal condition on subnormal
subgroups (clearly much stronger than min-n), then M0 will have minimal normal
subgroups. It then follows that M0 is a direct product of isomorphic simple groups
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Ti permuted transitively under conjugation by H and hence under H/M. Thus, in this
case, the minimal normal subgroups M1,M2 of G will also be direct products of simple
groups, the simple factors in each being permuted transitively under conjugation
by H (see Observation 2.1 below). In particular, a little more can be said when H is
finite.

Theorem 1.4. Suppose that conditions (C1) and (C2) hold. If H is finite and G is
normally infinite, then G is of monolithic type and its monolith M is a direct product
T1 × · · · × Tq of finitely many isomorphic infinite simple groups.

If G does not have a maximal finite normal subgroup, then its structure is very
different.

Theorem 1.5. Suppose that conditions (C1) and (C2) hold and G has arbitrarily large
finite normal subgroups. Then G has a unique minimal infinite normal subgroup M,
which acts regularly on Ω. For some prime number p, M is a divisible abelian p-
group of finite rank (so G is of p-divisible affine type). Moreover, H is finite and acts
faithfully and p-adic irreducibly (in the sense of Theorem 4.3 below) by conjugation
on M.

Remark 1. The proof that the rank of M is finite requires AC. When G is of this type,
Ω and G are countably infinite (this also requires AC). Thus, if G is uncountable, then
it must have a maximal finite normal subgroup.

Remark 2. If H is finite, then G is either of p-divisible affine type or it is almost
monolithic, that is, an extension of a finite normal subgroup K acting semi-regularly
by a monolithic group Ḡ. The minimal normal subgroup M of Ḡ will be a direct
product of finitely many isomorphic infinite simple groups, permuted transitively
under conjugation by H. Thus, if M acts regularly, then Ḡ will be a wreath product
(perhaps twisted) of an infinite simple group by the finite group H. This is an
immediate consequence of Theorems 1.4 and 1.5.

Proofs of Theorems 1.3 and 1.4 are given in Section 2 and a proof of Theorem 1.5
is given in Section 3.

Theorem 1.5 leads to an interesting question about finite groups and their modular
representation theory. Suppose that G is of p-divisible affine type, so that H is finite
and M is a divisible abelian p-group of finite rank r, where p is a prime number. Let
V := M[p], the elementary abelian p-group {x ∈ M | xp = 1}, so that V may naturally be
construed as an FpH-module of dimension r. A question that naturally arises is: what
pairs (H,V) can occur? In other words, what finite (linear) groups can act faithfully
(and p-adic irreducibly) on divisible abelian p-groups of finite rank? We shall show
that if p is odd, then H must act faithfully on V , while if p = 2 then the kernel of the
action of H is an elementary abelian 2-group (Theorem 4.4). Moreover, a given linear
group (H,V) can arise from a faithful action on a divisible p-group if and only if V is
‘liftable’ to an integral representation of H (Theorem 4.6).
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2. Proofs of Lemma 1.2 and Theorems 1.3 and 1.4

Recall the notation and conventions from the Introduction. In this section we
assume that there is a bound on the sizes of finite normal subgroups of G, so that
there is a maximal finite normal subgroup K and G/K is normally infinite.

Since K is finite, the group of automorphisms of K induced by the conjugation
action of G is finite and therefore CG(K) is a normal subgroup of finite index in G,
hence infinite and so transitive on Ω. Then, since K has a transitive centraliser, K acts
semi-regularly. (This is standard—here is the reason. If x ∈ Kω and ω′ ∈ Ω, then there
exists y ∈ CG(K) such that ω′ = ωy; then (ω′)x = (ω′)y−1 xy = ωxy = ωy = ω′, so x fixes
every point of Ω, whence x = 1.)

In the statement of Lemma 1.2, we defined ρ to be the equivalence relation on
Ω whose classes are the K-orbits. Since K E G, ρ is a G-congruence and G acts
transitively on Ω/ρ. If L is the kernel of this action, then K ≤ L. If L were not equal
to K, then, by the maximality of K, L would be infinite and hence transitive on Ω,
which is not the case since L has the same orbits as K. Hence, the kernel of the G-
action on Ω/ρ is K. We define Ḡ := G/K, Ω̄ := Ω/ρ, ᾱ := αK, and H̄ := HK/K. With
this notation, Ḡ acts faithfully on Ω̄, Ḡᾱ = H̄, all infinite normal subgroups of Ḡ are
transitive, since H̄ is a quotient of H (in fact, H̄ � H since H ∩ K = {1}), the stabiliser
H̄ satisfies min-n, and, since K is the maximum finite normal subgroup of G, Ḡ is
normally infinite. This completes the proof of the lemma.

Now assume that K = {1}, so that G is normally infinite. By Observation 1.1, G
satisfies min-n. Suppose first that G has just one minimal normal subgroup M. Being
infinite, M is transitive, so G = MH. Since CH(M) is normalised both by H and by
M, it is normal in G, so it is trivial since H contains no nontrivial normal subgroup of
G. Therefore CH(M) = {1}, so CG(M) = M or CG(M) = {1}. If CG(M) = M, then M is
abelian and H ∩ M ≤ CH(M) = {1}, and so M acts regularly and G is of affine type. If
CG(M) = {1}, then M is nonabelian and G is of monolithic type. These are cases (1)
and (2) of Theorem 1.3.

Now suppose that G has at least two minimal normal subgroups. Let M1, M2 be
distinct minimal normal subgroups of G. Then M1 ∩ M2 = {1}, so M1, M2 centralise
each other and generate their direct product. Moreover, since each is transitive on Ω,
each acts regularly on Ω and M1 is the full centraliser of M2 in Sym(Ω) (and vice
versa—the centraliser in Sym(Ω) of a transitive group is transitive if and only if the
group acts regularly). Therefore M1, M2 are the only minimal normal subgroups and
G is of bilithic type. Also, if

M0 := H ∩ (M1 × M2) = (M1 × M2)α

then M1 × M2 = M0.M1 = M0.M2. Thus M0 projects isomorphically onto each of M1
and M2, and M1 � M2 � M0.

Let L be a nontrivial normal subgroup of H contained in M0 and let L1, L2 be the
projections of L into M1, M2, respectively. Since L E M0, we have Li E Mi. Now H
also normalises Li, and it follows that Li EG. Therefore, by minimality of Mi we have
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Li = Mi, and so L = M0. Thus M0 is a minimal normal subgroup of H. This completes
the proof of Theorem 1.3.

Now suppose that H is finite. There exist nontrivial normal subgroups of M
whose distinct H-conjugates are pairwise disjoint—rather trivially, for example, M
itself satisfies this condition. Choose T E M (and T , {1}) such that the distinct H-
conjugates T1, T2, . . . , Tq of T are pairwise disjoint and furthermore q is as large as
possible subject to this condition. By construction, if i , j, then Ti ∩ T j = {1}, so Ti,T j,
being normal subgroups of M, commute elementwise. In particular, T1 centralises
T2T3 · · · Tq. Let Z1 := T1 ∩ (T2T3 · · · Tq). Then Z1 ≤ Z(T1), so Z1 is abelian. Now
Z1 E M, so Z1 has only finitely many conjugates Z1, Z2, . . . , Zs in G and their product
Z1Z2 · · · Zs is normal in G. Therefore, either Z1 = {1} or Z1Z2 · · · Zs = M.

Suppose (seeking a contradiction) that Z1 , {1}. Now, being a product of abelian
normal subgroups (of itself), by Fitting’s Theorem M is nilpotent and its centre Z
is a nontrivial abelian normal subgroup of G. By minimality, M = Z, that is, M is
abelian. For a ∈ M\{1}, the group 〈h−1ah | h ∈ H〉 is normalised by both H and M,
and is therefore a nontrivial normal subgroup of G, hence is equal to M. Thus, M is
finitely generated and abelian. But that is impossible: since there are no nontrivial
finite normal subgroups in G, M must be free abelian of finite rank and so {a2 | a ∈ M}
is a normal subgroup of G properly contained in M. This contradiction shows that
Z1 = {1}, that is, that T1 ∩ (T2T3 · · · Tq) = {1}.

Similarly, of course, Ti intersects the product of the groups T j for j , i trivially.
Therefore M = T1 × T2 × · · · × Tq and H acts by conjugation to permute the factors Ti

transitively. Let U1 be a nontrivial normal subgroup of T1 (so U1 E M). If h ∈ H, then
Uh

1 E T h
1 , so Uh

1 E M and 〈Uh
1 | h ∈ H〉 E G. Since U1 has a conjugate inside each of

T1, T2, . . . , Tq, there are at least q conjugates of U1 in M which are pairwise disjoint.
By the maximality of q, therefore, U1 has exactly one conjugate Ui in Ti for each
i ∈ [1. .q] and, arguing as above, M = 〈Uh

1 | h ∈ H〉 = U1 × U2 × · · · × Uq. It follows
that U1 = T1, and so T1 is simple. This completes our proof of Theorem 1.4.

A similar argument may be used to show the following result.

Observation 2.1. If G is normally infinite of bilithic type and H satisfies min-sn then
M0, M1, and M2 (as in the statement of Theorem 1.3) are direct products of finitely
many isomorphic infinite simple groups.

For, normal subgroups of M0 are subnormal in H, and therefore if H satisfies min-sn
then M0 satisfies min-n. Let T be a minimal normal subgroup of M0. For a finite subset
Φ of H, define PΦ := 〈T h | h ∈ Φ〉 and CΦ := CM0 (PΦ). Then PΦ E M0 and so CΦ E M0.
Since M0 satisfies min-n, there exists a finite subset Ψ of H such that CΨ is minimal in
the set {CΦ | Φ ⊆fin H}. Then CΨ = CΨ∪{h} for any h ∈ H, and so CΨ = CM0 (P), where
P := 〈T h | h ∈ H〉. Clearly, P E H and P ≤ M0 and so P = M0 since M0 is a minimal
normal subgroup of H. Then CΨ = CM0 (P) = CM0 (M0). If CΨ = M0, then M0 is abelian
and, since it satisfies min-n, it would have to be finite, which is not the case. Therefore,
CΨ = {1} (being the centraliser of P, it is normal in H). Now, if h ∈ H and T h � PΨ,
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then T h ∩ PΨ = {1} (since T h is a minimal normal subgroup of M0) and so T h would
centralise PΨ, which is not the case. Therefore T h ≤ PΨ for all h ∈ H, that is, PΨ = P.
Thus M0 is a product of finitely many conjugates of T , and now the proof can be
completed as in the case where H is finite.

3. Proof of Theorem 1.5

Now suppose that conditions (C1) and (C2) hold and there are arbitrarily large finite
normal subgroups in G. Let K be the set of all finite normal subgroups of G and let
K := 〈N | N ∈ K〉. Then K is an infinite normal subgroup of G and hence transitive
on Ω. Also, let C := {CG(N) | N ∈ K}. Note that for each N ∈ K , CG(N) is the kernel
of the map from G to Aut(N) induced by conjugation and so is normal in G. Since, by
Observation 1.1, G satisfies min-n, C contains a minimal member C. Then C = CG(L)
for some L ∈ K . Since L is finite and G/C ≤ Aut L, |G : C| is finite, so C is infinite
and hence transitive. For any N ∈ K , since L and N are finite normal subgroups of
G, so also is NL and hence NL ∈ K , CG(NL) ∈ C. Now CG(NL) centralises L, that
is, CG(NL) ≤ C. Therefore, CG(NL) = C by minimality of C in C. It follows that C
centralises each N ∈ K and hence C centralises K. Since both C and K are transitive,
we must have C = CG(K), K = CG(C), and both C and K act regularly on Ω.

Let M := C ∩ K, the centre Z(K). Since K E G and the centre is a characteristic
subgroup, M E G. Since C has finite index in G, M has finite index in K and
hence is infinite and therefore transitive. Being a transitive subgroup of the regular
groups C and K, the group M acts regularly, and it follows that M = K = C. Thus,
CG(M) = CG(K) = C = M, so M is abelian and is the unique minimal infinite normal
subgroup of G. Also, G = MH with M ∩ H = 1, since M is regular, and, since M = C,
it has finite index in G. Therefore H is finite and acts faithfully on M by conjugation.

We next determine the structure of M. Since M is abelian, we now use additive
notation. By the Primary Decomposition Theorem (see, for example, [4, page 43,
Theorem 8.4]), M =

⊕
Mp, where the sum is over all prime numbers p and Mp is the

p-primary component of M (recall that M, being a union of finite normal subgroups,
is periodic). Let p be a prime number such that Mp , {0}. If Mp were finite, then⊕

q,p Mq would be infinite. This is a characteristic subgroup of M, hence normal in
G, and therefore transitive. But then we would have M =

⊕
q,p Mq, which is not the

case since Mp , {0}. Therefore, Mp is infinite. As it is a normal subgroup of G it is
transitive, so Mp = M. That is, M is a p-group.

For positive integers n, define M[n] := {x ∈ M | nx = 0}. We show next that M[p]
is finite. Suppose, seeking a contradiction, that M[p] is infinite. Then it is an infinite
normal subgroup of G and so M[p] = M, that is, M is elementary abelian of exponent
p and infinite rank. We consider M as an A-module, where A is the finite-dimensional
(indeed, finite) algebra FpH. By Corollary 4.2 below, M contains infinite proper
submodules (AC is needed here). These are infinite normal subgroups of G that are
not transitive, contradicting our assumption. This proves that M[p] is finite.
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It follows that M has finite rank r (equal to the rank of the elementary abelian
group M[p]). Consider the subgroup pM, that is, {px | x ∈ M}. The map x 7→ px is
an endomorphism M → M and its kernel is M[p], which is finite. Therefore, pM is
an infinite subgroup of M, obviously characteristic, and hence normal in G. It follows
that pM = M, that is, that M is p-divisible. Being a p-group, it is q-divisible for all
prime numbers q , p, and therefore it is divisible.

The proof of Theorem 1.5 is now completed by Theorem 4.3 below.

4. Some relevant representation theory
We begin with a lemma, and a corollary that is needed in the proof of Theorem 1.5.

Recall that the socle Soc M of a module M is defined to be the submodule generated
by all the simple submodules of M.

Lemma 4.1. Let A be a finite-dimensional algebra over a field F and let M be an A-
module. If dim(Soc M) is finite, then also dim M is finite.

Proof. Let J := Rad A, the Jacobson radical defined as the intersection of all the
maximal right ideals of A. As is well known, J is nilpotent and annihilates any
semisimple (right) A-module. For an A-module M, define the ascending Loewy series
by

L0 := {0}, Li+1/Li = Soc(M/Li) for i ≥ 0.

Since LiJ ≤ Li−1 for i ≥ 1, it follows easily that Li = {x ∈ M | xJi = {0}} for i ≤ k, where
Jk = {0}. In particular, Lk = M. The Loewy length of M is defined to be the smallest
m such that Lm = M.

The assertion of the lemma is trivially true if M is semisimple (Loewy length 1),
so suppose as inductive hypothesis that m > 1 and the assertion is known to be
true for modules of Loewy length ≤ m − 1. Suppose that the Loewy length of M
is m and dim(Soc M) = n. Let u1, . . . , ur be generators of J. Consider the map
µi : L2 → M, x 7→ xui. Since ui ∈ J and L2/L1 is semisimple, Image(µi) ≤ L1.
Therefore, codim(ker µi) ≤ n. Now

Soc M = {x ∈ M | xJ = 0} = ker µ1 ∩ ker µ2 ∩ · · · ∩ ker µr

and therefore codimL2 (L1) ≤ rn. Thus, dim(Soc(M/L1)) is finite. By the inductive
hypothesis, dim(M/L1) is finite, and therefore dim M is finite. �

Remark. It is clear that one can derive a bound on dim M in terms of dim(Soc M)
and dim A from the above argument. That bound is unrealistically large, however.
Using only slightly more sophisticated machinery (see [2, Sections 56, 57 and 60]),
we can see that dim M ≤ dim A × dim(Soc M). For, if Soc M � S1 ⊕ · · · ⊕ Sr, where the
summands Si are simple, then there is an embedding M ≤ U1 ⊕ · · · ⊕ Ur, where Ui is
the injective hull of Si. Now the F-dual U∗ of an injective A-module U is a projective
module over the opposite algebra Aop. Since Si is simple, Ui is indecomposable,
and so U∗i is also indecomposable and therefore isomorphic to a summand of the
free Aop-module of rank 1. Thus, dim Ui = dim U∗i ≤ dim Mop = dim M. Therefore,
dim M ≤ r.dim M ≤ dim(Soc M).dim M.
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Corollary 4.2. If A is a finite-dimensional algebra over a field F, and M is an
infinite-dimensional A-module, then M has 2ℵ0 distinct infinite-dimensional proper
submodules.

Proof. By Lemma 4.1, since A is finite-dimensional and M is infinite-dimensional,
also Soc M is infinite-dimensional. Being a sum of simple submodules, Soc M is
actually a direct sum of infinitely many simple A-submodules (AC is essential here).
Therefore, Soc M contains a direct sum

⊕
i∈N Si of simple A-modules (the fact that an

infinite set contains a countably infinite subset also requires AC, albeit only a weak
version). Thus, if I is any infinite proper subset of N, then

⊕
i∈I Si is an infinite-

dimensional proper submodule, and different choices of I give different submodules.
Since there are 2ℵ0 different possibilities for I, there are 2ℵ0 different proper infinite-
dimensional submodules of Soc M and hence of M. �

Next we turn to the analysis of pairs (H, M), where M is the divisible abelian p-
group of rank r that is the minimal transitive normal subgroup of G when G is of
p-divisible affine type, and H, a stabiliser in G, is finite and acts faithfully on M
by conjugation. Since any infinite H-invariant subgroup of M is normal in G and
hence transitive, there are no infinite proper H-invariant subgroups of M. By the
structure theorem for divisible abelian groups (see, for example, [4, Theorem 23.1]—
AC is required for this), M � Cp∞ ⊕ · · · ⊕ Cp∞ , with r summands, where Cp∞ denotes
the Prüfer p-group (see Example 1.4). It is not hard to see that such a direct sum
decomposition of M leads to an isomorphism of the endomorphism ring End M with
the algebra M(r, Ẑp) of r × r matrices over the ring of p-adic integers. We may identify
H with a subgroup of Aut M and, since Aut M � GL(r, Ẑp), we have an embedding
H ≤ GL(r, Q̂p), where Q̂p is the field of p-adic rational numbers.

Theorem 4.3. As a subgroup of GL(r, Q̂p), H is irreducible.

Note. Under these circumstances we say that H acts p-adic irreducibly on M, or that
H is a p-adic irreducible group of automorphisms of M. This is the definition that
completes the statement of Theorem 1.5.

Proof of the theorem. Consider the Pontryagin dual M∗ of M defined by M∗ :=
HomZ(M, S 1), where S 1 := {z ∈ C | |z| = 1}. Since M = r.Cp∞ , M∗ = r.Hom(Cp∞ ,Cp∞)
= r.Ẑp, a free Ẑp-module of rank r. Let W := Q̂p ⊗Ẑp

M∗, an r-dimensional vector space
over Q̂p. Then M∗ ≤ W and, for every w ∈ W, there exists k ≥ 0 such that pkw ∈ M∗,
and so we may think of W as p−∞M∗. Also,

H ≤ Aut M = GL(r, Ẑp) = Aut M∗ ≤ Aut W = GL(r, Q̂p).

Let U be a nonzero H-invariant subspace of W and let s := dim U. We aim to prove
that U = W, that is, s = r. To this end, define U0 := M∗ ∩ U and

M0 := U⊥0 := {x ∈ M | u(x) = 0 for all u ∈ U0}.

As Ẑp-modules, M∗/U0 = M∗/(U ∩ M∗) � (U + M∗)/U ≤W/U, so M∗/U0 is torsion-
free. It is also finitely generated. Therefore, M∗/U0 is free since Ẑp is a principal ideal
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domain, and so M∗ � U0 ⊕ (M∗/U0). Thus, U0 is a free summand of M∗; it is of rank s
since if u1, . . . , us is a basis for U, then there exists k ∈ N such that pkui ∈ M∗ for each
i and these s elements are Ẑp-independent. Clearly it is H-invariant. It follows easily
that M0 is an H-invariant summand of M of rank r − s. There are no infinite proper
H-invariant subgroups of M and so, since s ≥ 1, it follows that s = r and U = W. Thus
H is an irreducible subgroup of GL(r, Q̂p), as required. �

We turn now to the pair (H, V), where V = M[p] construed as an FpH-module
of dimension r. Earlier we had erroneously persuaded ourselves that V must be
irreducible as an FpH-module. That need not be true, as is shown by the following
example that we owe to Peter Kropholler and Karin Erdmann.

Example 4.1. The group H generated by the matrix
( 0 1
−1 0

)
over Ẑ2 is cyclic of order 4

and irreducible over Q̂2, and so the split extension of C2∞ ⊕C2∞ by H has an action of
2-divisible affine type. In this case the action of H on V has kernel of order 2 and H
acts reducibly on V as a cyclic group of order 2.

That H need not act faithfully on V is shown already by the simpler example of
the generalised dihedral group G := D2∞ , the split extension of the Prüfer 2-group by
a cyclic group of order 2 whose generator acts as inversion. Our next example shows
that the kernel K of the action of H on V can be arbitrarily large.

Example 4.2. Let L := C2∞ ⊕C2∞ with the action of C4 described in Example 4.1. Let
r := 2s, where s ≥ 2, let M := sL (the direct sum of s groups, each isomorphic to L),
and let H := C4 wr Sym(s). The natural imprimitive action of the wreath product H on
M is faithful and 2-adic irreducible. The kernel of the H-action on M[2] is K, where
K := C s

2 ≤ C s
4. Thus, in this example, K is an elementary abelian 2-group of order 2s.

Theorem 4.4. Let M := r.Cp∞ , let V := M[p], and let H be a finite subgroup of Aut M.
If p > 2, then H acts faithfully on V. If p = 2, then the kernel K of the action of H on
V is an elementary abelian 2-group.

Proof. Let a ∈ K. Consider a − 1 ∈ End(M). Since a − 1 annihilates M[p] and the
annihilator of M[p] in the endomorphism ring End(M) is p End(M), we may write
a = 1 + pX for some X ∈ End(M). Suppose now that a , 1 and (without loss of
generality) that a has prime order q. Then X , 0 and so there is a nonnegative integer
v such that X ∈ pv End(M), X < pv+1 End(M), that is, v is the p-adic valuation vp(X)
of X.

If q , p, then 1 = (1 + pX)q ≡ 1 + qpX (mod p2v+2 End(M)), whence qpX ∈
p2v+2 End(M), which is not the case. Hence, q = p, and it follows that K is a p-group.
Next suppose that p is odd. Then

1 = (1 + pX)p = 1 + p2X +

(
p
2

)
p2X2 + · · · + ppXp

≡ 1 + p2X (mod p2v+3 End(M)).

This implies that p2X ∈ p2v+3 End(M), which is false since vp(p2X) = v + 2. Therefore,
K = {1} if p is odd.
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Suppose now that p = 2, and that a ∈ K has order 4. Then a = 1 + 2X, where X , 0.
Since a2 = (1 + 2X)2 = 1 + 4X + 4X2 , 1, it follows that if Y := X + X2, then Y , 0.
Let w := v2(Y). Now a2 = 1 + 4Y , 1 and

1 = a4 = (1 + 4Y)2 = 1 + 8Y + 16Y2.

Thus, 8Y + 16Y2 = 0. Since v2(8Y) = w + 3 while v2(16Y2) = 2w + 4, however, this is
impossible. Thus, K is of exponent dividing 2 and is an elementary abelian 2-group,
as in the statement of the theorem. �

Now begin with a prime number p and a pair (H, V), where H is a finite group
and V is an FpH-module of dimension r. If there exists a divisible abelian p-group A
of rank r with an embedding H ≤ Aut A such that A[p] � V as FpH-module, then we
call A a divisible hull of V and write A = p−∞V . In this language the question to be
addressed is:

what conditions on the pair (H,V) ensure the existence of a divisible hull p−∞V?

By Theorem 4.4, it is necessary that H acts faithfully on V if p is odd and that if p = 2
then the kernel of the action is an elementary abelian 2-group. This condition is very
far from sufficient, however, as Example 4.3 below shows.

Let M be an RH-module that is R-free of rank r and which is such that M/pM �H V ,
where R is some integral domain of characteristic 0 such that R/pR � Fp. We call M an
integral cover of V (in the literature it is also called an R-form, but since we do not wish
to specify R, we prefer a less specific term). The following lemma will prove useful.

Lemma 4.5. If V has an integral cover, then also V∗, the dual FpH-module, has an
integral cover.

For, if M is an integral cover of V and M∗ := HomR(M,R), where R is the relevant
integral domain, then M∗ is also a free R-module, and of the same rank r. The
natural map R → R/pR = Fp induces a homomorphism M∗ → HomR(M, Fp) with
kernel pM∗. Every member of HomR(M, Fp) has pM in its kernel, and so there is
a natural isomorphism HomR(M,Fp) � HomFp (M/pM,Fp) � HomFp (V,Fp) = V∗. That
is, reduction modulo p provides an isomorphism M∗/pM∗ → V∗. Therefore, V∗ has
M∗ as an integral cover.

In general V need not have either a divisible hull or an integral cover. The two go
together, however:

Theorem 4.6. The finite-dimensional FpH-module V has a divisible hull if and only if
it has an integral cover.

Proof. Suppose first that V has an integral cover M, an RH-module for some integral
domain R of characteristic 0 with R/pR � Fp. Let F be the field of fractions of R and
let

S := p−∞R := {a/pk | a ∈ R, k ∈ N} ⊆ F.

Then S is a subring of F and R ≤ S . Define p−∞M := S ⊗R M. Since M is a free
R-module of rank r, p−∞M is an S M-module that is free of rank r as S -module. It
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contains M as an RH-submodule, and p−∞M/pM is an RH-module A with the property
that A[p] � M/pM � V as FpH-module. Thus, V has a divisible hull.

Now suppose conversely that V has a divisible hull A. Consider the dual group A∗ :=
Hom(A,Cp∞). As in the proof of Theorem 4.3, A∗ is an RH-module, where R = Ẑp and
A∗ is R-free of rank r. Each element ϕ ∈ A∗ induces a homomorphism A[p]→ Cp∞[p]
and so there is a restriction map ρ : A∗→ Hom(A[p],Cp) (where Cp denotes the cyclic
group of order p). It is not hard to see that ker ρ = {ϕ : A→ Cp∞ | A[p] ≤ kerϕ} = pA∗.
Therefore, A∗/pA∗ � Image(ρ) = Hom(A[p],Cp) = V∗. Thus, A∗ is an integral cover
of V∗. Since V∗∗ = V , applying Lemma 4.5 to V∗, we see that V has an integral cover,
as required. �

Finite groups H with FpH-modules V that have no integral cover (and therefore no
p-divisible hull) certainly exist:

Example 4.3. If p ≥ 5, H := GL(2, p), and V is the natural two-dimensional module F2
p,

then V has no integral cover. For, if R were an integral domain of characteristic 0 with
field of fractions F, and M an RH-module that is R-free of rank 2, then F ⊗R M would
be an FH-module of dimension 2 with H acting faithfully. But H has a subgroup
isomorphic to the metacyclic group AGL(1, p) and it is easy to see that this has
no faithful representation of dimension < p − 1 over any field of characteristic , p.
Therefore, H has no faithful representation of degree < p − 1 over F.

Comment 1. Let us say that V has a Zp2 -hull p−1V if there exists a Zp2 H-module X
that is free of rank r as Zp2 -module and such that X[p] � V as FpH-module. The map
x 7→ px will then be an endomorphism of X with kernel and image both isomorphic
to V . Define a Zpk -hull analogously. If Y were a Zp3 -hull, then pY and Y[p2] would
be ‘overlapping’ Zp2 -hulls. Intuition suggests that if a Zp2 -hull exists, then one should
be able to manufacture a Zp3 -hull from two overlapping copies; then, by some sort of
boot-strapping, a Zpk -hull for every k ≥ 2. It should follow that V has a divisible hull
p−∞V if and only if it has a Zp2 -hull. Is this true?

Comment 2. Let H be any finite group and V an FpH-module. It is not hard to see from
a combination of Theorems 4.3 and 4.6 that the pair (H,V) arises from a permutation
group of p-divisible affine type if and only if V has an integral cover over some integral
domain R of characteristic 0 (not necessarily Ẑp) which is rationally irreducible in
the sense that it is irreducible as FH-module, where F is the field of fractions of R.
Consider the case that V is irreducible. From the beginnings of modular representation
theory, we see that if V lies in a p-block of defect 0 (in the sense that its constituents
when Fp is extended to a splitting field lie in blocks of defect 0), then V has a rationally
irreducible integral cover (or equivalently a p-adic irreducible integral cover), and
therefore (H,V) can arise from a group G of p-divisible affine type as in Theorem 1.5.
We had hoped that this condition would be necessary as well as sufficient but that is
not the case. We are grateful to Karin Erdmann for drawing our attention to examples
due to Gordon James (see [6] or [7, Theorem 7.3.23 and Example 7.3.26]) of modules
of nonzero defect that have integral covers.
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